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In this work we address two important issues of off-line signature verification. The first one regards
feature extraction. We introduce a new graphometric feature set that considers the curvature of the
most important segments, perceptually speaking, of the signature. The idea is to simulate the shape of
the signature by using Bezier curves and then extract features from these curves. The second important
aspect is the use of an ensemble of classifiers based on graphometric features to improve the reliability
of the classification, hence reducing the false acceptance. The ensemble was built using a standard ge-
netic algorithm and different fitness functions were assessed to drive the search. Two different scenarios
were considered in our experiments. In the former, we assume that only genuine signatures and random
forgeries are available to guide the search. In the latter, on the other hand, we assume that simple and
simulated forgeries also are available during the optimization of the ensemble. The pool of base classifiers
is trained using only genuine signatures and random forgeries. Thorough experiments were conduct on a
database composed of 100 writers and the results compare favorably.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The main objective of a signature verification system is to ex-
ploit the singular and personal character of writing [15,28]. This kind
of system should verify that what has been signed corresponds to
the unique characteristics of an individual. A failure in this case is
referred as type I error (false rejection), i.e., rejecting a genuine sig-
nature. Besides, the system should cope with a more challenging
problem, i.e., avoiding the acceptance of forgeries as being authentic.
The second error is referred as type II error (false acceptance).

The signature verification problem can be categorized into on-line
and off-line. In general, on-line systems achieve better performance
since they can count on dynamic features such as, time, pressure,
and speed, which can be easily obtained from the on-line mediums
[23]. Off-line systems are difficult to design as many desirable char-
acteristics such as the order of strokes, velocity, and other dynamic
information are not available during off-line image acquisition. The
verification process has to rely only on features that can be extracted
from the trace of the static signature image [11].
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To deal with the problem of off-line signature verification,
researchers have investigated two different approaches: writer-
dependent and writer-independent [33]. The former is the standard
approach for signature verification, where a specific model is built
for each writer. In this context, hidden Markov models have been
successfully applied [29,6,17]. Still in the same vein, different ma-
chine learning models have been tried out, such as neural networks
[1], distance classifier [7,14] and support vector machines (SVM)
[26]. In these cases, some samples of a given writer are used to
model the genuine class and some samples of other writers, chosen
randomly, are used to model the forgery class.

The forgeries usually are divided into three different subsets
(random, simple, and simulated forgeries). The random forgery is
usually a genuine signature sample belonging to a different writer,
one who is not necessarily enroled in the signature verification sys-
tem. The simple forgery occurs when the forger knows the writer's
name, but has no access to a sample of the signature. Thus, the forger
reproduces the signature in his own style. Finally, the simulated
forgery is a reasonable imitation of the genuine signature model.
Fig. 1 depicts some examples of these forgeries.

The main drawbacks of the writer-dependent approach are the
need of learning the model each time a new writer should be in-
cluded in the system and the great number of genuine samples nec-
essary to build a reliable model. In real applications, usually a limited



Author's personal copy

388 D. Bertolini et al. / Pattern Recognition 43 (2010) 387 -- 396

Fig. 1. Examples of the signature: (a) genuine, (b) simple forgery, and (c) simulated forgery.

number of signatures per writer is available to train a classifier for
signature verification, which leads the class statistics estimation er-
rors to be significant, hence, resulting in unsatisfactory verification
performance. To surpass this problem, some writers generate more
data through transformations of the genuine signatures [13].

An alternative to the writer-dependent approach is the writer-
independent, which models the probability distributions of within-
class and between-class similarities. These distributions are used to
determine the likelihood of whether a questioned signature is au-
thentic or forgery. The concept of similarity/dissimilarity represen-
tation for pattern recognition was introduced by Pekalska and Duin
[27] and the seminal work using this concept in the field of author
identification was presented by Cha and Srihari [5]. Later, Santos et
al. [32] use the idea of dissimilarity representation for signature ver-
ification. The main benefit provided by this approach is the possibil-
ity of reducing an n-class pattern recognition problem to a 2-class
problem, in the case of signature verification, genuine and forgery.

This work takes into account the framework initially proposed
by Santos et al. [32]. It is based on a forensic document examination
approach and can be defined as writer-independent approach as the
number of models does not depend on the number of writers. In
this vein, it is a global model by nature, which reduces the pattern
recognition problem to a 2-class problem, hence, makes it possible to
build robust signature verification systems evenwhen few signatures
per writer are available. It also applies the ideas of dissimilarity
representation introduced by Pekalska and Duin [27] and support
vector machines as classifiers.

