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This work presents a literature review of multiple classifier systems based on the dynamic selection of
classifiers. First, it briefly reviews some basic concepts and definitions related to such a classification
approach and then it presents the state of the art organized according to a proposed taxonomy. In
addition, a two-step analysis is applied to the results of the main methods reported in the literature,
considering different classification problems. The first step is based on statistical analyses of the
significance of these results. The idea is to figure out the problems for which a significant contribution
can be observed in terms of classification performance by using a dynamic selection approach. The
second step, based on data complexity measures, is used to investigate whether or not a relation exists
between the possible performance contribution and the complexity of the classification problem. From
this comprehensive study, we observed that, for some classification problems, the performance
contribution of the dynamic selection approach is statistically significant when compared to that of a
single-based classifier. In addition, we found evidence of a relation between the observed performance
contribution and the complexity of the classification problem. These observations allow us to suggest,
from the classification problem complexity, that further work should be done to predict whether or not

to use a dynamic selection approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classification is a fundamental task in Pattern Recognition,
which is the main reason why the past few decades have seen a
vast number of research projects devoted to classification methods
applied to different fields of the human activity. Although the
methods available in the literature may differ in many respects,
the latest research results lead to a common conclusion; creating a
monolithic classifier to cover all the variability inherent to most
pattern recognition problems is somewhat unfeasible.

With this in mind, many researchers have focused on Multiple
Classifier Systems (MCSs), and consequently, many new solutions
have been dedicated to each of the three possible MCS phases:
(a) generation, (b) selection, and (c) integration, which are
represented in Fig. 1. In the first phase, a pool of classifiers is
generated; in the second phase, one or a subset of these classifiers
is selected, while in the last phase, a final decision is made based
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on the prediction(s) of the selected classifier(s). It is worth noting
that such a representation is not unique, since the selection and
integration phases may be facultative. For instance, one may find
MCS where the whole pool of classifiers is used without any
selection or systems where just one classifier is selected from the
pool, making the integration phase unnecessary.

In a nutshell, recent contributions with respect to the first
phase indicate that the most promising direction is to generate a
pool of accurate and diverse classifiers. The authors in [1] state
that a necessary and sufficient condition for an ensemble of
classifiers to be more accurate than any of its individual members
is for the classifiers to be accurate and diverse. Dietterich [2]
explains that an accurate classifier has an error rate lower than the
random guessing on new samples, while two classifiers are diverse
if they make different errors on new samples. The rationale behind
this is that the individual accurate classifiers in the pool may
compete each other by making different and perhaps complemen-
tary errors. As for the selection phase, interesting results have
been obtained by selecting specific classifiers for each test pattern,
which characterizes a dynamic selection of classifiers, instead of
using the same classifier for all of them (static selection). More-
over, additional contributions have been observed when ensem-
bles are selected instead of just one single classifier. In such a case,
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Fig. 1. The possible phases of a Multiple Classifier System.
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the outputs of the selected classifiers must be combined and the
third phase of the MCS is necessary. The main contributions for
this phase have been comprised of different strategies combining
the classifiers and the assumption that the best integration choice
is usually problem depended.

The focus of this paper is on the second phase of an MCS,
particularly, the approaches based on dynamic selection (DS) of
classifiers or ensembles of such classifiers. Despite the large
number of DS methods available in the literature, there is no
comprehensive study available to those wishing to explore the
advantages of using such an approach. In addition, due to the high
computational cost usually observed in the DS solutions, its
application is often criticized. In fact, the decision as to whether
or not to use DS is still an open question.

In this scenario, we have three research questions, namely:

1. Are the performance results of the DS methods reported in the
literature significantly better than those obtained by a single-
based classifier approach?

2. Is there any relation between the classification complexity and
the observed DS performance for a given problem?

3. Can we predict whether or not DS should be used for a given
classification problem?

To answer these questions, we have reviewed several works on
dynamic selection and performed a thorough statistical analysis of
the results reported in the literature for different classification
problems.

The motivation for investigating the possible existence of a
relation between the DS contribution and the complexity of a
classification problem is inspired by previous works in which
the data complexity is used to better define the classifier models.
An interesting work in this vein is presented in [3], in which the
authors use geometrical characteristics of data to determine the
classifier models. Two other interesting studies are presented in [4,5],
where the authors characterize the behavior of a specific classifier
approach considering problems with different complexities.

With this in mind, our contribution is two-fold that (a) presents
a comprehensive review of the main DS methods available in the
literature, providing a taxonomy for them and (b) performs a
further analysis of the DS results reported in the literature to
determine when to apply DS.

This paper is organized as follows. After this brief introduction,
Section 2 presents the main basic concepts and definitions related
to the dynamic selection of classifiers. Section 3 presents the state
of the art of DS methods and describes the suggested taxonomy.
The algorithms of some key examples of each category are
presented based on the same notation to facilitate comprehension.
Section 4 presents further analysis of the DS results available in the
literature, in a bid to answer our research questions. Finally,
Section 5 presents the conclusions and further works.

2. Basic concepts and definitions

This section presents the main concepts related to MCS and DS
approaches, which represent the necessary background for the
comprehension of the different works available in the literature.

The first concepts are related to the generation phase of the MCS.
As described earlier, this first phase is responsible for the generation
of a pool of base classifiers, considering a given strategy, to create
diverse and accurate experts. A pool may be composed of homo-
geneous classifiers (same base classifiers) or heterogeneous classi-
fiers (different base classifiers). In both cases, some diversity is
expected. The idea is to generate classifiers that make different
mistakes, and consequently, show some degree of complementarity.
A comprehensive study of different diversity measures may be found
in the work of Kuncheva and Whitaker [6]. The schemes to provide
diversity are categorized in [7] as implicit, when there is no use of
diversity measures during the generation process, or as explicit, in
opposite cases.

In homogeneous pools, diversity is achieved by varying the
information used to construct their elements, such as changing the
initial parameters, using different subsets of training data (Bagging
[8], Boosting [9]), or using different feature subspaces (Random
Subspace Selection [10]). On the other hand, the basic idea behind
heterogeneous pools is to obtain experts that differ in terms of the
properties and concepts on which they are based.

Regarding the selection phase of an MCS, the main concepts are
related to the type of selection and the notion of classifier
competence. The type of selection may be static or dynamic, as
explained earlier. The rationale behind the preference for dynamic
over static selection is to select the most locally accurate classifiers
for each unknown pattern. Both static and dynamic schemes may
be devoted to classifier selection, providing a single classifier, or to
ensemble selection, selecting a subset of classifiers from the pool.

Usually, the selection is done by estimating the competence of
the classifiers available in the pool on local regions of the feature
space. To that end, a partitioning process is commonly used during
the training or testing phases of the MCS. In this process, the
feature space is divided into different partitions, and the most
capable classifiers for each of them are determined. In static
selection methods, the partitioning is usually based on clustering
or evolutionary algorithms, and it is executed during the training
phase. This means that the classifier competence is always
determined during the training phase of the system. Although it
is possible to apply similar strategies for dynamic selection
methods, what is mostly commonly seen with this approach is
the use of a partitioning scheme based on the NN-rule to define
the neighborhood of the unknown pattern in the feature space
during the testing phase. In this case, the competence of each
classifier is defined on a local region on the entire feature space
represented by the training or validation dataset.

