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a b s t r a c t 

Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled 

forgeries, where a forger has access to a person’s signature and deliberately attempt to imitate it. In of- 

fline (static) signature verification, the dynamic information of the signature writing process is lost, and it 

is difficult to design good feature extractors that can distinguish genuine signatures and skilled forgeries. 

This reflects in a relatively poor performance, with verification errors around 7% in the best systems in 

the literature. To address both the difficulty of obtaining good features, as well as improve system perfor- 

mance, we propose learning the representations from signature images, in a Writer-Independent format, 

using Convolutional Neural Networks. In particular, we propose a novel formulation of the problem that 

includes knowledge of skilled forgeries from a subset of users in the feature learning process, that aims 

to capture visual cues that distinguish genuine signatures and forgeries regardless of the user. Extensive 

experiments were conducted on four datasets: GPDS, MCYT, CEDAR and Brazilian PUC-PR datasets. On 

GPDS-160, we obtained a large improvement in state-of-the-art performance, achieving 1.72% Equal Er- 

ror Rate, compared to 6.97% in the literature. We also verified that the features generalize beyond the 

GPDS dataset, surpassing the state-of-the-art performance in the other datasets, without requiring the 

representation to be fine-tuned to each particular dataset. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Signature verification systems aim to verify the identity of in-

ividuals by recognizing their handwritten signature. They rely on

ecognizing a specific, well-learned gesture, in order to identify a

erson. This is in contrast with systems based on the possession

f an object (e.g. key, smartcard) or the knowledge of something

e.g. password), and also differ from other biometric systems, such

s fingerprint, since the signature remains the most socially and

egally accepted means for identification [1] . 

In offline (static) signature verification, the signature is acquired

fter the writing process is completed, by scanning a document

ontaining the signature, and representing it as a digital image [2] .

herefore, the dynamic information about the signature generation

rocess is lost (e.g. position and velocity of the pen over time),

hich makes the problem very challenging. 

Defining discriminative feature extractors for offline signatures

s a hard task. The question “What characterizes a signature” is
∗ Corresponding author. 
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 difficult concept to implement as a feature descriptor, as illus-

rated in Fig. 1 . This can be observed in the literature, where most

f the research efforts on this field have been devoted to finding

 good representation for signatures, that is, designing feature ex-

ractors tailored for signature verification, as well as using feature

xtractors created for other purposes [3] . Recent work uses texture

eatures, such as Local Binary Patterns (LBP) [4,5] and Gray-Level

o-occurrence Matrix (GLCM) [5] ; directional-based features such

s Histogram of Oriented Gradients (HOG) [4] and Directional-PDF

6,7] ; feature extractors specifically designed for signatures, such as

he estimation of strokes by fitting Bezier curves [8] ; among oth-

rs. No feature extractor has emerged as particularly suitable for

ignature verification, and most recent work uses a combination of

any such techniques. 

The difficulty of finding a good representation for signatures

eflects on the classification performance of signature verification

ystems, in particular to distinguish genuine signatures and skilled

orgeries - forgeries that are made targeting a particular individual.

hen we consider experiments conducted on large public datasets,

uch as GPDS [9] , the best reported results achieve Equal Error

ates around 7%, even when the number of samples for training

s around 10–15, with worse results using fewer samples per user. 

http://dx.doi.org/10.1016/j.patcog.2017.05.012
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Fig. 1. Examples of challenges in designing feature extractors for offline signatures, and the challenge of classifying skilled forgeries. Each column shows two genuine 

signatures from the same user in the GPDS dataset, and a skilled forgery created for the user. We notice that skilled forgeries resemble genuine signatures to a large extent. 

Since we do not have examples from the forgery class for training, the problem is even more challenging. We also note the challenges of creating feature extractors for these 

genuine signatures: (a) The shape of the first name is very different among the two genuine samples. A feature descriptor based on grid features would have very different 

vectors for the two samples. (b) The shape of the characters in the first name (“Paula”) is very different. An analysis based on the design of individual letters would perform 

poorly for this user. (c) Large variation in flourishes may impact directional-based descriptors (such as HOG or D-PDF). (d) For some users, it is difficult to pinpoint the 

common attributes of two signatures even after carefully analyzing the samples. 
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To address both the issue of obtaining a good feature repre-

sentation for signatures, as well as improving classification perfor-

mance, we propose a framework for learning the representations

directly from the signature images, using convolutional neural net-

works. In particular, we propose a novel formulation of the prob-

lem, that incorporates knowledge of skilled forgeries from a sub-

set of users, using a multi-task learning strategy. The hypothesis is

that the model can learn visual cues present in the signature im-

ages, that are discriminative between genuine signatures and forg-

eries in general (i.e. not specific to a particular individual). We then

evaluate if this feature representation generalizes for other users,

for whom we do not have skilled forgeries available. 

Our main contributions are as follows: 1) we present formula-

tions to learn features for offline signature verification in a Writer-

Independent format. We introduce a novel formulation that uses

skilled forgeries from a subset of users to guide the feature learn-

ing process, using a multi-task framework to jointly optimize the

model to discriminate between users (addressing random forg-

eries), and to discriminate between genuine signatures and skilled

forgeries; 2) we propose a strict experimental protocol, in which

all design decisions are made using a validation set composed of

a separate set of users. Generalization performance is estimated in

a disjoint set of users, from whom we do not use any forgeries

for training; 3) we present a visual analysis of the learned repre-

sentations, which shows that genuine signatures and skilled forg-

eries get better separated in different parts of the feature space; 4)

lastly, we are making two trained models available for the research

community 1 , so that other researchers can use them as specialized

feature extractors for the task. 

Experiments were conducted on four datasets, including the

largest publicly available signature verification dataset (GPDS),

achieving a large performance improvement in the state-of-the-

art, reducing Equal Error Rates from 6.97% to 1.72% in GPDS-160.

We used the features learned on this dataset to train classifiers

for users in the MCYT, CEDAR and Brazilian PUC-PR datasets, also

surpassing the state-of-the-art performance, and showing that the

learned feature space not only generalizes to other users in the

GPDS set, but also to other datasets. 

Preliminary results, using only genuine signatures for learning

the features, were published as two conference papers. In [10] ,
1 https://www.etsmtl.ca/Unites- de- recherche/LIVIA/Recherche- et- innovation/ 

Projets . 

i  

i  

f  

n  
e introduced the formulation to learn features from genuine sig-

atures from a development dataset, using them to train Writer-

ependent classifiers to another set of users. In [11] , we analyzed

he learned feature space and optimized the CNN architecture, ob-

aining state-of-the-art results on GPDS. The present work includes

his formulation of the problem for completeness, with additional

xperiments on two other datasets (MCYT and CEDAR), a clearer

xplanation of the method and the experimental protocol, as well

s the novel formulation that leverages knowledge of skilled forg-

ries for feature learning. 

The remaining of this paper is organized as follows:

ection 2 reviews the related work on signature verification

nd on feature learning techniques. Section 3 details the formu-

ation and methodology to learn features for offline signature

erification, and Section 4 describes our experimental protocol.

ection 5 presents and discusses the results of our experiments.

astly, Section 6 concludes the paper. 

. Related works 

The review of related works is divided below into two parts:

e first present a review of previous work on Offline Signature

erification, followed by a brief review of representation learning

ethods. 

.1. Related works on offline signature verification 

The area of automatic Offline Signature Verification has been

esearched at least since the decade of 1970. Over the years, the

roblem has been addressed from many different perspectives, as

ummarized in literature reviews [2,12,13] . 