An important aspect in signature verification that is very often
neglected is the class distribution. A tacit assumption in the use of
recognition rate as an evaluation metric is that the class distribu-
tion among examples is constant and relatively balanced. In signa-
ture verification this is rarely the case. Usually one has few genuine
signatures and a bunch of random forgeries (signatures from other
writers) to train a model. In this context, ROC (receiver operating
characteristic) curves are attractive due to its property of being in-
sensitive to changes in class distribution. If the proportion of posi-
tive to negative instances changes in a test set, the ROC curves will
not change [8]. It is worth of emphasis that simple and simulated
forgeries cannot be used neither for training nor for the estimation
of decision thresholds.

The contribution of this paper is twofold. First, we introduce a
new graphometric feature set that takes into account the curvature
of the most important segments, perceptually speaking, of the signa-
ture. It simulates the shape of the signature by using Bezier curves.
The features are then extracted from these curves.

Second, we propose an ensemble of classifiers to improve the re-
sistance of the signature verification system against forgeries. The
pool of base classifiers contains classifiers trained with four differ-
ent graphometric feature sets, which were trained using just gen-
uine samples and random forgeries. The ensemble was built using
a standard genetic algorithm and two different validation sets were
used to drive the search. In the first case, the validation set contains
only genuine samples and random forgeries while in the second case
simple and simulated forgeries are also available. The writers used
to build the validation set are not the same used for training. We
show that if forgeries become available even for writers who did not
contributed to the training set, then the system can be fine-tuned
and the best classifiers selected to compose the ensemble. Three

different fitness functions were assessed in our experiments. The
first is the minimization of the overall error rate of the ensemble.
The other two objective functions are derived from the ROC, namely,
the maximization of the AUC (area under the curve) and the maxi-
mization of TPR (true positive rate) for a FPR (false positive rate) for
a fixed threshold.

Besides, we evince the usefulness of the dissimilarity representa-
tion for signatures verification, which enables us to convert a n-class
problem to a more general 2-class one. Hence, SVMs were used as
base classifiers since they are suitable to deal with binary classifica-
tion problems. In this context, an analysis on the size of the reference
set is also presented. The results show that in some cases, after a
certain number of references, the false acceptance cannot be further
reduced. Through a set of comprehensive experiments on a database
composed of 100 writers, we demonstrate that the proposed ap-
proach can reduce considerably the false acceptance rate while keep-
ing the false rejection at acceptable levels. Moreover, it compares
favorably to other combination strategies reported in the literature.

The remaining of the paper is organized as follows: Section 2
describes how the writer-independent approach works. Section 3
presents the database used in this work. Section 4 introduces all the
graphometric feature sets used in this works and Section 5 discusses
important issues of ensemble of classifiers for signature verifica-
tion. Finally, Section 6 reports the experiments we have made and
Section 7 concludes this work.

2. Writer-independent and dissimilarity

The idea of the writer-independent approach is to classify a hand-
writing sample into genuine or forgery. The approach used in this
work is the one employed by forensic experts, who compare the
questioned samples with some references to assert whether a piece
of handwriting is genuine or forgery. During this comparison, the
experts extract different features to compute the level of similarity
between the samples being compared.

The concepts of similarity, dissimilarity, and proximity have been
discussed in the literature from different perspectives [31,10,22,27].
Pekalska and Duin [27] introduce the idea of representing the re-
lations between objects through dissimilarity, which they call dis-
similarity representation. This concept describes each object by its
dissimilarities to a set of prototype objects, called the representa-
tion set R. Each object x is represented by a vector of dissimilarities
D(x,R) = [d(x, p1), d(x, p2), . . . ,d(x, pn)] to the objects Pi ∈ R.

Let R be a representation set composed of n objects. A training
set T of m objects is represented as the m × n dissimilarity matrix
D(T,R). In this context, the usual way of classifying a new object
x represented by D(x,R) is by using the nearest neighbor rule. The
object x is classified into the class of its nearest neighbor, that is the
class of the representation object pi given by d(x, pi)=minp∈RD(x,R).
In another approach, each dimension corresponds to a dissimilarity
D(·, pi) to an object pi. Hence, the dimensions convey a homogeneous
type of information. The key here is that the dissimilarities should be
small for similar objects (belonging to the same class) and large for
distinct objects. In this way, D(·, pi) can be interpreted as an attribute.