Regarding the competence measures, the literature reports
several of them, which consider the classifiers either individually
or in groups. This is the basis of the DS taxonomy proposed in the
next section. It is worth noting that, basically, the individual-based
measures most often take into account the classifier accuracy.
However, the measures are conducted in different ways. For
instance, one may find measures based on pure accuracy (overall
local accuracy or local class accuracy) [11], ranking of classifiers
[12], probabilistic information [13,14], classifier behavior calcu-
lated on output profiles [15-17], and oracle information [18,19].
Moreover, we may find measures that consider interactions among
classifiers, such as diversity [20-22], ambiguity [23,24,17] or other
grouping approaches [25].

The third phase of an MCS consists in applying the selected
classifiers to recognize a given testing pattern. In cases where all
classifiers are used (without selection) or when an ensemble is
selected, a fusion strategy is necessary. For the integration of the
classifier outputs, there are different schemes available in the
literature. Complete details regarding the combination methods
and their taxonomy are available in Jain et al. [26] and in Kittler
et al. [27].
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With respect to the experimental protocols used to evaluate a DS
approach, one may usually find a comparison of the proposed method
against the single best (SB) classifier, a combination of all classifiers in
the pool (CC), the static selection (SS) using the same pool, and other
DS approaches. In fact, it suggests that the minimum requirement for a
DS method is to surpass the SB, CC, and any SS in the same pool.
Moreover, the concept of oracle performance is usually present in the
evaluation of the proposed methods. This means that the proposed
method is compared against the upper limit in terms of performance
of the pool of classifiers. The oracle performance is estimated by
considering that if at least one classifier can correctly classify a
particular test sample, then the pool can also do so as well.

Finally, since in the next section, we present the algorithms of
some key works available in the literature, for the sake of
comprehension, we have adopted the same notation. To that
end, let 2 = {w;, w-, ..., w;} denote the set of classes of a hypothe-
tical pattern recognition problem, while Tr, Va, and Te represent
training, validation, and testing datasets, respectively. Moreover,
let C={cy,ca,...,cm} be a pool composed of M diverse classifiers,
and EoC = {EoCy,Eo0C,, ...,EoCy} be a pool of N diverse ensembles
of classifiers. The unknown sample, or the testing sample, is
referred to as t. In addition, let ¥ be the region of the feature
space used to compute the competence of the base classifiers.

The next section presents the proposed taxonomy, the key
works that represent each category, and some general statistics
related to their performances.

3. State of the art

It is worth noting that a categorization of the existing methods is
not a trivial task since they present a large overlapped region. So, in
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order to better present the state of the art, we first outline a
taxonomy in the context of MCS, which is inspired by the taxonomy
of ensembles [7], and then we review the literature following the
diagram depicted in Fig. 2. However, here, the focus is DS, and the
main criterion is the source of information used to evaluate the
competence of the base classifiers in the pool. The measures of
competence are organized into two groups: individual-based and
group-based. The former presents the measures wherein somehow,
the individual performance of each classifier is the main source of
information. This category was subdivided into other five subcate-
gories, as follows: ranking, accuracy, probabilistic, behavior, and
oracle-based. The latter is composed of the measures that consider
the interaction among the elements in the pool. This category was
subdivided into three subcategories, as follows: diversity, ambiguity,
and data handling-based.

The next subsections describe each category by reviewing the most
important methods available in the literature. However, before pro-
ceeding it is necessary to clarify some points. First, the proposed
categorization contemplates only the DS methods where the compe-
tence of each base classifier, or its contribution inside an ensemble, is
used to decide whether or not it will be selected. Second, even
knowing the importance of selection mechanisms based on dynamic
weighting of scores or mixture of experts [28-30], they were not
described here since they are dedicated to the use of a specific base
classifier (multilayer perceptron neural networks). Third, it is known
that the best strategy for calculating competence of the base classifiers
in a DS method is to use a validation set. However, since we follow the
original description of each algorithm can be observed in some cases
that the training set is used instead. In addition, most of algorithms
originally defined to select one classifier may be modified to select an
ensemble by just applying an additional threshold on the proposed
competence measure.
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Fig. 2. Proposed DS Taxonomy in the context of MCS.
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3.1. Individual-based measures

In this category, the classifiers are selected based on their
individual competence on the whole feature space represented by
the training or validation set, or on part of it referred to as a local
region. As described earlier, the local region may be defined in
advance, during the training phase, by using partitioning techni-
ques, or during the testing phase, by using the NN-rule to define
the k-nearest-neighbors of the unknown pattern in the feature
space also represented by the training or validation datasets.
Basically, while the main source of information in this category
is related to classifier accuracy, its subcategories however differ in
their representation.

3.1.1. Ranking-based measures

The methods in this subcategory exploit a rank of the classifiers
available in the pool. An interesting approach was proposed in
1993 by Sabourin et al. in [12], referred in this paper as the DSC-
Rank (see Algorithm 1). It may be considered as one of the
pioneers in DS. In their work, the ranking was done by estimating
three parameters related to the correctness of the classifiers in the
pool. The mutual information of these three parameters with
correctness was estimated using part of their training dataset.
Let X be a set of classifier parameters, like those suggested by the
authors for their k-nearest neighbors base classifiers, the distance
to the winner, the distance to the first non-winner, and the
distance ratio of the first non-winner to the winner. In addition,
let S be the classifier “success” variable, defined as S=4(t,0),
where t is the true label of a given training sample, and o is the
classifier output. The mutual information between S and X can be
calculated as

I(S,X) =H(S,X)—H(X) (1

where H(X) is estimated based on p(x), the probability mass
function of outcome ¥, as

HX)= — ZXP(X) log (p(x)) ()

and the joint entropy between S and X is given by Eq. (3), where
p(l,x) is the probability of the classifier parameter x being related
to correctness.
H(S.X)= -3 X p(l.x) log(p(l.x)) 3)
leS xeX

The rationale behind the calculation of I(S, X) is to estimate the
uncertainty in the decision that is resolved by observing each
classifier parameter. After determining the most informative
classifier parameters, the authors defined what they called a
meta-pattern space (MP), represented by a subset of training
samples, where for each element it is kept the values of the
classifier parameters. During the classification step, the parameter
values of the classifiers associated with the nearest neighbor of the
test pattern in the meta-pattern space are ranked. The authors
have considered a single parameter decision based on the largest
parameter value. The classifier with the best ranking position is
selected. Thus, it selects just one classifier and the partitioning
process is done during the training phase, when MP is created.

Algorithm 1. DSC-Rank method.

Input the pool of classifiers C; the set of classifier parameters X;
the datasets Tr and Te;

Output ¢}, the most promising classifier for each testing
sample t in Te;

Compute S = (t, 0) as the classifiers “success” variable using the
training samples in Tr;

Compute I(S,X) as the mutual information between X and S
using the training samples in Tr;

Determine X' as the most informative classifier parameters
based on I(S, X);
Create the meta-pattern space MP, as a subset of Tr with the
corresponding values of the parameters in X';
for each testing sample t in Te do
Apply NN-rule to find y as the nearest neighbor of the
unknown sample t in MP;
Rank the classifiers based on the parameter values associated
to y;
Select c¢f as the classifier in the best ranking position;
Use ¢} to classify t;
end for

The second example of this category is the DS-MR proposed by
Woods et al. in [11]. In fact, it is a simplification of the original
DSC-Rank method. Different from the original, the modified
method ranks the classifiers based on local class accuracy calcu-
lated as the number of correct classified samples on the k-nearest
neighbors of the unknown pattern in the training set. During
classification, a local region of the feature space near the test
pattern is defined, the rank is constructed, and the best classifier
is selected. Another difference from the original ranking approach
is that the partitioning process used to define the local region in
estimating the classifier competence is done during the
testing phase.