In this problem, given a set of genuine signatures, the objec-

ive is to learn a model that can distinguish between genuine sig-

atures and forgeries. Forgeries are signatures not created by a

laimed individual, and are often subdivided into different types.

he most common classification of forgeries in the literature con-

iders: Random Forgeries, where a person uses his or her own

ignature to impersonate another individual, and Skilled Forgeries,

here a person tries to imitate the signature of the claimed in-

ividual. While the former is a relatively easier task, discriminat-

ng skilled forgeries is an open pattern recognition problem, and

s the focus of this paper. This problem is challenging due to a

ew factors: First, there is a large similarity between genuine sig-

atures and skilled forgeries, as forgers will attempt to imitate the

https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Projets
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ser’s signature, often practicing the signature beforehand. Second,

n a practical application scenario, we cannot expect to have skilled

orgeries for all users in the system, therefore the classifiers should

e trained only with genuine signatures in order to be most widely

pplicable. Lastly, the number of genuine samples per user is often

mall, especially for new users of the system, for whom we may

ave only 3 or 5 signatures. This is especially problematic as many

sers have large intra-class variability, and a few signatures are not

ufficient to capture the full range of variation. 

There are mainly two approaches for building offline signa-

ure verification systems. The most common approach is to de-

ign Writer-Dependent classifiers. In this scenario, a training set

s constructed for each user of the system, consisting of genuine

ignatures as positive examples and genuine signatures from other

sers (random forgeries) as negative samples. A binary classifier is

hen trained on this dataset, resulting in one model for each user.

his approach has shown to work well for the task, but since it re-

uires one model to be trained for each user, complexity increases

s more users are enrolled. An alternative is Writer-Independent

lassification. In this case, a single model is trained for all users,

y training a classifier in a dissimilarity space [7,8] . The inputs

or classification are dissimilarity vectors, that represent the differ-

nce between the features of a query signature, and the features

f a template signature (a genuine signature of the user). In spite

f the reduced complexity, Writer-Independent systems often per-

orm worse, and the best results in standard benchmarks are ob-

ained with Writer-Dependent systems. 

A large variety of feature extractors have been investigated

or this problem, from simple geometric descriptors [14,15] , de-

criptors inspired in graphology and graphometry [16] , directional-

ased descriptors such as HOG [4] and D-PDF [6,7,17] , descrip-

ors based on interest-point, such as SIFT [4] , to texture descrip-

ors, such as Local Binary Patterns (LBP) [4] and Gray-Level Co-

ccurrence Matrix (GLCM) [5] . These features are commonly ex-

racted locally from the signature images, by dividing the image in

 grid and computing descriptors for each cell (either in Cartesian

r polar coordinates). 

Methods to learn features from data have not yet been widely

xplored for offline signature verification. Ribeiro et al. [18] used

estricted Boltzmann Machines (RBMs) to learn features from sig-

ature images. However, in this work they only showed the visual

ppearance of the weights, and did not test the features for clas-

ification. Khalajzadeh [19] used Convolutional Neural Networks

CNNs) for signature verification on a dataset of Persian signatures,

ut only considered the classification between different users (e.g.

etecting random forgeries), and did not considered skilled forg-

ries. Soleimani et al. [20] proposed a solution using deep neu-

al networks for Multitask Metric Learning. In their work, a dis-

ance metric between pairs of signatures is learned. Contrary to

ur work, the authors used handcrafted feature extractors (LBP in

he experiments with the GPDS dataset), while in our work the in-

uts to the system are the signature themselves (pixel intensities),

nd the feature representation is learned. In a similar vein to our

ork, Eskander [7] presented a hybrid Writer-Independent Writer-

ependent solution, using a Development dataset for feature se-

ection, followed by training WD classifiers using the selected fea-

ures. However, in the present work we use a Development dataset

or feature learning instead of feature selection. 

.2. Related work on representation learning for computer vision 

asks 

In recent years, there has been a large interest in methods that

o not rely on hand-crafted features, but rather learn the represen-

ations for a problem using raw data, such as pixels, in the case of

mages. Methods based on learning multiple levels of representa-
ion have shown to be very effective to process natural data, espe-

ially in computer vision and natural language processing [21–23] .

he intuition is to use such methods to learn multiple intermedi-

te representations of the input, in layers, in order to better rep-

esent a given problem. In a classification task, the higher layers

mplify aspects of the input that are important for classification,

hile disregarding irrelevant variations [23] . In particular, Convo-

utional Neural Networks (CNNs) [24] have been used to achieve

tate-of-the-art performance [23] in many computer vision tasks

25,26] . These models use local connections and shared weights,

aking advantage of the spatial correlations of pixels in images by

earning and using the same filters in multiple positions of an in-

ut image [23] . With large datasets, these networks can be trained

ith a purely supervised criteria. With small datasets, other strate-

ies have been used successfully, such as unsupervised pre-training

e.g. in a greedy layer-wise fashion [27] ), and more recently with

ransfer learning [28–30] . CNNs have been used to transfer learn-

ng of representations, by first training a model in a large dataset,

nd subsequently using this model in another task (often, a task

or which a smaller dataset is available), by using the network as

 “feature extractor”: performing forward-propagation of the sam-

les until one of the last layers before softmax [28,29] , or the last

ayer (that corresponds to the predictions for classes in the original

ask, as in [30] ), and using the activation at that layer as a feature

ector. Alternatively, this pre-trained model can be used to initial-

ze the weights of a model for the task of interest, and training

roceeds normally with gradient descent. 

. Feature learning for signature verification 

In this work we present formulations for learning features for

ffline Signature Verification, and evaluate the performance of

uch features for training Writer-Dependent classifiers. We first

ote that a supervised feature learning approach directly applied

or Writer-Dependent classification is not practical, since the num-

er of samples per user is very small (commonly around 1–14

amples), while most feature learning algorithms have a large

umber of parameters (in the order of millions of parameters, for

any computer vision problems, such as object recognition [25] ).

n the other hand, we expect that signatures from different users

hare some properties, and we would like to exploit this intuition

y learning features across signatures from different writers. 

We consider a two-phase approach for the problem: a Writer-

ndependent feature learning phase followed by Writer-Dependent

lassification. The central idea is to leverage data from many users

o learn a feature space that captures intrinsic properties of hand-

ritten signatures. We subsequently train classifiers for each user,

sing this feature space, that model the characteristics of each

ser. Since in real applications the list of users of the system is

ot fixed, we consider a disjoint set of users for learning the fea-

ures and training the writer-dependent classifiers, to verify if the

earned feature space is useful (i.e. generalizes) to new users. We

se the term Writer-Independent for the feature learning process,

ince the learned representation space is therefore not specific for

 set of users. 

Given a development set D of signatures, we train Deep Con-

olutional Neural Networks (CNNs) using the formulations defined

elow. Subsequently, we use the trained network to project the in-

ut signatures onto the representation space learned by the CNN

or an Exploitation set E, and train a binary classifier for each user.

he hypothesis is that genuine signatures and forgeries will be eas-

er to separate in this feature space, if the network succeeds in

apturing intrinsic properties of the signatures, that generalizes to

ther users. 