The concept of dissimilarity turns out to be very interesting when
a feasible feature-based description of objects might be difficult to
obtain or inefficient for learning purposes, e.g., when experts can-
not define features in a straightforward way, when data are high
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dimensional, or when features consist of both continuous and cat-
egorical variables [27]. In the case of signature verification, how-
ever, several different features have been proposed so that intra- and
extra-class variation can be modeled.

In light of this, in this work we propose to combine feature-based
description with the concept of dissimilarity. The idea is to extract
the feature vectors from both questioned and reference signatures
and then compute what we call the dissimilarity feature vector. If
both samples come from the same writer (genuine), then all the
components of such a vector should be close to 0, otherwise (forgery),
the components should be far from 0.

To implement this, we use a reference set of n genuine signature
samples Ski (i= 1, 2, 3, . . . ,n) and then compare each Sk with a ques-
tioned sample Sq. Let Vi be the graphometric features extracted from
the reference signatures and Q the graphometric features extracted
from the questioned signatures. Then, the dissimilarity feature vec-
tors Zi = |Vi − Q | are computed to train the classifiers Ci, which pro-
vide a partial decision. The final decision D depends on the fusion
of these partial decisions, which are usually obtained through the
majority vote rule. Fig. 2 depicts the global approach.

3. Database

The signature database used in this work is composed of 100
writers and it has been divided into 40, 20, and 40 for training,
validation, and testing, respectively.

Fig. 2. Architecture of the global approach.

Fig. 3. Dissimilarities among genuine samples of the same writer to generate the positive samples. From four genuine samples, six dissimilarity vectors are created.

The signatures were provided by undergraduate students in four
different sessions, once a week during one month. The signatures
were collected on an A4 white sheet of paper with no overlap and
then scanned in gray level with 600dpi. Ten genuine signatures
were collected from each writer in each session. Regarding the
forgeries, 10 people with no experience in making forgeries were
selected as forgers. Simple forgeries were produced informing to
the forger only the name of the writer. Simulated forgeries were
produced showing to the forger four genuine signatures of the
writer. Taking into account that we have forgeries for 60 writers
and 20 forgeries per writer (10 simple and 10 simulated), each
forger produced 120 forgeries (60 simple and 60 simulated) in
average.

Considering the dissimilarity-based approach adopted in this
work, the classifiers should be trained to discriminate between
genuine (positive) and forgeries (negative). To generate the positive
samples, we have computed the dissimilarity vectors among four
genuine samples of each writer, which results into six different
combinations. Considering 40 writers of the training set, it sums up
to 240 positive samples. Fig. 3 exemplifies this process.

To build the negative samples, we consider the first two samples
of the first 36 writers of the training set. Then, we compute the
dissimilarities among these two signatures and two signatures of
four different writers selected randomly. It totalizes 288 negative
samples. An example of this process is illustrated in Fig. 4. These
528 samples make our dissimilarity-based training set, which is used
to train an SVM classifier. The training is done using k-fold cross
validation. Different values for k have been tried out but k = 10
produced the best results.

In the dissimilarity approach, the number of positive and negative
samples in the testing set depends directly on the number of refer-
ences discussed in Section 2. Consider for example that five genuine
signatures from a given writer that did not contribute to the training
set are available as references. In this case, the dissimilarity vectors
among a given testing sample (questioned signature) and the five
references are computed, yielding five dissimilarities feature vec-
tors. In our case, the testing set contains 40 writers with 40 samples
per writer, which are divided into 10 genuine signatures, 10 random
forgeries (selected randomly), 10 simple forgeries, and 10 simulated
forgeries. The number of references is subject of investigation and
in our experiments it ranges from 3 to 15.

Two different validation sets devoted to compute the fitness
during the search are available. The former is composed of 20
writers and 20 samples per writer, 10 genuine signatures and
10 random forgeries (selected randomly). The latter contains the
same 20 writers but with 40 samples per writer, 10 genuine
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Fig. 4. Dissimilarities among genuine samples from different writers to generate the negative samples.

Fig. 5. Example of two different configurations of the grid used for feature extraction.

Fig. 6. An example of distribution of pixels. It uses a different number of cells to better illustrate the process.

signatures, 10 random forgeries (selected randomly), 10 simple forg-
eries and 10 simulated forgeries. Alike the testing set, the number
of positive and negative samples depends on the size of the re-
ference set.

Note that these samples are used just to guide the search of the
optimization algorithm, i.e., the base classifiers were trained using
genuine and random forgeries only. As stated before, our argument
is that if some simulated and simple forgeries become available, we
can use them to select the best classifiers to build the ensemble,
without retraining the base classifiers.