3.1.2. Accuracy-based measures

Here, the main characteristic is the estimation of the classifier
accuracy, overall or local, as a simple percentage of corrected
classified samples. The two variations of the DS-LA method
proposed in [11] are examples of this subcategory.

Algorithm 2. DS-LA OLA-based method.

Input the pool of classifiers C; the datasets Tr and Te; and the
neighborhood size K;
Output ¢}, the most promising classifier for each testing
sample t in Te;
for each testing sample t in Te do
Submit t to all classifiers in C;
if (all classifiers agree with the label of the sample t) then
return the label of t;
else
Find ¥ as the K nearest neighbors of the sample ¢ in Tr;
for each classifier ¢; in C do
Calculate OLA; as the percentage of correct classification
of c;on ¥;
end for
Select the best classifier for t as ¢f = arg max;{OLA;};
Use cf to classify ¢;
end if
end for

The DS-LA was proposed by Woods et al. with two different
versions. The first calculates the overall local accuracy (OLA) of the
base classifiers in the local region of the feature space close to the
unknown pattern in the training dataset (see Algorithm 2). The
OLA of each classifier is computed as the percentage of the correct
recognition of the samples in the local region.

Algorithm 3. DS-LA LCA-based method.

Input the set of classes £2; the pool of classifiers C; the datasets
Tr and Te; and the neighborhood size K;
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Output c}, the most promising classifier for each testing
sample t in Te;
for each testing sample t in Te do
Submit ¢ to all classifiers in C;
if (all classifiers agree with the label of the sample t) then
return the label of t;
else
for each classifier ¢; in C do
wj=c{(t), the predicted output of ¢; for the sample t;
Find ¥ as the K nearest neighbors of the sample t in Tr

that belongs to the class wj;
Calculate LCA(i,j) as the percentage of correct labeled
samples of class w; by the classifier ¢; on ¥;
end for
Select the best classifier for t as ¢} = arg max;{LCA(,))};
Use cf to classify t;
end if
end for

In the second one, they calculate the local class accuracy (LCA),
as shown in Algorithm 3. The LCA is estimated for each base
classifier as the percentage of correct classifications within the
local region, but considering only those examples where the
classifier has given the same class as the one it gives for the
unknown pattern. In both versions of the DS-LA method, OLA and
LCA-based, the partitioning of the feature space is defined based
on the k-nearest neighbors of the unknown pattern in the training
dataset during the testing phase. Moreover, only one classifier is
selected from the pool.

3.1.3. Probabilistic-based measures

More than just estimating the classifier accuracy based on a
simple percentage of corrected classified samples, the methods in
this subcategory use some probabilistic representation. Two inter-
esting schemes, named A Priori and A Posteriori selection, were
proposed in [13]. Both schemes select a single classifier from the
pool based on a local region defined by the k-nearest neighbors of
the test pattern in the training set during the testing phase.

In the A Priori method, a classifier is selected based on its
accuracy within the local region, without considering the class
assigned to the unknown pattern. This measure of classifier
accuracy is calculated as the class posterior probability of the
classifier ¢; on the neighborhood ¥ of the unknown sample t.
As we can see in Eq. (4), the class posterior probability is weighted
by &;, which represents the Euclidian distance between the sample
y; and the unknown pattern t.

Similarly, in the A Posteriori method, local accuracies are
estimated using the class posterior probabilities and the distances
of the samples in the defined local region (neighborhood of size K).
However, Eq. (5) shows that in this measure the class w; assigned
by the classifier ¢; to the unknown sample t is taken into account.
Both methods are presented in Algorithm 4, where the Threshold
value suggested by the authors was 0.1.

YK Piwilyie @) - 5

4)
Zf: 151'

P(correct;) =

P(correct;|cj(t) = ) = Ly, <o Pilonlyi) - O 5)

K Piaylyy) - 5;

1
~ Euclidian Distance(y;, t)

(6

Oi

Algorithm 4. A Priori/A Posteriori method.

Input the pool of classifiers C; the datasets Tr and Te; the
neighborhood size K;
Output c}, the most promising classifier for each unknown
sample t in Te;
for each testing sample t in Te do
Find ¥ as the K nearest neighbors of the sample t in Tr;
for each classifier ¢; in C do
Compute p(correct;) on ¥ by using Eq. (4) or Eq. (5);
if (p(correct;) > 0.5) then
S=Cug;,
end if
end for
p(correcty,;) = max;j(p(correct;));
Cp=arg maxj(ﬁ(correctj));
selected=TRUE;
for each classifier ¢; in CS do
d = p(correctm)— p(correct;);
if ((j # m) and (d < Threshold)) then
selected =FALSE;
end if
end for
if (selected == TRUE) then
Cf=Cm;
else
¢i = a classifier randomly selected from CS, with
d < Threshold;
end if
Use the classifier ¢} to classify t;
end for

Kurzynski et al. [14] proposed two interesting classifier com-
petence measures. The first one (DES-M1) is an interesting
accuracy-based approach, where the competence of each classifier
for a given unknown pattern is computed based on a potential
function model which is able to estimate the classifier capability of
doing the correct classification. The competence of each classifier
is computed considering the support it gives for the correct class
of each validation sample. The second measure named DES-M2 is a
probabilistic-based example, where the authors use the probabil-
ity of correct classification of a probabilistic reference classifier
(PRC). Both measures inspired by the work described in [31] differ
from the majority of the methods available in the literature, since
the competence of each classifier is estimated using the whole
validation set during the testing phase. The ideas presented in
DES-M2 were extended and improved in [32], where the main
contribution is the modeling scheme based on a unified model
representing the whole vector of class supports. Different variants
of the proposed method were evaluated considering the selection
of classifiers and ensembles. The best results were achieved by the
system named DES-CS, which selects an ensemble of classifiers,
considers continuous-valued outputs and weighted class supports.

3.14. Behavior-based measures

The methods in this subcategory are based on some kind of
behavior analysis using classifier predictions as information
sources. Inspired by the Behavior-Knowledge Space (BKS) pro-
posed by Huang et al. in 1995 [33], Giacinto et al., in [15], propose
a dynamic classifier selection based on multiple classifier behavior
(MCB), named DS-MCB (see Algorithm 5). They estimate the MCB
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using a similarity function to measure the degree of similarity of
the output profiles of all base classifiers. First, a local region ¥ is
defined as the k-nearest neighbors of the unknown pattern in the
training set. Then, the similarity function is used as a filter to
preselect from ¥, the samples for which the classifiers present
similar behavior to that observed for the unknown sample t. The
remaining samples are used to select the most accurate classifier
by using local classifier accuracy (OLA). Finally, if the selected
classifier is significantly better than the others in the pool based
on a defined threshold value, then it is used to classify the
unknown sample. Otherwise, all classifiers are combined using
the majority voting rule (MVR).

Algorithm 5. DS-MCB method.