Convolutional Neural Networks are a particularly suitable archi-

ecture for signature verification. This type of architecture scales
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Fig. 2. Illustration of the CNN architecture used in this work. The input image goes through a sequence of transformations with convolutional layers, max-pooling layers and 

fully-connected layers. During feature learning, P( y | X ) (and also P ( f | X ) in the formulation from Section 3.2.2 ) are estimated by performing forward propagation through the 

model. The weights are optimized by minimizing one of the loss functions defined in the next sections. For new users of the system, this CNN is used to project the signature 

images onto another feature space (analogous to “extract features”), by performing feed-forward propagation until one of the last layers before the final classification layer, 

obtaining the feature vector φ( X ). 
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better than fully connected models for larger input sizes, having a

smaller number of trainable parameters. This is a desirable prop-

erty for the problem at hand, since we cannot reduce the signature

images too much without risking losing the details that enable dis-

criminating between skilled forgeries and genuine signatures (e.g.

the quality of the pen strokes). We also note that this type of ar-

chitecture shares some properties with handcrafted feature extrac-

tors used in the literature, as features are extracted locally (in an

overlapping grid of patches) and combined in non-linear ways (in

subsequent layers). In the sections below we present our proposed

formulations for the problem, first considering only genuine signa-

tures, and then considering learning from skilled forgeries. 

3.1. Learning features from genuine signatures 

Let D be a dataset consisting of genuine signatures from a set of

users Y D . The objective is to learn a function φ( X ) that projects sig-

natures X onto a representation space where signatures and forg-

eries are better separated. To address this task, we consider learn-

ing a Convolutional Neural Network to discriminate between users

in D. This formulation has been introduced in [10] , and it is in-

cluded here for completeness. 

Formally, we consider a training set composed of tuples ( X, y )

where X is the signature image, and y is the user, that is, y ∈ Y D .
We create a neural network with multiple layers, where the objec-

tive is to discriminate between the users in the Development set.

The last layer of the neural network has M units with a softmax

activation, where M is the number of users in the Development

set, ( M = | Y D | ), and estimates P ( y | X ) . Fig. 2 illustrates one of the

architectures used in this work, with M = 531 users. We train the

network to minimize the negative log likelihood of the correct user

given the signature image: 

L = −
∑ 

j 

y i j log P (y j | X i ) (1)

Where y ij is the true target for example i ( y i j = 1 if the signa-

ture belongs to user j ), X i is the signature image, and P ( y j | X i ) is the

probability assigned to class j for the input X i , given by the model.

This cost function can then be minimized with a gradient-based

method. 
The key idea behind this approach is that by training the net-

ork to distinguish between users, we expect it to learn a hier-

rchy of representations, and that the representations on the last

ayers capture relevant properties of signatures. In particular, if the

etwork succeeds in distinguishing between different users of the

evelopment set, then the representation of signatures from these

sers will be linearly separable in the representation space defined

y φ( X ), since the last layer is a linear classifier with respect to

ts input φ( X ). We test, therefore, the hypothesis that this feature

pace generalizes well to signatures from other users. 

.2. Learning features from genuine signatures and skilled forgeries 

One limitation of the formulation above is that there is nothing

n the training process to drive the features to be good in distin-

uishing skilled forgeries. Since this is one of the main goals of a

ignature verification system, it would be beneficial to incorporate

nowledge about skilled forgeries in the feature learning process. 

In a real application scenario, we cannot expect to have skilled

orgeries available for each user enrolled in the system. We con-

ider, however, a scenario where we obtain skilled forgeries for

 subset of the users. Assuming such forgeries are available, we

ould like to formulate the feature learning process to take ad-

antage of this data. Using the same notation as above, we con-

ider that the development set D contains genuine signatures and

killed forgeries for a set of users, while the exploitation set E con-

ains only genuine signatures available for training, and represent

he users enrolled to the system. 

In this section we introduce novel formulations for the prob-

em, that incorporate forgeries in the feature learning process. The

rst approach considers the forgeries of each user as a separate

lass, while the second formulation considers a multi-task learning

ramework. 

.2.1. Treat forgeries as separate classes 

A simple formulation to incorporate knowledge of skilled forg-

ries into training is to consider the forgeries of each user as a

ifferent class. In this formulation, we have two classes for each

ser (genuine signatures and forgeries), that is, M = 2 | Y D | . 
We note that this alternative is somewhat extreme, as it con-

iders genuine signatures and forgeries as completely separate
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Table 1 

Summary of the CNN layers. 

Layer Size Other Parameters 

Input 1 × 150 × 220 

Convolution (C1) 96 × 11 × 11 Stride = 4, pad = 0 

Pooling 96 × 3 × 3 Stride = 2 

Convolution (C2) 256 × 5 × 5 Stride = 1, pad = 2 

Pooling 256 × 3 × 3 Stride = 2 

Convolution (C3) 384 × 3 × 3 Stride = 1, pad = 1 

Convolution (C4) 384 × 3 × 3 Stride = 1, pad = 1 

Convolution (C5) 256 × 3 × 3 Stride = 1, pad = 1 

Pooling 256 × 3 × 3 Stride = 2 

Fully Connected (FC6) 2048 

Fully Connected (FC7) 2048 

Fully Connected + Softmax ( P( y | X ) ) M 

Fully Connected + Sigmoid ( P ( f | X )) 1 
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ntities, while we would expect genuine signatures and skilled

orgeries to have a high level of resemblance. 

.2.2. Add a separate output for detecting forgeries 

Another formulation is to consider a multi-task framework, by

onsidering two terms in the cost function for feature learning. The

rst term drives the model to distinguish between different users

as in the formulations above), while the second term drives the

odel to distinguish between genuine signatures and skilled forg-

ries. Formally, we consider another output of the model: P ( f | X ), a

ingle sigmoid unit, that seeks to predict whether or not the signa-

ure is a forgery. The intuition is that in order to classify between

enuine signatures and forgeries (regardless of the user), the net-

ork will need to learn visual cues that are particular to each class

e.g. bad line quality in the pen strokes, often present in forgeries).

We consider a training dataset containing tuples of the form ( X,

, f ), where X is the signature image, y is the author of the sig-

ature (or the target user, if the signature is a forgery), and f is a

inary variable that reflects if the sample is a forgery or not ( f = 1

ndicates a forgery). Note that contrary to the previous formula-

ion, genuine signatures and forgeries targeted to the same user

ave the same y . For training the model, we consider a loss func-

ion that combines both the classification loss (correctly classifying

he user), and a loss on the binary neuron that predicts whether

r not the signature is a forgery. The individual losses are shown

n Eq. (2) , where the user classification loss ( L c ) is a multi-class

ross-entropy, and the forgery classification ( L f ) is a binary cross-

ntropy: 

L c = −
∑ 

j 

y i j log P (y j | X i ) 

 f = − f i log (P ( f | X i )) − (1 − f i ) log (1 − P ( f | X i )) (2) 

For training the model, we combine the two loss functions and

inimize both at the same time. We considered two approaches

or combining the losses. The first approach considers a weighted

um of both individual losses: 

 1 = (1 − λ) L c + λL f 

= −(1 − λ) 
∑ 

j 

y i j log P (y j | X i ) 

+ λ
(

− f i log (P ( f | X i )) − (1 − f i ) log (1 − P ( f | X i )) 
)

(3) 

here λ is a hyperparameter that trades-off between the two ob-

ectives (separating the users in the set D, and detecting forgeries)

In a second approach we consider the user classification loss

nly for genuine signatures: 

 2 = (1 − f i )(1 − λ) L c + λL f 

= −(1 − f i )(1 − λ) 
∑ 

j 

y i j log P (y j | X i ) 

+ λ
(

− f i log (P ( f | X i )) − (1 − f i ) log (1 − P ( f | X i )) 
)

(4) 

In this case, the model is not penalized for misclassifying for

hich user a forgery was made. 