4. Feature sets

In this section we present the feature sets considered to build
the pool of base classifiers used to generate the ensembles. All of
them are grid-based, i.e., the image of size 400 × 1000 (H × W) is
segmented using a grid and then the features are computed for each

cell of the grid. Fig. 5 shows two different grid configurations on
the same signature. To make this paper self-contained, we describe
the four characteristics used to train the classifiers, namely, density,
slant, distribution, and curvature. The first three have been applied
to signature verification with relative success [18], while the latter
is a new feature set introduced in this work.

The density is what we call apparent pressure, since it describes
the width of the strokes. To extract this feature set we put a grid
over the image and count the number of black pixels in each cell. To
compute the slant we have applied the concept presented by Hunt
and Qi [14], which determines the slant in two steps. First, a global
slant is computed over the entire image and then the slant for each
cell is computed as well. In this way, each cell has a slant value and
the final global value is the most frequent value among the cells of
the segmentation grid. The distribution of pixels is based on four
measures as depicted in Fig. 6. In this case each cell is delimited
by two projections, vertical, and horizontal. Then, the height and
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Fig. 7. (a) Original signature, and (b) signature profile.

width of the stroke are computed in four directions limited to these
projections. These values are exemplified by the letters A,B,C, and
D in Fig. 6, which represent the height of the left part of the stroke,
the width of the upper part of the stroke, the height of the right
part of the stroke, and the width of the lower part of the stroke,
respectively. A more complex approach, but based on the same idea
was proposed by Sabourin et al. [30].

Finally, the last feature set tries to capture the information about
the curvature of the most important segments of the signature. In
order to do that, we try to reproduce these segments using the well-
known cubic Bezier curves [24], which are defined by four points:
two endpoints (origin and destination) and two control points. To
reduce the complexity of this task, first the image of the signature is
thinned and then the upper and lower profiles are extracted. Only
the longest segment of each cell is considered for feature extraction,
which is detected as follows: First, intersection and terminal points
are detected in the thinned image. All the paths between two dif-
ferent terminal points, two different intersection points, or the path
between a terminal point and an intersection point are considered
as independent segments. Then, for each segment three equidistant
points (Ni) are defined. Fig. 7 shows a signature and its respective
profile.

For each point Ni {i=1, 2, 3}, we compute � and the control points
(Pli and Phi) using Eqs. (1) and (2), respectively.

� = arctan
yNi−1 − yNi+1

xNi−1 − xNi+1

(1)

⎧⎪⎪⎨
⎪⎪⎩

Pli(x) = Ni(x) + cos(�) × dist(Ni,Ni−1)
Pli(y) = Ni(y) + sin(�) × dist(Ni,Ni−1)
Phi(x) = Ni(x) + cos(�) × dist(Ni,Ni−1)
Phi(y) = Ni(y) + sin(�) × dist(Ni,Ni−1)

(2)

where dist stands for the Euclidean distance. Fig. 8a shows an exam-
ple of the features computed for Ni, where d1i and d2i represent the
Euclidean distance from Ni to the two control points. As we can no-
tice from Fig. 8a, the bigger the distance, the lower the curvature of
the stroke between the points. Summarizing, we extract three fea-
tures for each point (�, d1i , and d2i ), which gives us nine features per
cell of the grid. Fig. 8b shows an example of the points detected in
a real segment extracted from the signature of the Fig. 7b.

As mentioned earlier, the size of the grid depends on the feature
being used. In this context, we have extracted the feature sets con-
sidering different grid sizes and used all of them to build the ensem-
ble. The decision of which classifier should be part of the ensemble
will be provided by the search algorithm. We have considered the
following 16 (Horizontal × Vertical) different variations for the grid:
4×5, 4×10, 4×20, 4×25, 5×5, 5×10, 5×20, 5×25, 8×5, 8×10,
8× 20, 8× 25, 10× 5, 10× 10, 10× 20, and 10× 25. For each differ-
ent grid size, a classifier is trained with one of the four feature sets,
resulting in 64 different classifiers.