Input the set of classes £2; the pool of classifiers C; the datasets
Tr and Te; the neighborhood size K;
Output c}, the most promising classifier for each unknown
sample t in Te;
for each testing sample t in Te do
Compute the vector MCB; as the class labels assigned to t by
all classifiers in C;
Find ¥ as the K nearest neighbors of the test sample t in Tr;
for each sample y; in ¥ do
Compute MCB,, as the class label assigned to y; by all
classifiers in C;
Compute Sim as the similarity between MCB, and MCB,,;
if (Sim > SimilarityThreshold) then
v =_¥u l//j;
end if
end for
for each classifier c; in C do
Calculate OLA; as the local classifier accuracy of ¢; on ¥';
end for
Select the best classifier c¢f = arg max;{OLA;};
if (¢t is significantly better than the other classifiers on ¥")
then
Use the classifier ¢ to classify ¢
else
Apply MVR using all classifiers in C to classify t;
end if
end for

The core of this algorithm is the vector named MCB (Multiple
Classifier Behavior) which can be defined as MCB, = {Ci(y),
Co(y),....,Cu(y)}. It contains the class labels assigned to the
sample y by the M classifiers in the pool. The measure of similarity
Sim can be defined as

. ] M
Simyy.y2) =1, ._Zl Ti(yq1.y2) @
where
1 if Ci(yy) = Cilyry)
Tity,w,) = { 0 if Ci(wy) # Ci(ws) (8)

Another interesting method in this category is the DSA-C
proposed by Cavalin et al. in [34] and [17]. Different from the
previously described works, the DSA-C method may select one or a
subset of ensembles. To that end, first they computed the output
profiles of each available ensemble using a validation set. Different
approaches for estimating the similarity between output profiles
were used, while the selection of ensembles was done by choosing

those with output profiles most similar to the output profile
estimated for the testing pattern.

Nabiha et al. [16] proposed the dynamic selection of ensembles
(DECS-LA) by calculating the reliability of each base classifier over a
validation set during the testing phase. The reliability of each
classifier is derived from its confusion matrix obtained over the
validation set. In the selection step, each base classifier is eval-
uated considering its accuracy on a local region close to the
unknown pattern combined with its reliability, which may be
considered as a kind of probability that the local behavior is
correct.

3.1.5. Oracle-based measures

To some extent, the methods here use the concept of the oracle,
i.e., the one who may provide wise counsel. In the linear random
oracle proposed by Kuncheva [18], each classifier in the pool has a
subset with two sub-classifiers and an oracle. The oracle in their
work is a random linear function that is responsible for deciding
which of two possible sub-classifiers will be used for an unknown
pattern. After consulting the oracle of each base classifier, the sub-
classifiers selected are combined.

Algorithm 6. KNORA-Eliminate (KNE) method.

Input pool of classifiers C; meta-space sVa where for each
sample is assign the classifiers that correctly recognize it;
the testing set Te, and the neighborhood size K;

Output EoC}, an ensemble of classifiers for each testing sample
tin Te;

for each testing sample t in Te do

k=K;
while k > 0 do
Find ¥ as the k nearest neighbors of the test sample t in
sVa;
for each classifier ¢; in C do
if (¢; correctly recognizes all samples in ¥) then
EoC} =EoC} U c;;
end if
end for
if (EoC; = =0) then
k=k-1;
else
break;
end if
end while
if (EoC}==0) then
Find the classifier ¢; that correctly recognizes more samples
in¥%;
Select the classifiers able to recognize the same amount of
samples of ¢; to compose the ensemble EoC};
end if
Use the ensemble EoC} to classify t;
end for

Algorithm 7. KNORA-Union (KNU) method.

Input pool of classifiers C; meta-space sVa where for each
sample is assign the classifiers that correctly recognize it;
the testing set Te, and the neighborhood size K;

Output EoC}, an ensemble of classifiers for each testing sample
tin Te;

for each testing sample t in Te do

Find ¥ as the K nearest neighbors of the test sample t in sVa;
for each sample y; in ¥ do
for each classifier ¢; in C do
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if (c; correctly recognize y;) then
EoCf{ =EoC} U ¢;;
end if
end for
end for
Use the ensemble EoC} to classify t;
end for

Another key work in this category is the k-nearest-oracles (KNORA)
method proposed in [19]. The oracles are represented by the k-nearest
neighbors of the unknown pattern in a validation set, where the
classifiers that correctly classify each sample are known. This valida-
tion set is a kind of meta-space (sVa in Algorithms 6 and 7). It is used
as the source of “oracles”. By finding the k-nearest-neighbors of the
test pattern t in sVa, we can select the classifiers that correctly
recognize these neighbors to classify t. Thus, the oracles may suggest
the classifiers that must be used to recognize the unknown pattern.
The authors evaluated different schemes to select the classifiers
suggested by the oracles. The most promising strategies were Knora-
Eliminate (KNE) and Knora-Union (KNU). The former selects only those
classifiers which are able to correctly recognize the entire neighbor-
hood of the testing pattern (see Algorithm 6), while the later selects all
classifiers that are able to correctly recognize at least one sample in
the neighborhood. As we can see in Algorithm 7, the Knora-Union
strategy considers that a classifier can participate in the ensemble
more than once if it correctly classifies more than one neighbor.

3.2. Group-based measures

The methods in this category combine the accuracy of the base
classifiers with some information related to the interaction among
them, such as diversity, ambiguity or complexity.

3.2.1. Diversity-based measures

In 2003, Shin et al. in [20] used a clustering process based on the
coefficients of their set of base logistic regression classifiers to create
clusters of classifiers. Two clusters of classifiers were selected on the
local region of the feature space close to the unknown pattern, one
based on accuracy and the other on diversity. The definition of the
local regions was done based on the NN-rule on the validation set
during the testing phase. In fact, they modified the DS-LA approach
proposed in [11] by considering the selection of ensembles of
classifiers both in terms of accuracy and error diversity.

Santana et al, in [21], combined accuracy and diversity to build
ensembles. The classifiers were sorted in decreasing order of accuracy
and in increasing order of diversity. Two variations were presented. In
the DS-KNN, accuracy and diversity are calculated in the local region
defined by the k-nearest neighbors of the unknown pattern in the
validation set, while in the DS-Cluster, the partitioning process is done
during the training phase, when a clustering process is used to divide
the validation set into clusters where the most promising classifiers
will be associated. The diversity is calculated in a pairwise fashion
using the double fault diversity measure, the idea being to select the
classifiers more diverse among those more accurate (see Algorithm 8).

Algorithm 8. DS-KNN method.

Input the pool of classifiers C; the datasets Va and Te; the
neighborhood size K; the number of classifiers to be selected
N and N”;

Output EoC?, an ensemble of classifiers for each unknown
sample t in Te;

for each testing sample t in Te do

Find ¥ as the K nearest neighbors of the sample t in Va;
for each classifier ¢; in C do
Compute A; as the accuracy of ¢; on ¥,
end for
for each classifier ¢; in C do
for each classifier ¢; in C do
if (i #j) then
Compute Dj; as the diversity between ¢; and ¢; on ¥;
end if
end for
end for
Create R; as the rank of classifiers in C by decreasing order of
accuracy A;
Create R; as the rank of the classifiers in C by increasing order
of diversity D;
Based on R;, select the N’ most accurate classifiers in C to
compose the ensemble EoC;
Based on Ry, select the N” (N” < N") most diverse classifiers in
EoC to compose EoC};
Use the ensemble EoC} to classify t;
end for

Lysiak et al. [22] considered the use of the diversity measure in
the approach based on the randomized reference model proposed
in [14], the proposed DES-CD method, first selects the most
accurate classifier to start the ensemble, and then other classifiers
are added to the ensemble as they improve the ensemble diversity.