In both cases, the expectation is that the first term will guide

he model to learn features that can distinguish between different

sers (i.e. detect random forgeries), while the second term will fo-

us on particular characteristics that distinguish between genuine

ignatures and forgeries (such as limp strokes). It is worth noting

hat, in the second formulation, using λ = 0 is equivalent to the

ormulation in Section 3.1 , where only genuine signatures are used

or training, since the forgeries would not contribute to the loss

unction. 
.3. Preprocessing 

The signatures from the datasets used in our experiments are

lready extracted from the documents where they were written,

o signature extraction is not investigated in this paper. Some few

reprocessing steps are required, though. The neural networks ex-

ect inputs of a fixed size, where signatures vary significantly in

hape (in GPDS, they range from small signatures of size 153 ×
58 to large signatures of size 819 × 1137 pixels). 

We first center the signatures in a large canvas of size S canvas =
 × W, by using the signatures’ center of mass. We remove the

ackground using OTSU’s algorithm [31] , setting background pix-

ls to white (intensity 255), and leaving the foreground pixels in

rayscale. The image is then inverted by subtracting each pixel

rom the maximum brightness I(x, y ) = 255 − I(x, y ) , such that the

ackground is zero-valued. Lastly, we resize the image to the input

ize of the network. 

.4. Training the convolutional neural networks 

For each strategy described above, we learn a feature represen-

ation φ(.) on the Development set of signatures by training a Deep

onvolutional Neural Network on this set. This section describes

he details of the CNN training. 

In order to use a suitable architecture for signature verifica-

ion, in [11] we investigated different architectures for learning fea-

ure representations using the objective from Section 3.1 (train-

ng using only genuine signatures). In this work we use the ar-

hitecture that performed best for this formulation, which is de-

cribed in Table 1 . The CNN consists of multiple layers, consider-

ng the following operations: convolutions, max-pooling and dot

roducts (fully-connected layers), where convolutional layers and

ully-connected layers have learnable parameters, that are opti-

ized during training. With the exception of the last layer in the

etwork, after each learnable layer we apply Batch Normalization

32] , followed by the ReLU non-linearity. The last layer uses the

oftmax non-linearity, which is interpreted as P ( y | X ) - the proba-

ility assigned by the network to each possible user in Y D . For the

ormulation in Section 3.2.2 , the neuron that estimates P ( f | X ) uses

he sigmoid function. Both output layers receive as input the result

f layer FC7. Table 2 lists the operations mentioned above. 

Optimization was conducted by minimizing the loss with

tochastic Gradient Descent with Nesterov Momentum, using mini-

atches of size 32, and momentum factor of 0.9. As regularization,

e applied L2 penalty with weight decay 10 −4 . The models were

rained for 60 epochs, with an initial learning rate of 10 −3 , that

as divided by 10 every 20 epochs. We used simple translations as

ata augmentation, by using random crops of size 150 × 220 from

he 170 × 242 signature image. As in [32] , the batch normalization

erms (mean and variance) are calculated from the mini-batches
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Table 2 

List of feedforward operations. 

Operation Formula 

Convolution z l = h 
l−1 ∗ W 

l 

MaxPooling h l xy = max i =0 ,..,s, j=0 ,..,s h 
l−1 
(x + i )(y + j) 

Fully-connected layer z l = W 

l h 
l−1 

ReLU ReLU (z i ) = max (0 , z i ) 

Sigmoid σ (z i ) = 

1 
1+ e −z i 

Softmax softmax (z i ) = 

e z i ∑ 

j e 
z j 

Batch Normalization BN (z i ) = γi ̂ z i + βi , 

ˆ z i = 

z i −E[ z i ] √ 

Var [ z i ] 

z l : pre-activation output of layer l 

h 
l 
: activation of layer l 

∗: discrete convolution operator 

W, γ , β: learnable parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Summary of the datasets used in this work. 

Dataset Name Users Genuine Forgeries S canvas 

signatures 

Brazilian (PUC-PR) 60 + 108 40 10 simple, 10 

skilled 

700 × 1000 

CEDAR 55 24 24 730 × 1042 

MCYT-75 75 15 15 600 × 850 

GPDS Signature 960 

Grayscale 

881 24 30 952 × 1360 

Fig. 3. The GPDS dataset is separated into an exploitation set E and Development 

set D. The development set is used for learning the features, and making all model 

decisions. The exploitation set represents the users enrolled to the system, where 

we train Writer-Dependent classifiers using only genuine signatures. 
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2 This dataset contains simple and skilled forgeries for the first 60 users. 
during training. For generalization, the mean (E[ z i ]) and variance

(Var[ z i ]) for each neuron were calculated from the entire training

set. 

It is worth noting that, in our experiments, we found Batch Nor-

malization to be crucial to train deeper networks. Without using

this technique, we could not train architectures with more than

4 convolutional layers and 2 fully-connected layers. In these cases,

the performance in both a training and validation set remained the

same as chance, not indicating overfitting, but rather problems in

the optimization process. 

3.5. Training writer-dependent classifiers 

After training the CNN, we use the network to extract feature

representations for signatures from the Exploitation set, and train

Writer-Dependent classifiers. To do so, we crop the center 150 ×
220 pixels from the 170 × 242 signature image, perform feed-

forward propagation until the last layer before softmax (obtaining

φ( X )), and use the activations at that layer as the feature vector for

the image. This can be seen as a form of transfer learning (similar

to [28] ) between the two sets of users. For each user, we build a

training set consisting of genuine signatures from the user as pos-

itive samples, and genuine signatures from other users as negative

samples. We trained Support Vector Machines (SVM), both in a lin-

ear formulation and with the Radial Basis Function (RBF) kernel. 

We used different weights for the positive and negative class to

account for the imbalance of having many more negative samples

than positive. The SVM objective becomes [33] : 

min 

1 

2 

‖ 

w ‖ 

2 + C + 

( ∑ 

i : y i =+1 

ξi 

) 

+ C −

( ∑ 

i : y i = −1 

ξi 

) 

subject to 

y i ( w x i + b) ≥ 1 − ξi 

ξi ≥ 0 (5)

Where the change to the standard SVM formulation is the usage

of different weights C for the two classes (we refer the reader to

[33] for the dual formulation). We set the weight of the positive

class (genuine signatures) to match the skew (denoted below as

ψ). Let P be the number of positive (genuine) samples for training,

and N the number of negative (random forgery) samples: 

ψ = 

N 

P 
C + = ψC − (6)

For testing, we used a disjoint set of genuine signatures from

the user (that is, not used for training) and the skilled forgeries

made targeting the user’s signature. 
. Experimental protocol 

We conducted experiments using the datasets GPDS-960 [9] ,

CYT-75 [34] , CEDAR [35] and the Brazilian PUC-PR [36] . Table 3

ummarizes these datasets, including the size used to normalize

he images in each dataset (height × width). GPDS-960 is the

argest publicly available dataset for offline signature verification

ith 881 users, having 24 genuine samples and 30 skilled forg-

ries per user. We used a subset of users from this dataset for

earning the features (the development set D) and evaluating how

hese features generalize to other users in this dataset (the ex-

loitation set E). To enable comparison with previous work, we

erformed experiments on GPDS having the set E as the first 160

r the first 300 users of the dataset (to allow comparison with the

atasets GPDS-160, and GPDS-300, respectively). In order to eval-

ate if the features generalize to other datasets, we use the same

odels learned on GPDS to train Writer-Dependent classifiers for

he MCYT, CEDAR and Brazilian PUC-PR datasets. 2 

The GPDS dataset is divided as follows, as illustrated in Fig. 3 :

he Convolutional Neural Networks are trained on a set L c (de-

oting L earning set for c lassification) consisting of 531 users. We

onitor the progress on a validation set V c ( V alidation set for

 lassification). Both sets contains the same users, but a disjoint set

f signature samples from these users. We split 90% of the signa-

ures for training, and 10% for this validation set. 