Following the protocol introduced previously, these feature sets
are extracted from the questioned (Sq) and reference (Sk) images

Fig. 8. (a) Example of the features extracted from a segment and (b) example of
the points detected in a real segment extracted from the signature of the Fig. 7b

as well, which produce the aforementioned graphometric feature
vectors Vi and Q . Once those vectors are generated, the next step
consists in computing the dissimilarity feature vector Zi = |Vi − Q |,
which will be used to train the SVM classifiers. Considering that
the reference set is composed of n images, the questioned image
Sq will be compared n times, yielding n partial decisions. Then, the
final decision can be based on any fusion rule, such as, majority,
voting, max, min, product, etc.What we have observed from previous
experiments [25] is that the Max rule achieves the best results for
the database considered in this work.

In this work we report the performance of the system in terms
of the overall error rate, which is given by Eq. (3). Given the test set
discussed in the previous section, the a priori probability of a type I,
type IIa (random), type IIb (simple), and type IIc (simulated) is 0.25:

Overall Error = 1
4 × type I + type IIa + type IIb + type IIc (3)

The overall error rates of the classifiers described above range
from 9% to 25% on the testing set, considering five references. It is
important to notice that the SVM has been trained with samples
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Fig. 9. Performance of the base classifiers.

Table 1
Best classifier of each feature set on the test set.

Features Overall error Type I error Type II error

Simulated Random Simple

Distribution 8.42 18.83 7.50 3.66 3.66
Curvature 11.19 27.16 9.48 3.32 4.80
Density 10.35 25.32 7.80 3.80 4.48
Slant 10.48 17.48 10.00 6.80 7.64

coming from the 40 writers of the training set. The error rates de-
picted in Fig. 9 are computed based on 40 writers who did not
contribute to the training of the writer independent classifier. As
we can observe, the distribution feature set has the best classifiers
while those trained with the curvature presents error rates above the
average.

Table 1 reports the error rates separately for genuine and the
three different classes of forgeries for the best classifier of each fea-
ture set, considering five references.

We could notice that the curvature feature set suffers more inten-
sively with the intra-class variability, hence, it produces an higher
type I error, as reported in Table 1. This drawback, however, is useful
to avoid type II error, specially in the case of the simulated forgeries.
By analyzing the results we realized that several forgeries not de-
tected by the other three feature sets were found by the classifiers
trained with the curvature feature set.

The main challenge of a signature verification system consists
in minimizing as much as possible the type II error while keep-
ing the type I error at acceptable levels. Two hypotheses have been
done here: (1) the approach will generalize well for genuine signa-
tures from unknown writer if the intra-class variability of “genuine
signatures” is reasonably low and (2) the elimination of random forg-
eries (e.g., low false positive rate) results in a good detection of sim-
ple forgeries according to the nature of this class of forgeries. In the
next sections we describe the efforts we have made in this direction
using ensemble of classifiers.

5. Ensemble of classifiers for signature verification

Several studies have been published demonstrating the benefits
of the combination paradigm over the individual classifier models
[20]. During the last years, a considerable amount of research has
gone into ensemble of classifiers. According to the literature, the
most popular methods for ensembles creation are Bagging [2] and
Boosting [9]. The effectiveness of such methods comes primarily

from the diversity caused by re-sampling the training set while us-
ing the complete set of features to train the component classifiers. In
addition, some attempts have been made to incorporate the diver-
sity into ensemble creation methods by over-producing classifiers
and then choosing some of them to compose the ensemble. The ran-
dom subspace method (RMS) proposed by Ho in [12] was one early
algorithm that construct an ensemble by varying the subset of fea-
tures. An alternative to bring diversity to the ensemble is to combine
classifiers trained with different feature sets. The efficiency of this
strategy has been reported by several authors [34,19,21].

In this paper the underpinning concept adopted was the “over-
produce and choose”. The over-production of classifiers is achieved
by varying the size of the segmentation grid during feature extrac-
tion. Based on our previous experience, this is an important parame-
ter of segmentation-based signature verification systems. Therefore,
each different configuration of the grid size is used to train a differ-
ent classifier. As stated in Section 4, 16 different grid configurations
were considered for each feature set. The “choose” step is performed
by a genetic algorithm, which selects a subset of classifiers and com-
bines them using a fusion rule. In this work, several fusion rules were
tried out at this level, and the sum rule produced the best results in
average.

When using search algorithms to build ensemble of classifiers,
the most common fitness function is the minimization of the overall
error rate or themaximization of some diversity measure. In the con-
text of signature verification, however, minimizing the overall error
rate may not be the ideal since the hypothesis that the class distri-
bution among examples is constant and relatively balanced does not
hold. In this context, ROC curves are attractive due to its property of
being insensitive to changes in class distribution.