3.2.2. Ambiguity-based measures

The methods in this category, which are different from diver-
sity, use consensus. One of the pioneers of DS, Srihari et al. propose
a classifier selection strategy in 1994 [23], based on the consensus
of the classifiers on the top choices.

In the same vein, the authors in [35] and [24] describe the A and
the DSA methods, respectively. Both methods select the ensemble of
classifiers from a population of highly accurate ensembles with the
lowest ambiguity among its members. The algorithm of the DSA
method is presented in Algorithm 9. With the use of consensus, the
authors observed an increase in the generalization performance since
the level of confidence of classification had increased. For each test
pattern, they selected, from a pool of diverse ensembles, the one
showing the highest consensus in terms of the outputs provided by
its members. To this end, the ambiguity of the ith classifier of the
ensemble EoG; for the sample y was determined as

0 if ci(y) = EoCj(y)

aty) = { 1 otherwise ©

while the ambiguity A of the ensemble EoC;, considering the
neighborhood ¥, was calculated as denoted in Eq. (10), in which
|'%¥| and |EoCj| are the cardinalities of these sets. As one may see in
Eq. (9) each classifier output is compared with the ensemble output,
which represents the combined decision of their classifiers.

1
A=G——— a; 10
ITI : |EOCJ' ie%on y/g‘i’ I(W) ( )

Algorithm 9. DSA method.

Input the set of classes £2; the pool of classifiers C; the datasets
Va and Te; the neighborhood size K;

Output EoC?, an ensemble of classifiers for each unknown
sample t in Te;

EoC' = OptimizationProcess(C, Va, £2); [* it generates a pool of N
optimized ensembles */
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for each testing sample t in Te do
if (all N ensembles in EoC’ agree on the label of t) then
classify t;
else
for each EoC; in EoC’' do
Compute A; as the ambiguity of the ensemble EoC; by
using Eq. (10);
end for
Select the best ensemble for t as EoC} = arg min;{A;};
Use the ensemble EoC} to classify t;
end if
end for

In [17], the DSA method was improved through dynamic multi-
stage organization and the use of contextual information. The
authors organized the classification dynamically in different layers,
according to the test patterns. In addition, they expanded the concept
of consensus by considering additional information related to all
classes involved instead of considering just the outputs of the most
voted and the second most voted ones, in selecting the ensembles.

3.2.3. Data handling-based measure

Some authors used different pieces of group information. That
is the case of the method proposed in [25], in which the authors
use an adaptive classifier ensemble selection based on the group
method of data handling theory (GMDH). A multivariate analysis
theory for complex systems modeling firstly described in [36].
Their dynamic ensemble selection algorithm, named GDES, selects
the ensemble with the optimal complexity for each test pattern
from the initial pool of classifiers, also given the combination
weights among the classifiers (see Algorithm 10). To that end, the
algorithm deals with the pool of classifiers and a local region of the
training set related to the k-nearest neighbors of the test pattern.

Algorithm 10. GDES-based method.

Input pool of classifiers C; the datasets Tr and Te, the
neighborhood size K; the set of labels of the training
samples L;

Output EoC}, an ensemble of classifiers for each testing sample
tin Te;

for each testing sample t in Te do

Find ¥ as the K nearest neighbors of the test sample t on Tr;
for each classifier ¢; in C do
0; = ci(t), the output of the ith classifier for the sample t;
for each sample y; in ¥ do
0; = ¢i(y;), the output of the ith classifier for the sample
v
end for
end for
Compute MOC(0;) as the model with optimal complexity by
using ¥, L and the GMDH theory [36];
Select the ensemble EoC; and the weights for each classifier
using MOC(0;);
Use the ensemble EoC} to classify t;
end for

3.3. Summary

Table 1 presents the main DS methods available in the literature
and discussed in this paper. The first six columns lay out all the
overall features of each method. In the table, we can find any given
category based on the proposed taxonomy; the type of selection in

terms of whether a single classifier or an ensemble of classifiers is
selected; the kind of pool created (Homogeneous or Heterogeneous)
and the number of classifiers in it. In addition, we can find out when
and what kind of partitioning process is used; for instance, during
the training phase based on clustering or other scheme, or during the
testing phase based on the NN-Rule. The last five columns cover the
experiments used to evaluate each method. They provide informa-
tion related to the quantity and size of the datasets used in the
experiments, as well as, the number of wins, ties and losses of the DS
method against the SB, CC, SS, and other related methods. These
numbers take into account the experiments reported in the original
papers, as well as those done by other researchers.

The rationale behind the computing of the number of wins, ties
and losses between these approaches is that using such information
allows us to compare them even if they were originally evaluated
through different experimental protocols. Based on these numbers,
Fig. 3 let us compare the performance of each DS method with respect
to SB, while Fig. 4 shows a similar comparison of DS against the CC
results. In both cases, the data are not normalized in order to show the
most cited methods, and consequently, the most evaluated ones.

Although such information may provide us with some insight on
each specific method, the main objective of our study is to evaluate
the DS approach in general. In that respect, Fig. 5 shows the overall
performance of DS in terms of percentage of wins, ties, and losses
when compared against the usual alternative approaches. The last bar
(General) represents all these alternatives (SB, CC and SS) together. The
DS approach has shown better results in 59%, 56% and 68% of the cases
when compared to SB, CC, and SS, respectively.

These general statistics have proven to be positive for the DS
approach. However, they do not give us any clue about the
significance of the results or about when such an approach must
be used. To accomplish that, a deeper analysis is done in the next
section where a two-step methodology is executed.

4. A further analysis

A preliminary analysis of the last section based on several
experiments available in the literature suggests that most often,
DS will win when compared to the usual alternative approaches.
However, it is worth emphasizing that the results also show that the
“no free lunch” theorem [41] holds for such analyses in the sense that
DS is not universally better. From all the experiments considered, it is
clear that the only way one classification approach can outperform
another is if it is specialized to the problem at hand.

To answer our research questions, a deeper analysis is necessary. To
that end, a two-step methodology is executed in this section. Basically,
the idea is to understand how significant the DS performance
contribution is when compared to its alternative approaches, and we
try to reveal how such a contribution could be related to the problem
complexity. In the first step, different non-parametric statistic tests are
used to evaluate the significance of the DS results when compared to
SB, CC and SS, while in the second one, a set of complexity measures is
used to describe the difficulty of a classification problem and relate it
to the observed DS performance.

The experimental protocol considers the comparison of DS, SB,
CC and SS approaches based on the computed wins, ties and losses
in two sets of experiments. The first set (S1) is composed of all
experiments in Table 1, while the second set (S2) is composed of
experiments on 12 datasets that represent the intersection among
all the studied works. Set S2 was constructed based on a careful
search for experiments based on the same datasets divided into
similar partitions for training and testing. We successfully found
12 datasets that appear in different works. Table 2 presents these
datasets and their main features. The following works were the
sources of experimental results for S2 [11,19,25,17,34,24,42].
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Table 1

Summary of the main features of the DS methods and the performance based on wins, ties, losses.