After the CNNs are trained, we train Writer-Dependent classi-

ers on a validation set V v ( V alidation set for v erification) con-

isting of 50 users. The purpose of this set is to allow the esti-

ation of the performance of Writer-Dependent classifiers trained

ith the representation space learned by the CNN. We use this

alidation set to make all model choices (CNN architecture and

alues hyperparameters). On this validation phase, we follow the

ame protocol for Writer-Dependent classifier training, using a

xed number of 12 genuine signatures for the user as positive

amples, and random forgeries from L c as negative samples. 
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Table 4 

Separation into training and testing for each dataset. 

Dataset Name Training set Testing set 

Genuine Random Forgeries 

Brazilian (PUC-PR) r ∈ { 1 , . . . , 30 } 30 × 108 = 3240 10 genuine, 10 random, 10 simple, 10 skilled 

CEDAR r ∈ { 1 , . . . , 12 } 12 × 54 = 648 10 genuine, 10 skilled 

MCYT-75 r ∈ { 1 , . . . , 10 } 10 × 74 = 588 5 genuine, 15 skilled 

GPDS-160 r ∈ { 1 , . . . , 14 } 14 × 721 = 10094 10 genuine, 10 random, 10 skilled 

GPDS-300 r ∈ { 1 , . . . , 14 } 14 × 581 = 8134 10 genuine, 10 random, 10 skilled 
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Finally, we use the models and hyperparameters that performed

est in the validation set, to train and test classifiers for the ex-

loitation set E . We trained Support Vector Machines on the set L v 
denoting L earning set for v erification) and tested on T v ( T esting

et for v erification). For each user, we build a dataset consisting of

 genuine signatures from the user as positive samples, and gen-

ine signatures from other users as negative samples. Taking into

onsideration the differences in datasets and experimental proto-

ols that used them in the literature, we used a different num-

er of signatures for training and testing, which is summarized in

able 4 . For the GPDS and the Brazilian PUC-PR datasets, we used

ignatures from users that are not in the Exploitation set as ran-

om forgeries (i.e. signatures from users 301–881 for GPDS-300

nd users 61–168 for the Brazilian PUC-PR). For MCYT and CEDAR,

e consider genuine samples from other users from the exploita-

ion set as negative samples for training the WD classifier. In each

xperiment, we performed the WD training 10 times, using differ-

nt splits for the data. We report the mean and variance of the

erformance across these executions. 

We used the same hyperparameters for training the SVM classi-

ers as in previous work [11] : for the linear SVM, we used C − = 1

 C + is calculated according to Eq. (6) ). For the SVM with RBF ker-

el, we used C − = 1 and γ = 2 −11 . We found these hyperparame-

ers to work well for the problem, on a range of architectures and

sers, but we note that they could be further optimized (to each

odel, or even to each user), which is not explored in this study. 

For learning features using forgery data, specifically the formu-

ation on Section 3.2.2 , we tested values of λ from 0 to 1 is steps of

.1. The boundaries are special cases: with λ = 0 , the forgery neu-

on is not used at all, and the model only classifies among different

sers; with λ = 1 the model does no try to separate among differ-

nt users, but only classifies whether or not the input is a forgery.

n our experiments, we found better results on the right end of

his range, and therefore we refined the search for the appropriate

with the following cases: λ ∈ {0.95, 0.99, 0.999}. 

Besides comparing the performance with the state-of-the-art

n this dataset, we also considered a baseline consisted of a CNN

re-trained on the Imagenet dataset. As argued in [37] , these

re-trained models offer a strong baseline for Computer Vision

asks. We used two pre-trained models, 3 namely Caffenet (Caffe

eference network, based on AlexNet [25] ), and VGG-19 [38] .

e used these networks to extract the feature representations

( X ) for signatures, and followed the same protocol for training

riting-Dependent classifiers using these representations. We

onsidered the following layers to obtain the representations:

ool5, fc6 and fc7. 

We evaluate the performance on the testing set using the fol-

owing metrics: False Rejection Rate (FRR): the fraction of genuine

ignatures rejected as forgeries; False Acceptance Rate (FAR random 

nd FAR skilled ): the fraction of forgeries accepted as genuine (con-

idering random forgeries and skilled forgeries). We also report

he Equal Error Rate (EER): which is the error when FAR = FRR.

e considered two forms of calculating the EER: EER :
userthresholds 

3 https://github.com/BVLC/caffe/wiki/Model-Zoo . 

l  

t  

L  
sing user-specific decision thresholds; and EER globalthreshold : using

 global decision threshold. In both cases, to calculate the Equal

rror Rate we only considered skilled forgeries (not random forg-

ries) - that is, we use only FRR and FAR skilled to estimate the opti-

um threshold and report the Equal Error Rate. We also report the

ean Area Under the Curve (AUC), considering ROC curves created

or each user individually. For calculating FAR and FRR in the GPDS

xploitation set, we used a decision threshold selected from the

alidation set V v (the threshold that achieved EER using a global

ecision threshold). 

For the Brazilian PUC-PR dataset, we followed the convention of

revious research in this dataset, and also report the individual er-

ors (False Rejection Rate and False Acceptance Rate for different

ypes of forgery) and the Average error rate, calculate as AER =
( FRR + FAR random 

+ FAR simple + FAR skilled ) / 4 . Since in this work we

re mostly interested in the problem of distinguishing genuine

ignatures and skilled forgeries, we also report AER genuine+skilled =
( FRR + FAR skilled ) / 2 . 

. Results and discussion 

The experimental results with the proposed method are listed

nd discussed in this section. The first part presents the experi-

ents on the Development set, which was used for making all the

esign decisions for the proposed method: evaluating different loss

unctions and other hyperparameters. The second part presents the

esults on the Exploitation set, and the comparison with the state-

f-the-art for all four datasets. 

.1. Signature verification system design 

In these experiments, we trained the CNN architectures using

he loss functions defined in Section 3 , used them to extract fea-

ures for the users in the validation set V v , and trained Writer-

ependent classifiers for these users using 12 reference signatures.

e then analyzed the impact in classification performance of the

ifferent formulations of the problem. 

For the formulation on Section 3.2.2 , where we have a separate

euron to estimate if a signature is a forgery or not, we trained

odels with variable values of λ. Fig. 4 shows the results on the

alidation set using loss L 1 (from Eq. (3) ), and loss L 2 (from Eq.

4) ). The models with loss L 2 only consider the user-classification

oss for genuine signatures, while the models using L 1 consider

ser-classification loss for all signatures (genuine and forgeries). As

 performance reference, we also show the results using a model

rained with genuine signatures only, as well as the model trained

ith forgeries as separate classes ( Section 3.2.1 ). 