Two other fitness functions can be derived from the ROC com-
puted on the validation set. The first one is the area under the ROC
(AUC), which reduces the ROC performance to a single scalar value
representing the expected performance. The AUC has an important
statistical property: the AUC of a classifier is equivalent to the prob-
ability that the classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative instance [8]. The
second function is the maximization of the true positive rate for a
given false positive rate. The FPR usually is a constraint imposed by
the application.

6. Experiments

In our experiments, the genetic algorithm is based on bit rep-
resentation, one-point crossover, bit-flip mutation, and roulette
wheel selection (with elitism). The following parameter setting
were employed: population = 100, number of generations = 300,
probability of crossover=0.7, and probability of mutation=0.03. In
order to define the probabilities of crossover and mutation, we have
used the one-max problem, which is probably the most frequently
used test function in research on genetic algorithms because of its
simplicity [4]. The population size and the number of generations
were defined empirically.

Let A = {C1,C2, . . . ,Cp} be the pool of p base classifiers and B a
chromosome of size p of the population. The relationship between
A and B is straightforward, i.e., the gene i of the chromosome B is
represented by the classifier Ci from A. Thus, if a chromosome has
all bits selected, all classifiers of A will be included in the ensemble.
As presented earlier, in this work we have build a pool of 64 base
classifiers (p = 64) by varying the size of the segmentation grid.

In order to find an ensemble of classifiers that brings a good
generalization, we have compared three different fitness functions.
The first one is the minimization of the overall error rate of the
ensemble on the validation sets. In this case, the decision threshold
in the ROC curve is the one that minimizes the overall error rate.
The other two objective functions are derived from the ROC, namely,
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Fig. 10. Comparison among the three objective functions considered in this works.
(a) Sk = 5 and (b) Sk = 15. The validation set II was considered here.

the maximization of the AUC and the maximization of TPR for a
FPR fixed at 10%. As stated before, two different databases were
used to assess the fitness. In the first one only genuine samples
and random forgeries are available, while the second set contains
genuine samples and all types of forgeries. In this way, we will be
able to verify the impacts of having simple and simulated forgeries
during the optimization process. It is worth of remark, though, that
those forgeries were not used to train the classifiers.

As mentioned in Section 3, one aspect worth of investigation is
the size of the reference set Sk during the search. In theory, the bigger
the reference set, the bigger the intra-class variation the writer-
independent model can absorb. In real applications, however, usually
a limited number of genuine signatures per writer is available.

In light of this, seven experiments were performed using
Sk = {3, 5, 7, 9, 11, 13, 15}. Taking into account that three different
objective functions were assessed, it sums up to 21 different ex-
periments. Each experiment was replicated 10 times to verify the
reproducibility. Therefore, all the results presented here consider
the average of these 10 replications.

6.1. Objective functions

Our first concern when analyzing the results of the experiments
was the impact of the objective functions. As one can observe from

Table 2
Results on the testing set for ensemble tuned on the validation set II.

Objective function Sk Overall error Type I error Type II error

Simulated Random Simple

Error rate 3 8.06 14.32 8.64 4.48 4.80
5 7.09 21.08 3.80 2.00 1.48
7 6.65 12.48 6.48 3.64 4.00
9 6.46 7.32 8.32 5.32 4.88

11 6.74 9.16 8.32 5.00 4.48
13 6.36 11.00 7.00 3.64 3.80
15 5.90 8.32 7.16 3.80 4.32

AUC 3 7.12 16.32 6.16 3.00 3.00
5 6.61 17.64 4.64 2.00 2.16
7 6.03 11.16 6.48 3.16 3.32
9 6.11 14.00 5.00 2.80 2.64

11 6.36 14.00 6.00 2.80 2.64
13 6.20 9.16 7.48 4.16 4.00
15 5.65 10.16 6.48 3.16 2.80

FPR fixed (10%) 3 8.02 13.80 8.16 5.32 4.80
5 7.57 18.00 6.16 2.80 3.32
7 7.02 14.32 6.48 3.48 3.80
9 6.81 13.80 6.00 3.64 3.80

11 7.12 10.16 9.16 4.00 5.16
13 7.03 10.16 9.32 4.16 4.48
15 5.99 9.00 7.48 3.48 4.00

Fig. 10, the smaller the size of the reference set, the bigger the im-
pact of the objective function during optimization. From Fig. 10a,
we can observe that the most homogeneous curve was produced by
the ensemble that maximizes the AUC. It is also clear that the ROC
produced by the maximization of the TPR for FPR fixed at 10% really
improved the results for that operational point. The worst perfor-
mance, on the other hand, was produced by the minimization of the
overall error rate. This can be explained by the fact that the error
rate is sensitive to changes in class distribution.