Ref Method Category Sel. Pool type(size) Partitioning Phase/ Evaluated  Datasets S=small SB cC SS Other DS
type Tech in L=Large
[12] DSC-Rank  Ranking CS Het(2) Training - 1L (6,0,0) (4,0,2) NA NA
[11] 3S (1,0,2) (2,0,1) NA (0,0,9)
[11] DS-LA Accuracy CS Het(5) Testing/NN-Rule - 3S (2,0,1) (3,0,0) NA (4,0,5)
(OLA)
[13] 3S (3,00) (003) NA (41,4)
[37] 2S (13,0,5) NA (6,0,12) (0,0,18)
[21] 2S (1,1,1) (1,0,2) NA (0,2,1)
[19] 6S/1L (27,6,22) (373,15) (0,0,1) (95,36,89)
[14] 6S (6,1,5) (5,1,6) NA (5,2,41)
[32] 228 (17,0,27) (9,0,35) NA (85,9,170)
[11] DS-LA Accuracy CS Het(5) Testing/NN-Rule - 3S (3,0,0) (3,0,0) NA (8,0,1)
(LCA)
[13] 3S (3,00) (1,02) NA (3,0,6)
[38] 5S (3,1,6) (3,0,7) NA (8,0,12)
[35] 3S NA (2,0,1) (1,0,2) (0,03)
[24] 5S/2L (21,03) (1716) (4,04) (4,0,20)
[19] 6S/1L (20,8,27) (30,4,21) (1,0,0) (98,29,93)
[25] 6S (5,1,0) (5,1,0) NA (54,3)
[11] DS-MR Ranking (& Het(5) Testing/NN-Rule - 3S (2,0,1) (2,0,1) NA (5,04)
[13] A Priori Probabilistic  CS Het(5) Testing/NN-Rule - 3S (3,0,0) (0,0,3) NA (0,1,8)
[19] 6S/1L (19,8,28) (28,4,23) (0,0,1) (82,34,104)
[13] A Posteriori Probabilistic CS Het(5) Testing/NN-Rule - 3S (3,00) (003) NA (9,0,0)
[19] 6S/1L (16,7,32) (24,3,28) (1,0,0) (51,23,146)
[15] DS-MCB Behavior CS Het(3) Testing/NN-Rule - 2S (2,0,0) (2,0,0) NA NA
[14] 6S (6,1,5) (6,06) NA (12,2,34)
[32] 22S (18,0,26) (9,0,35) NA (88,6,170)
[37] DS-MLA Accuracy CS Het(3,4) Testing/NN-Rule - 2S (1,1,1) (1,0,2) NA (1,2,0)
[14] 6S (8,04) (804) NA (19,2,27)
[32] 22S (20,0,24) (9,0,35) NA (125,8,131)
[21] DS-KNN Diversity ES Het(10,15) Testing/NN-Rule - 2S (18,0,0) NA (13,0,5) (18,0,0)
[21] DS-Cluster Diversity ES Het(10,15) Training/Clustering - 2S (18,0,0) NA (16,0,2) (18,0,0)
[35] A Ambiguity ES Hom(100) Training/Opt - 3S NA (2,0,1) (3,0,0) (3,0,0)
[19] KNORA Oracle ES Hom(10,100) Testing/NN-Rule - 6S/1L (33,8,14) (48,3,5) (1,0,0) (150,26,44)
[14] 6S (10,0,2) (8,04) NA (37,1,10)
[32] 22S (251,18) (7,037) NA (131,5,128)
[39] 6S (411) (6,00) NA (0,4,8)
[40] 2S (2,00) (11,0 (0,02) (1,0,5)
[24] DSA Ambiguity ES Hom(100) Training/Opt - 5S5/2L (21,03) (21,03) (8,0,0) (20,04)
[17] 5S/2L (11,08) (10,1,8) (10,0,9) (0,0,19)
[25] GDES Data ES Hom(10) Training/Opt - 6S (2,00) (800) NA (4,0,0)
Handling
[14] DCS-M2 Probabilistic  ES Hom(50)/Het Testing/allVs - 6S (12,0,0) (12,0,0) NA (43,1,4)
(11)
[32] DES-CS Probabilistic  ES Hom(50)/Het Training/allVs - 22S (39,0,5) (370,7) NA (242,0,22)
(10)
[22] 6S (11,0,1) (10,1,1) NA (5,2,5)
[22] DES-CD Diversity ES Hom(20)/Het(9) Training/Opt - 6S (12,0,0) (11,01) NA (5,2,5)
[40] OP Oracle ES Hom(100) Testing/NN-Rule - 2S (2,0,0) (2,0,0) (2,0,0) (5071)
[16] DECS-LA Behavior ES Het(10) Testing/NN-Rule - 1L (2,0,0) NA (2,00) NA
[17] DSA-C Ambiguity ES Hom(100) Training/Opt - 5S/2L (18,0,1) (19,0,0) (18,0,1) (19,0,0)

Hom(20)=pool of 20 homogeneous classifiers, Het(10)=pool of 10 heterogeneous classifiers, Hom (10,100) pools with 10 and 100 classifiers, CS=classifier selection,

ES=ensemble selection, Opt=optimization, allVs=all validation samples.

4.1. Significance of the results

In the first step of the methodology used, two non-parametric
tests followed by a post hoc test are executed. The objective is to
answer our first research question related to the significance of the
DS results when compared to a single-based classifier.

The first non-parametric statistic is the simple and well-known
sign test [43]. It was calculated on the computed wins, ties and losses
reported in Table 1, i.e., the set of experiments S1. Let us consider the
comparison of DS and SB. The number of wins, ties and losses is 467,
45 and 273, respectively, amounting to 785 experiments. First, we
must add the ties to both wins and losses. Thus, we have 512 wins and
318 losses. In this case, the null hypothesis (Hp) is that the DS and SB
approaches are equally successful. To reject the null hypothesis, and
show that DS performance is significantly better than SB, DS must
satisfy Eq. (11), in which n is the total number of experiments, n,,, is the

computed DS wins, and Z, represents the z statistic at significance
level a.

Ny > g—i-Zu?

If we consider a=0.05, then Z, = 1.645. With this setup, the null
hypothesis is rejected since 512 > 416. The final conclusion is that
with a significance level of @=0.05, DS performs better than the SB
approach. A similar evaluation may be done by considering the
comparison of DS against CC and SS. The computed DS wins, ties
and losses are (403, 23, 308) and (84, 0, 39), against CC and SS,
respectively. In both cases, the null hypothesis is rejected. When
compared against CC, the results are (426 > 389.2), while for SS, they
are (84 > 70.6).

In addition to this simple non-parametric test, we performed
a more comprehensive evaluation using the experiments on set S2.

amn
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Fig. 3. Performance of the main DS methods in terms of number of wins, ties and losses with respect to the single best (SB) classifier.
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Fig. 4. Performance of the main DS methods in terms of number of wins, ties and losses with respect to the combination of all classifiers (CC) in the pool.

For each dataset, we found 10 experiments in which the SB, CC and DS
approaches were compared. Except for the SH dataset for which only
nine experiments were found. Unfortunately, not enough results were
found to allow a comparison against the SS approach.

With the set of experiments for each dataset on hand, we
reformulated our null-hypothesis (Hp) to state that the three
classification approaches, SB, CC and DS, perform equally well. In
other words, there is no significant difference between their results.

Friedman's test (F;) [43] was performed and the results are
shown in Table 3. Since we are comparing three approaches, the
degree of freedom is 2. The level of significance (a) was defined as

0.05, while the corresponding critical value (p,) is 5.99. In the
same table, beyond the average rank of each classification
approach, it is possible to find out whether or not the null-
hypotheses is rejected.