Both using a linear SVM or using an SVM with RBF kernel, the

esults using the loss L 1 were very poor for low values of λ. This

s likely caused by the fact that, in this formulation, both gen-

ine signatures and forgeries of the same user are assigned to

he same class y , and the loss function guides the model to be

ess discriminative between the genuine signatures and forgeries of

he same user. This behavior is not present when we use the loss

 , since the model is not penalized for misclassifying for which
2 

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Fig. 4. Performance on the validation set ( V v ), using features learned from genuine signatures and forgeries ( Section 3.2.2 ), as we vary the hyperparameter λ. For reference, 

the performance of models using features learned from genuine signatures only ( Section 3.1 ) and using forgeries as different classes ( Section 3.2.1 ) are also included. 
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user the forgery was created. We also noticed that the best re-

sults were closer to the right end of the range, suggesting that

the distinction of forgeries (regardless of the user) in the devel-

opment set may be more relevant than the distinguishing genuine

signatures from different users. In the extreme case, with λ = 1 ,

the model is only learning to discriminate between genuine signa-

tures and forgeries (the output is a single binary unit), and the

performance is still reasonable, although worse than the perfor-

mance when both loss functions are combined. It is worth noting

that the scale of L c is larger than L f by definition: L c is a cross-

entropy loss among 531 users. A random classifier would have loss

L c ≈ log (531) ≈ 6.27. On the other hand, L f is a cross-entropy

loss among 2 alternatives, and a random classifier would have loss

around L f ≈ log (2) ≈ 0.69, which also partially explains larger λ
values. 

We noticed an unexpected behavior using loss L 2 with λ = 0 .

This loss function is equivalent to the loss when using only gen-

uine signatures, but actually performed worse during our exper-

iments. Analyzing this abnormal behavior, we identified that, al-

though the forgeries do not contribute to the loss function directly,

they do have some indirect effect on loss function due to the us-

age of batch normalization. During training, the skilled forgeries

are used, together with genuine signatures, when computing the

batch statistics (mean and variance), therefore affecting the output
f the network. However, it is unclear why this effect results in

orse performance, instead of simply adding more variance to the

esults. 

We also verified if the forgery neuron generalized well to other

sers. Since this neuron is not related to a particular user in the

evelopment set, we can use it to estimate P ( f | X ) for signature im-

ges from other users. In this case, we estimate if a signature is a

orgery only by looking at the questioned specimen, and not com-

aring it to other genuine signatures from the same user. We used

he neuron trained with loss L 2 and λ = 0 . 999 to classify all signa-

ures from the validation set V v , achieving an error rate of 14.37%.

n comparison, for classifying signatures from the same set of users

here the CNN was trained (i.e. testing on V c ), the model achieved

.21% of error. This suggests that using this neuron is mostly help-

ul to guide the system to obtain better representations (and sub-

equently train WD classifiers), than to use it directly as a classifier

or new samples, since it mainly generalizes to other signatures

rom the same users used to train the CNN. 

Table 5 consolidates the performance obtained in the validation

et V v using the proposed methods. The baseline, using a CNN pre-

rained on the ImageNet dataset, performed reasonably well com-

ared to previous work on the GPDS dataset, but still much worse

han the methods that learned on signature data. An interesting

esult is that the naive formulation to use forgeries (treat forgeries
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Table 5 

Performance of the WD classifiers on the validation set V v (subset of 50 users in GPDS; Errors and Standard deviations in %). 

Classifier Formulation used to learn the features EER globalthreshold EER userthresholds Mean AUC 

Linear SVM Baseline (Caffenet, layer pool5) 14.09 ( ± 2.80) 10.59 ( ± 2.96) 0.9453 ( ± 0.0198) 

Using genuine signatures only ( Section 3.1 ) 6.80 ( ± 0.57) 3.91 ( ± 0.64) 0.9876 ( ± 0.0022) 

Forgeries as separate classes ( Section 3.2.1 ) 9.45 ( ± 0.51) 5.61 ( ± 0.63) 0.9749 ( ± 0.0028) 

Forgery neuron ( Section 3.2.2 , loss L 1 , λ = 0 . 999 ) 7.01 ( ± 0.42) 3.63 ( ± 0.43) 0.9844 ( ± 0.0024) 

Forgery neuron ( Section 3.2.2 , loss L 2 , λ = 0 . 95 ) 6.09 ( ± 0.29) 3.17 ( ± 0.34) 0.9899 ( ± 0.0017) 

SVM (RBF) Baseline (Caffenet, layer fc6) 16.20 ( ± 0.94) 13.51 ( ± 0.99) 0.9261 ( ± 0.0054) 

Using genuine signatures only ( Section 3.1 ) 5.93 ( ± 0.43) 3.13 ( ± 0.46) 0.9903 ( ± 0.0018) 

Forgeries as separate classes ( Section 3.2.1 ) 7.79 ( ± 0.43) 4.10 ( ± 0.41) 0.9857 ( ± 0.0012) 

Forgery neuron ( Section 3.2.2 , loss L1, λ = 1 ) 2.41 ( ± 0.32) 1.08 ( ± 0.36) 0.9978 ( ± 0.0 0 08) 

Forgery neuron ( Section 3.2.2 , loss L2, λ = 0 . 999 ) 2.51 ( ± 0.33) 1.04 ( ± 0.31) 0.9971 ( ± 0.0 0 09) 

Fig. 5. 2D projections (using t-SNE) of the feature vectors from the 50 users in the validation set V v . Each point represents a signature sample: genuine signatures are 

displayed in blue (dark), while skilled forgeries are displayed in orange (light). The reader is referred to the web version of this article for a color version of the figure. 
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s separate classes - Section 3.2.1 ) performed worse than the for-

ulation that used only genuine signatures for training the CNN.

sing the model trained with genuine signatures, we obtained EER

f 3.91% using a linear SVM, and 3.13% using the RBF kernel. Using

he model trained with forgeries as separate classes, we obtained

ER of 5.61% using Linear SVM and 4.10% using the RBF kernel.

 possible explanation for this effect is that this formulation ef-

ectively doubles the number of classes, making the classification

roblem much harder. This fact, combined with the observation

hat genuine signatures and forgeries for the same user usually

hare several characteristics, may justify this drop in performance.

n the other hand, the formulation using the forgery neuron per-

ormed much better in the validation set, showing that this is a

romising formulation of the problem. We reiterate that forgeries

re used only in the feature learning process, and that no forgeries

rom the validation set V v were used for training. 

Although it is not the focus of this paper, we note that these

odels could also be used for user identification from signa-

ures. Using the features learned from genuine signatures only

 Section 3.1 ), the performance on the validation set V c (classifica-

ion between the 531 users) is 99.23%, showing that using CNNs

or this task is very effective. 

.1.1. Visualizing the learned representation space 

We performed an analysis of the feature space learned by the

odels, by using the t-SNE algorithm [39] to project the samples

rom the validation set V v from R 

N to R 

2 . This analysis is useful

o examine the local structure present in this high-dimensionality

pace. For this analysis, we used the baseline model (Caffenet, us-

ng features from layer pool5), a model learned with genuine sig-

atures only, and a model learned with genuine signatures and

orgeries (using loss L 2 and λ = 0 . 95 ). These models were trained

n the set L c , which is a disjoint set of users from the validation

et. In all cases, we used the models to “extract features” from all

200 signatures images from the validation set, by performing for-

ard propagation until the layer specified above. For the baseline

odel, this representation is in R 

9216 , while for the other models it
s in R 

2048 . For each model, we used the t-SNE algorithm to project

he samples to 2 dimensions. 