What we have observed is that as the size of the reference
size increases the impacts of the objective function is minimized.
Fig. 10b compares the three objective functions for Sk = 15, while
the numerical results are reported in Table 2 It is important to men-
tion that rarely such a number of references is available. Therefore,
we believe that an objective function derived from the ROC is more
suitable in the context of signature verification.

6.2. Size of the reference set (Sk)

One of the important issues of the approach adopted in this work
is the size of the reference set and its impact on the reliability of
the signature verification system, which can have different meanings
depending on the application. It is clear that a reliable system is the
one where both types I and II errors are reduced simultaneously.
However, in general there is a trade-off between these types of errors
and for this reason the concept of reliability can change depending
on the application requirements. For example, for some applications,
reducing type II error is much more important than reducing type I,
and vice versa.

In this section we address the impacts of the size of the reference
set used during the optimization. Here, we assume that a reliable
system should reduce as much as possible type II error, i.e., be re-
sistant against forgeries. However, the results reported in Tables 2
and 3 enable us to verify in which conditions the system is more
resistant against type I error as well.

Regarding the resistance against forgeries, what is clear from
these experiments is the importance of using simple and simulated
forgeries during the ensemble optimization. The beauty of having
a universal classifier based on dissimilarity is that if simulated and
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simple forgeries become available, they can be used to find more
reliable ensembles without retraining the classifiers. Table 2 shows
that when the validation set II is used, the most reliable configu-
ration against forgeries were reached when Sk = 5. On the other
hand, if only random forgeries are available during the optimization
(validation set I), the number of references should be considerably
increased to achieve comparable rates. See Table 3.

As mentioned before, one could expect that increasing the
number of references would consequently reduce the error rates.
However, what we could observe is that the behavior reported in
Table 3 is also related to the acquisition of the database. The sig-
natures were collected during four sessions, where each writer
provided 10 samples per section. In some cases, besides the normal
intra-class variability, we could notice that the last signatures fea-
ture extra variability caused by the fatigue of the writers. Fig. 11
shows an example of this variability, where (a), (b), and (c) show
the first genuine signature collected, the superposition of the first
three signatures, and the superposition of the last three signatures,
respectively. It is easy to observe the bigger intra-class variability in
the end of the process. Consequently, adding more references did
not help if they have such a large intra-class variability.

Very often, pattern classification systems impose some con-
straints in terms of FPR. In such cases, as depicted in Fig. 10a,
could be interesting to optimize the ensemble taking into account
such restrictions, even though the overall performance is poorer.
If no constraint is presented, then AUC seems a good option due
to its property of being insensitive to changes in class distribution.
What happens in this case, is that the ensemble is composed of
more restrictive classifiers, which are more sensitive to intra-class
variations. That is to say, small variations on the signature are

Table 3
Results on the testing set for ensemble tuned on the validation set I.

Objective function Sk Overall error Type I error Type II error

Simulated Random Simple

Error rate 3 8.85 20.32 6.80 3.80 4.48
5 8.81 16.16 7.64 4.80 6.64
7 7.82 12.32 9.00 4.64 5.32
9 7.15 10.80 7.64 5.16 5.00

11 7.19 9.64 9.48 4.48 5.16
13 7.54 17.00 7.00 3.00 3.16
15 6.28 11.32 6.48 4.32 3.00

AUC 3 7.86 15.32 7.48 4.16 4.48
5 7.32 11.32 8.00 4.48 5.48
7 6.32 11.32 5.00 4.16 4.80
9 7.04 10.00 7.00 5.00 6.16

11 7.19 17.64 4.32 3.32 3.48
13 6.73 7.32 7.80 5.32 6.48
15 6.48 9.16 6.64 4.80 5.32

FPR fixed (10%) 3 7.99 7.64 10.00 7.16 7.16
5 7.78 10.80 9.00 5.32 6.00
7 7.28 13.00 7.16 4.64 4.32
9 6.80 8.00 8.16 5.32 5.64

11 6.88 5.16 9.48 6.64 6.16
13 6.98 15.16 5.64 3.32 3.80
15 6.34 13.64 5.16 3.16 3.32

Fig. 11. Example of variability: (a) genuine signature, (b) first signatures superposed, and (c) last signatures superposed.

considered forgeries. On the other hand, the price to pay in this case
is the higher type I error (false rejection).