As we may see, at a level of significance of &=0.05, there is enough
evidence to conclude that, for the majority of the datasets, there is a
significant difference in the accuracy among the three classification
approaches, except for the three datasets (TE, SA and FE), where
F: < p,, and consequently, the null-hypothesis was not rejected.

Friedman's test only shows whether or not there is a significant
difference between the three approaches, but it does not show
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Fig. 5. Performance of the DS methods in terms of percentage of wins, ties and loses when compared to the single best classifiers (SB), the fusion of all classifiers (CC), static

selection approach (SS), and any alternative solution (General).

Table 2
Datasets used and their main features.

Dataset Source # Classes # Features # Samples
Wine (W) udl 3 13 178
Liver-Disorders (LD) uct 2 6 345
Wisconsin Breast Cancer (WC) UCI 2 30 569
Pima Diabetes (PD) udl 2 8 768
Image Segmentation (IS) udl 7 19 2310
Ship (SH) Stalog 8 1 2545
Texture (TE) Stalog 11 40 5500
Satimage (SA) udl 6 36 6435
Feltwell (FE) Stalog 5 15 10,944
Letters (LR) udl 26 16 20,000
Nist Letter (NL) NIST-SD19 26 132 67,192
Nist Digit (ND) NIST-SD19 10 132 75,089

Table 3

The results of Friedman's test (F;) for each dataset, considering the degree of
freedom=2, the significance level «=0.05 and the critical value p,=5.99. The
average ranks for the Single Best Classifier (SB), the Combination of All Classifiers
(CC) and the Dynamic Selection (DS).

Dataset Average ranks F; Null-hypothesis
SB CcC DS
w 2.050 2.900 1.050 17.15 Rejected
LD 2.100 2.750 1.150 12.95 Rejected
wC 1.750 2.900 1.350 12.95 Rejected
PD 1.900 2.900 1.200 2433 Rejected
IS 1.750 2.800 1.450 10.05 Rejected
SH 2.889 1.667 1.444 10.88 Rejected
TE 2.300 2.200 1.500 3.80 Accepted
SA 2.200 2.100 1.700 0.67 Accepted
FE 1.800 2.600 1.600 5.60 Accepted
LR 2.700 2.100 1.200 11.40 Rejected
NL 3.000 1.950 1.050 19.05 Rejected
ND 3.000 1.800 1.200 16.80 Rejected

where the differences may be. To that end, we have performed a
post hoc Nemenyi test [43], which compares the three approaches
(SB, CC and DS) in a pairwise fashion. Fig. 6 shows a graphical
representation of post hoc Nemenyi test results of the compared
approaches for each dataset with the ranks given in Table 3. The
numbers above the main line represent the average ranks, while
CD is the critical difference for statistical significance. The methods
with no significant difference are connected by lines. The CD is 1.10
for the SH dataset, and 1.05 for all other datasets. The performance
of two classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference.

As already detected with Friedman's test for the FE, SA and TE
datasets, there is no significant difference between the three
approaches. On the other hand, for four datasets (SH, LR, ND and
NL), we may observe a significant and positive difference between
DS and SB; positive in the sense that DS is “better” than SB. For the
same datasets, DS did not present a significant difference when
compared to the CC approach. However, it is worth noting that we
are not considering any other possible parameter of comparison
between DS and CC, such as a reduction in terms of number of
classifiers, for instance.

For another set of datasets (IS, WC, PD, LD and W), we observed
no significant difference between DS and SB, but it could be seen
that DS is significantly better than CC in those cases. This would
suggest that the pools generated were composed of many weak
classifiers.

Fig. 7 was obtained by plotting the differences between the DS
and SB ranks used for the post hoc Nemenyi test. In this case,
which is different from the usual graphical representation adopted
in Fig. 6, the numbers above the main line represent the difference
between ranks. Thus, high numbers mean a more significant
difference between DS and SB. The objective is to show a
graphical representation of the impact of the DS for each dataset
when compared with the corresponding SB approach. As can be
seen, the best impact was observed for the dataset NL (1.95) and
the worst case was the dataset FE (0.2). In addition, this
figure shows that different base classifiers were used in the
experiments.
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Fig. 6. Graphical representation of post hoc Nemenyi test results of compared methods for each dataset with ranks given in Table 3. For each dataset, the numbers on the
main line represent the average ranks and the CD is the critical difference for statistical significance. Methods with no significant difference are connected by additional lines.
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Fig. 7. The differences between the DS and SB ranks. For each dataset, the numbers
on the main line represent the rank difference between DS and SB approaches. The
CD is the critical difference for statistical significance.

From the results observed, we may confirm that, in general,
there exists a significant difference between the performance of
DS, SB, CC and SS. The results of the sign test have shown that. In
addition, Friedman's test showed that in 9 from 12 datasets there
is a significant difference between DS, SB and CC. A deeper
pairwise analysis using the post hoc Nemenyi test, showed that
in four of the remaining nine datasets, there was a significant
performance contribution using the DS approach.

4.2. C(lassification difficulty

This section describes the second step of our methodology. The
objective is to answer our second research question as to whether
or not there is a relation between the classification complexity and
the observed DS performance.

A first attempt to empirically characterize the DS approach as
an interesting alternative to deal with complex problems was
carried out in [17]. With this in mind, the authors divided the large
digit dataset available on NIST-SD19 into subsets of different sizes
to create five scenarios, varying from few samples for training

(5000) to a large training set (180,000). In their experiments, two
monolithic classifiers based on SVM and MLP were compared
against their DS method. They observed that when enough data is
available, the trained monolithic classifiers perform better than
the proposed DS method. Thus, they suggested that the DS
approach is more suitable when enough data is not available to
represent the whole variability of the learned pattern.

Inspired by that observation, we decided to go further by
investigating evidence of a clear correlation between the perfor-
mance of DS methods and the classification difficulty. We then
implemented a set of complexity measures for classification
problems [3], composed of two measures of overlap between
single feature values (F1 and F2), two measures of separability of
classes (N2 and N3) and one measure related to the dimensionality
of the dataset (T2). The measures used are described below based
on their generalization to problems with multiple classes, as in [4].

1. Fisher's Discriminant Ratio (F 1): this well-known measure of
class overlapping is calculated over each single feature dimen-
sion as denoted in Eq. (12), where M is the number of classes
and u is the overall mean, while n;, y; and s! are the number of
samples, the mean and the jth sample of the class i, respec-
tively. In this generalization of F1, ¥ is the Euclidian distance.
A high F1 value indicates the presence of discriminating
features and hence a classification problem easier.

Z{wflni 5(/4 M)
21_1 1_15(5 ,Lt)

. Volume of Overlap Region (F 2): this measure conducts a
pairwise calculation of the overlap between the conditional
distribution of classes. As can be observed in Eq. (13), the
overlap, considering two classes, ¢; and ¢; and a T-dimension
feature space, is calculated by finding the minimum and
maximum values of each feature f; for both classes. The ratio
between the range of the feature values for each class is
normalized by the length of the total range considering both

Fl1= (12)
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classes. The overlap region is estimated as the product of the
normalized ratio obtained for all features. The generalization
for multiple classes considers the sum of the overlapped
regions calculated for each pair of classes. A small overlap
(F2) value suggests a classification problem easier.