The result can be seen in Fig. 5 . The baseline system (model

rained on natural images) projects the samples onto a space

here samples from different users are clustered in separate re-

ions of the space, which is quite interesting considering that this

etwork was never presented signature images. On the other hand,

killed forgeries are also clustered together with genuine signa-

ures in this representation. On the models trained with signature

ata, we can see that signatures from different users also occupy

ifferent regions of the feature space. Using the model trained with

enuine signatures and forgeries, we see that the forgeries from

he users in the validation set are much more grouped together

n a part of the feature space, although several forgeries are still

lose to the genuine signatures of the users. This suggests that the

etwork has learned characteristics that are intrinsic to many forg-

ries, that generalizes to other users. 

.2. Generalization performance and comparison with the 

tate-of-the-art 

We now present the results on the exploitation set, comparing

he results with the state-of-the-art. In these experiments, we do

ot use any skilled forgeries from the users, since it is not reason-

ble to expect skilled forgeries to be available for all users enrolled

n the system. 

We reiterate that all design decisions (e.g. choice of architec-

ure and other hyperparameters) were done using the validation

et V v , which consists of a separate set of users, to present an

nbiased estimate of the performance of the classifier in the test-

ng set. In these experiments, we used the architectures that per-

ormed best in the validation set, as seen in Table 5 . In particular,

e consider a model that was learned using genuine signatures

nly ( Section 3.1 ), which we call simply by SigNet in this section.

e also consider a model learned using genuine signatures and

orgeries ( Section 3.2.2 ), using loss L 2, which we call SigNet-F . For

he experiments with a linear SVM, we used the model learned
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Table 6 

Detailed performance of the WD classifiers on the GPDS-160 and GPDS-300 datasets (errors and standard deviations in %). 

Dataset Samples per user Classifier FRR FAR_random FAR_skilled EER globalthreshold EER userthresholds meanAUC 

GPDS-160 5 SVM (Linear) 9.09 ( ± 0.65) 0.01 ( ± 0.03) 5.75 ( ± 0.12) 7.30 ( ± 0.35) 3.52 ( ± 0.28) 0.9880 ( ± 0.0013) 

SVM (RBF) 5.16 ( ± 0.41) 0.06 ( ± 0.04) 5.17 ( ± 0.17) 5.15 ( ± 0.22) 2.41 ( ± 0.12) 0.9924 ( ± 0.0011) 

12 SVM (Linear) 6.39 ( ± 0.67) 0.01 ( ± 0.02) 3.96 ( ± 0.18) 5.15 ( ± 0.28) 2.60 ( ± 0.39) 0.9922 ( ± 0.0010) 

SVM (RBF) 3.59 ( ± 0.23) 0.02 ( ± 0.03) 3.66 ( ± 0.15) 3.61 ( ± 0.07) 1.72 ( ± 0.15) 0.9952 ( ± 0.0 0 06) 

GPDS-300 5 SVM (Linear) 9.28 ( ± 0.36) 0.01 ( ± 0.02) 8.18 ( ± 0.23) 8.68 ( ± 0.22) 4.84 ( ± 0.26) 0.9792 ( ± 0.0016) 

SVM (RBF) 6.03 ( ± 0.45) 0.04 ( ± 0.04) 4.68 ( ± 0.18) 5.25 ( ± 0.15) 2.42 ( ± 0.24) 0.9923 ( ± 0.0 0 07) 

12 SVM (Linear) 6.80 ( ± 0.31) 0.00 ( ± 0.01) 6.16 ( ± 0.17) 6.44 ( ± 0.17) 3.56 ( ± 0.18) 0.9857 ( ± 0.0010) 

SVM (RBF) 3.94 ( ± 0.29) 0.02 ( ± 0.02) 3.53 ( ± 0.11) 3.74 ( ± 0.15) 1.69 ( ± 0.18) 0.9951 ( ± 0.0 0 04) 

Table 7 

Comparison with state-of-the art on the GPDS dataset (errors in %). 

Reference Dataset #samples Features EER 

per user 

Hu and Chen [5] GPDS-150 10 LBP, GLCM, HOG 7.66 

Guerbai et al. [40] GPDS-160 12 Curvelet transform 15.07 

Serdouk et al. [41] GPDS-100 16 GLBP, LRF 12.52 

Yilmaz [4] GPDS-160 5 LBP, HOG, SIFT 7.98 

Yilmaz [4] GPDS-160 12 LBP, HOG, SIFT 6.97 

Soleimani et al. [20] GPDS-300 10 LBP 20.94 

Present Work GPDS-160 5 SigNet 3.23 ( ± 0.36) 

Present Work GPDS-160 12 SigNet 2.63 ( ± 0.36) 

Present Work GPDS-300 5 SigNet 3.92 ( ± 0.18) 

Present Work GPDS-300 12 SigNet 3.15 ( ± 0.18) 

Present Work GPDS-160 5 SigNet-F 2.41 ( ± 0.12) 

Present Work GPDS-160 12 SigNet-F 1.72 ( ± 0.15) 

Present Work GPDS-300 5 SigNet-F 2.42 ( ± 0.24) 

Present Work GPDS-300 12 SigNet-F 1.69 ( ± 0.18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j  

e  

e

 

G  

p  

s  

i  

s  

o  

n  

t

5

 

t  

w  

t  

B

 

p  

I  

t  

g  

p  

d  

t  

f  

b  

s  

o  

w  

O  

B  

m  

f  
with λ = 0 . 95 , while for the experiments with the SVM with the

RBF kernel, we used the model learned with λ = 0 . 999 . 

5.2.1. Experiments on GPDS-160 and GPDS-300 

For these experiments, we used the models SigNet and SigNet-

F to extract features of the exploitation set (GPDS-160 and GPDS-

300), and trained Writer-Dependent classifiers. To report the False

Rejection Rate and False Acceptance Rates, we used the validation

set to find the optimum global threshold (the threshold that ob-

tained EER globalthreshold on the validation set V v ) as a global thresh-

old for all users. In this work, we do not explore techniques for

setting user-specific thresholds, but simply report EER userthresholds ,

which is the equal error rate obtained by using the optimal deci-

sion thresholds for each user. 

Table 6 lists the detailed results on the GPDS-160 and GPDS-

300 datasets, for experiments using SigNet-F. We notice that the

using only 5 samples per user already achieves a good average

performance on these datasets, showing that the proposed strat-

egy works well with low number of samples per user. We also

note that the performance using user-specific thresholds is much

better than using a single global threshold (1.72% vs 3.61%) in the

GPDS-160 dataset, which is consistent with previous findings that

the definition of user-specific thresholds is key in obtaining a good

performance. 

We notice that the performance using a linear classifier (Linear

SVM) is already good, which is interesting from a practical per-

spective for a large-scale deployment. Since the CNN model is the

same for all users, adding new users to the system requires only

training the WD classifier. For a linear classifier, this requires only

one weight per dimension (plus a bias term), adding to 2049 dou-

bles to be stored (16KB per user). For the SVM with RBF kernel,

the storage requirements for each user depends on the number of

support vectors. In the GPDS-300 dataset, in average the classifiers

used 75 support vectors. Since the set of random forgeries is the

same for all users, most of these support vectors will be shared

among different users. On the other hand, we noticed that the ma-
ority of genuine signatures were selected as support vectors (as

xpected) - in average 10.3 genuine signatures, when using 12 ref-

rences for training. 