If we compare the results produced by the ensembles with
the best classifiers trained with the four feature sets presented in
Table 1, we can assert that the ensembles are quite effective in
mitigating all kind of forgeries, even though when only genuine
signatures and random forgeries are used during the optimization.
One aspect that is clear from our experiments is that increasing the
size of the reference set does not necessarily reduces type I error,
but it generally reduces the overall error rate.

The results reported here compare favorably to other combination
strategies [25], where the error rates reported for simulated, random,
and simple forgeries were 8.16%, 5.32%, and 4.48%, respectively, for
five references.

6.3. Selected classifiers

Another important facet when discussing ensemble of classifiers
consists in analyzing the selected classifiers. According to the theory,
a good ensemble contains good classifiers (not necessarily excellent)
that disagree as much as possible on difficult cases [20]. This behav-
ior could be observed in our experiments as several classifiers with
good performance were not selected and others below average were
chosen to be part of the ensemble. Figs. 12 and 13 show the clas-
sifiers selected for the ensembles using validation sets I and II, re-
spectively. In both figures, each cell represents one classifier trained
with a different grid size. The order of the cells is as follows: 4 × 5,
4×10, 4×20, 4×25, 5×5, 5×10, 5×20, 5×25, 8×5, 8×10, 8×20,
8 × 25, 10 × 5, 10 × 10, 10 × 20, and 10 × 25. The three different
objective functions are addressed in these figures.

According to Figs. 12 and 13, the classifiers trained with the slant
are selected more often. This does not mean necessarily that these
classifiers have more discriminative power, but rather that they pro-
vide more complementary information to the other feature sets used
in this work. We can observe in Table 1 that the overall error pro-
duced by classifiers based on distribution are smaller than those
based on slant.

The opposite occurs for those classifiers based on density. In spite
of the fact that this feature set shows a good performance against
forgeries (see Table 1), the classifiers based on this feature set are
not selected for the ensemble very often. In some cases, they are
not even used (see Fig. 12a and c). About the curvature feature set,
it can be observed that it plays an important role in the ensemble.
From Figs. 12 and 13, we can notice that even the weaker classifier
of the pool (the fifth classifier of the curvature feature set, with error
rate = 25%) has been selected very often. This corroborates to our
argument that reproducing the signature using Bezier curves carry
complementary information to the other feature sets considered in
this work. The classifiers based on curvature are the second most
selected for the ensembles.

From the theoretical point of view, the ensemble that generalizes
well on unknown data is the one composed of base classifiers that
maximize the diversity of opinions on hard cases (ambiguous cases).
In this way, very performing classifiers might be discarded during
the selection process because they are highly correlated together
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Fig. 12. Classifiers selected during the search using validation set I and fitness: (a) overall error, (b) AUC, and (c) FPR fixed at 10%.

Fig. 13. Classifiers selected during the search using validation set II and fitness: (a) overall error, (b) AUC, and (c) FPR fixed at 10%.

on ambiguous samples, i.e., they could have the same level of
competence in their respective representation space for the classifi-
cation of the unknown sample [3,16]. This is supported by our exper-
iments as some writers are well handled by some specific classifiers,
such as density-based and some curvature-based. This explains why
some weak classifiers are always selected, in spite of their weak
performance.

7. Conclusion

In this paper we have discussed ensemble of classifiers as a
strategy to improve the reliability of off-line signature verifica-
tion systems. It is important to highlight the usefulness of the
dissimilarity-based scheme, which allows the design of a universal

classifier where new users can be added without retraining the
classifiers. As we have demonstrated, if forgeries are available for
some writers who did not participate in the training, these samples
can be used to fine tune the system and select the best ensemble of
classifiers.

Comprehensive experiments taking into account two different
scenarios (simple and simulated forgeries available and not avail-
able) demonstrated that ensembles based on graphometric features
are quite efficient and can reduce considerably the type II error
(acceptance of forgeries). What we could observe is that if forg-
eries are available, a good performance on detecting forgeries can
be achieved even using few signatures in the reference set. The effi-
ciency of the proposed methodology was proved on a database com-
posed of 100 writers.
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Besides, a new graphometric feature set was introduced. The idea
was to simulate the most important segments of the signature by
using Bezier curves and then extracting features from them. In spite
of the fact that this feature set can be improved in some ways, it has
been shown that it can be useful for signature verification. As future
works, we plan to investigate different ways to define the singular
points used for feature extraction. We believe that, the better the
reconstruction, the more reliable will be the feature set.
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