T min[max(fy, ¢;), max(fy, ¢;)] —max[min(fy, ¢;), min(f, ¢;)]

F2 = - - -
(CI_EC]) ,E] max[max(fy, ¢;), max(fy, ¢;)] — min[min(fy, ¢;), min(fy, ¢;)]

(13)

3. Non-parametric Separability of Classes (N 2, N 3): the first
measure, referred to as N2 in the literature, compares the
intraclass dispersion with the interclass separability, as
denoted in Eq. (14). For this purpose, let 7i"™(s;) and 7"’ (s;)
denote the intra- and inter-class nearest neighbors of the
sample s;, while ¥ represents the Euclidian distance. As can be
observed, N2 calculates the ratio between the intra- and the
inter-class dispersions. A small N2 value suggests high separ-
ability, and consequently, a classification problem easier. The
second measure of separability (N3) is related to the estimated
error rate of the 1-NN rule by using the leaving-one-out
scheme.

o _ 2SO, 50)

=& 111 P 14
SIS0 (s, 1) )

4. Density per Dimension (T 2): this measure describes the
density of spatial distributions of samples by computing the
average number of instances per dimension. Referred to as T2
in the literature, it is calculated as shown in Eq. (15), where
N and T are the number of samples and features, respectively,
of a classification problem. Similar to F1, a high T2 value
suggests a classification problem easier.

N
TzzT (15)

After implementing the previously described complexity mea-
sures, they were applied to the datasets described in Table 2. The
value of each measure for these datasets is shown in Table 4.

As can be seen, the same problem may be taken as difficult
with respect to one measure, but easy with respect to another. The
reason is that the different measures consider different aspects of
the classification problems. However, some interesting analysis
may be done when they are combined. For instance, let us
consider the measure values related to the Wine (W), Liver-
Disorders (LD) and Texture (TE) datasets. Based on the class
overlapping calculated over each feature dimension (measure

Table 4
Results of the complexity measures for each dataset: 1 means the higher easier, |
means the lower easier.

Dataset F11 F2| N2| N3| T21

w 2.362 6.120E—-05 0.018 0.230 13.692
LD 0.017 7.320E—-02 0.853 0.377 57.500
WC 1.118 5.683E—11 0.031 0.084 18.967
PD 0.032 2.515E—-01 0.838 0.320 96.000
IS 0.938 1.653E—-04 0.071 0.033 121.579
SH 0.706 6.687E—02 0.293 0.095 231.364
TE 4.064 5.058E—-06 0.127 0.009 135.500
SA 2.060 3.754E-04 0.215 0.091 178.750
FE 1.206 6.722E—02 0.107 0.011 729.600
LR 0.479 2.162E+00 0.228 0.038 1250.000
NL 0.642 9.080E—-30 0.535 0.068 509.030
ND 0.626 1.257E-32 0.327 0.015 568.856

F1), W should be considered as an easy problem. Its value for this
measure is the second higher. However, the values of measures N3
and T2 for the same dataset show the contrary. Based on N3, the
error rate of the NN classifier is high for W (close to 23%), while
the number of samples per dimension is very low (around 13).
Despite the fact that we have a small overlap of the feature range
values among classes shown by the value F1, the dataset W has
few samples, making it more difficult to be learned. For the LD
dataset, all measures seem to agree on its complexity: it is in fact
the most complex problem among those in Table 4. On the other
hand, TE is a very easy problem.

Although some interesting assumptions may be made based on
these results, our question here is whether or not there is a
relation between the observed DS performance and the classifica-
tion difficulty.

In this perspective, except for the F2 measure, we carried out
an analysis in which the complexity measures were combined in a
pairwise fashion. The reason for excluding F2 was that it reflects
the problem dimensionality, making it difficult to compare pro-
blems having overly different numbers of features. Fig. 8 plots the
pairwise combinations F1 x N2, F1 x N3, F1 x T2, N2 x N3, N2 x T2,
and N3 x T2. The datasets represented by red markers (SH, LR, ND
and NL) in the plots are those for which we observed some
significant contribution of the DS when compared to the corre-
sponding SB approach. As can be seen, F1 x N2, F1 x N3 and
F1 x T2 showed some interesting results. The datasets mentioned
show low F1 values (difficult), in addition to low values of N2
(easy) and N3 (easy). We see this in the plot corresponding to
F1 x N3. Moreover, in the plot corresponding to F1 x T2, it can be
seen that the datasets where DS did not show a significant
contribution present a low T2 value (difficult), except for one
outlier (FE dataset).

The significant DS contribution observed for the datasets SH,
LR, ND and NL may be explained using F1, N3 and T2. For these
datasets, F1 suggests a high difficulty related to the overlap among
the ranges of the feature values per class (F1 <0.8). On the other
hand, N3 and T2 suggest that they are easy problems. A low N3
means an easy problem for an NN classifier, since this measure
represents the NN error rate using a leave-one-out strategy. A high
T2 implies that there are more samples to deal with the problem
variability. Thus, a low F1 combined with a low N3 and high T2 is
an interesting observation when the goal is to use a DS approach.

As with SH, LR, ND and NL, the PD and LD datasets show a very
low F1. However, they show a very high N3 and a very low T2. This
means that they are difficult for the three measures. For this type
of dataset, the DS approach seems unsuitable. The same assump-
tion may be made for datasets with high F1 values.

Fig. 9 presents the evaluated datasets plotted in the space
formed by the measures F1, N3 and T2. The SH, LR, ND and NL
datasets are represented by red markers. It is possible to see that
these datasets appear close to the origin in terms of the F1 and N3
axes, and usually present a high T2 value.

Thus, from this analysis, we may conclude that a relation exists
between the data complexity and the observed contribution of the DS
approach. In addition, we can also conclude that this relation is based
on some intrinsic aspects of the classification problem, more than just
the size of the problem (number of samples, classes and features).

5. Conclusion and future works

In this paper, we have presented the state of the art of DS
methods, proposing a taxonomy for them. In addition, we have
revisited the main basic concepts related to DS and presented the
algorithms of some key methods available in the literature. This
review has shown that different selection schemes have been
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proposed, and basically differ in terms of the source of information
used to evaluate the competence of the available classifiers in the
pool for a given unknown sample.

As expected, the study performed does not allow us to point
out the best DS method. On the contrary, it is seen that there is no
evidence that one specific method may surpass all the others for
any classification problem. However, it can be observed that
simpler selection schemes (KNORA and DS-LCA) may provide
similar, or sometimes even better, classification performances than
the sophisticated ones (GDES, DSA and DSA-C).

Despite the importance of the literature review presented, the
research questions addressed in this paper were related to when
DS is applied. A further analysis of the reported results of the
studied DS methods showed that for some classification problems,
the DS contribution is statistically significant. In addition, it
showed that there is some evidence of a relation between the
DS performance contribution and the corresponding complexity of
the classification problem. Thus, we may conclude that it is
possible to predict when to use or not DS.

As observed, the DS has shown better results for classification
problems presenting low F1 values, combined with high N3 and T2
values. Such an observed relation between the problem complex-
ity and the DS contribution confirms the Ho et al. expectation [3].
They suggested that complexity measures may be used as a guide
for static or dynamic selection of classifiers. In our case, we suggest
that they may be used to determine when to apply DS. However,
as also cautioned in their work, the extrapolation of the observa-
tions must be done with extreme care. The reason for this is that
the observations are based on a tiny set of classification problems.
Further work can be done, considering these three complexity
measures and a huge set of classification problems in order to
model a meta-classifier dedicated to determining whether or not
to use a DS approach for a specific classification problem.
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