Table 7 compares our results with the state-of-the-art on the

PDS dataset. We observed a large improvement in verification

erformance, obtaining 1.72% EER on GPDS-160, compared to a

tate-of-the-art of 6.97%, both using 12 samples per user for train-

ng. We also note that this result is obtained with a single clas-

ifier, while the best results in the state-of-the-art use ensembles

f many classifiers. As in the experiments in the validation set, we

otice an improvement in performance using SigNet-F to extract

he features compared to using SigNet. 

.2.2. Generalizing to other datasets 

We now consider the generalization performance of the fea-

ures learned in GPDS to other datasets. We use the same net-

orks, namely SigNet and SigNet-F, for extracting features and

raining Writer-Dependent classifiers on MCYT, CEDAR and the

razilian PUC-PR datasets. 

Tables 8–10 present the comparison with the state-of-the-art

erformance on MCYT, CEDAR and Brazilian PUC-PR, respectively.

n all datasets we notice improvement in performance compared to

he state-of-the-art, suggesting that the features learned on GPDS

eneralize well to signatures from other datasets (with different

rotocols for signature acquisition, created with different users in

ifferent countries). We also note that other methods proposed in

he literature often present better performance only in one dataset,

or instance, Guerbai et al. [40] obtained good results on CEDAR,

ut poor results on GPDS; Soleimani et al. [20] obtained good re-

ults on MCYT, but not on GPDS. The proposed method, however,

btained state-of-the-art performance in all datasets. For MCYT

e obtained EER of 2.87% compared to 6.44% in the literature.

n CEDAR, we obtained EER of 4.63%, compared to 5.6%. For the

razilian PUC-PR dataset, we notice an improvement in perfor-

ance both in terms of average error rate (considering all types of

orgery), and the average error rate comparing only genuine signa-



L.G. Hafemann et al. / Pattern Recognition 70 (2017) 163–176 173 

Table 8 

Comparison with the state-of-the-art in MCYT 

Reference # Samples Features EER 

Gilperez et al. [42] 5 Contours (chi squared distance) 10.18 

Gilperez et al. [42] 10 Contours (chi squared distance) 6.44 

Wen et al. [43] 5 RPF (HMM) 15.02 

Vargas et al. [44] 5 LBP (SVM) 11.9 

Vargas et al. [44] 10 LBP (SVM) 7.08 

Ooi et al [45] 5 DRT + PCA (PNN) 13.86 

Ooi et al [45] 10 DRT + PCA (PNN) 9.87 

Soleimani et al. [20] 5 HOG (DMML) 13.44 

Soleimani et al. [20] 10 HOG (DMML) 9.86 

Proposed 5 SigNet (SVM) 3.58 ( ± 0.54) 

Proposed 10 SigNet (SVM) 2.87 ( ± 0.42) 

Proposed 5 SigNet-F (SVM) 3.70 ( ± 0.79) 

Proposed 10 SigNet-F (SVM) 3.00 ( ± 0.56) 

Table 9 

Comparison with the state-of-the-art in CEDAR. 

Reference # Samples Features AER/EER 

Chen and Srihari [46] 16 Graph Matching 7.9 

Kumar et al. [47] 1 morphology (SVM) 11.81 

Kumar et al. [48] 1 Surroundness (NN) 8.33 

Bharathi and Shekar [49] 12 Chain code (SVM) 7.84 

Guerbai et al. [40] 4 Curvelet transform (OC-SVM) 8.7 

Guerbai et al. [40] 8 Curvelet transform (OC-SVM) 7.83 

Guerbai et al. [40] 12 Curvelet transform (OC-SVM) 5.6 

Proposed 4 SigNet (SVM) 5.87 ( ± 0.73) 

Proposed 8 SigNet (SVM) 5.03 ( ± 0.75) 

Proposed 12 SigNet (SVM) 4.76 ( ± 0.36) 

Proposed 4 SigNet-F (SVM) 5.92 ( ± 0.48) 

Proposed 8 SigNet-F (SVM) 4.77 ( ± 0.76) 

Proposed 12 SigNet-F (SVM) 4.63 ( ± 0.42) 

Table 10 

Comparison with the state-of-the-art on the Brazilian PUC-PR dataset (errors in %). 

Reference #samples Features FRR FAR random FAR simple FAR skilled AER AER genuine+skilled EER genuine+skilled 

per user 

Bertolini et al. [8] 15 Graphometric 10.16 3.16 2.8 6.48 5.65 8.32 –

Batista et al. [50] 30 Pixel density 7.5 0.33 0.5 13.5 5.46 10.5 –

Rivard et al. [6] 15 ESC + DPDF 11 0 0.19 11.15 5.59 11.08 –

Eskander et al. [7] 30 ESC + DPDF 7.83 0.02 0.17 13.5 5.38 10.67 –

Present Work 5 SigNet 4.63 ( ± 0.55) 0.00 ( ± 0.00) 0.35 ( ± 0.20) 7.17 ( ± 0.51) 3.04 ( ± 0.17) 5.90 ( ± 0.32) 2.92 ( ± 0.44) 

Present Work 15 SigNet 1.22 ( ± 0.63) 0.02 ( ± 0.05) 0.43 ( ± 0.09) 10.70 ( ± 0.39) 3.09 ( ± 0.20) 5.96 ( ± 0.40) 2.07 ( ± 0.63) 

Present Work 30 SigNet 0.23 ( ± 0.18) 0.02 ( ± 0.05) 0.67 ( ± 0.08) 12.62 ( ± 0.22) 3.38 ( ± 0.06) 6.42 ( ± 0.13) 2.01 ( ± 0.43) 

Present Work 5 SigNet-F 17.17 ( ± 0.68) 0.00 ( ± 0.00) 0.03 ( ± 0.07) 2.72 ( ± 0.37) 4.98 ( ± 0.16) 9.94 ( ± 0.31) 5.11 ( ± 0.89) 

Present Work 15 SigNet-F 9.25 ( ± 0.88) 0.00 ( ± 0.00) 0.25 ( ± 0.09) 6.55 ( ± 0.37) 4.01 ( ± 0.24) 7.90 ( ± 0.46) 4.03 ( ± 0.59) 

Present Work 30 SigNet-F 5.47 ( ± 0.46) 0.00 ( ± 0.00) 0.38 ( ± 0.11) 8.80 ( ± 0.44) 3.66 ( ± 0.12) 7.13 ( ± 0.25) 3.44 ( ± 0.37) 
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ures and skilled forgeries. It is worth noting that in these experi-

ents we used a global threshold = 0 to report FRR and FAR, since

e did not have a validation set to learn the appropriate global

hreshold, hence the large differences between FRR and FAR skilled . 

We also noticed that the formulation that learned features us-

ng skilled forgeries from the GPDS dataset did not perform better

n all cases. For MCYT and CEDAR the performance between SigNet

nd SigNet-F was not significantly different, whereas for the Brazil-

an PUC-PR dataset it obtained worse performance than SigNet.

his suggests that the representation may have specialized to traits

resent in the forgeries made for the GPDS dataset, which depend

n the acquisition protocol, such as if only one type of writing in-

trument was used, and the directions given to participants to cre-

te the forgeries. We note, however, that 1920 people participated

n creating forgeries for the GPDS dataset [9] . 

Finally, considering that the MCYT dataset contains both an Of-

ine dataset (with static signature images, as used in this paper),

nd an Online version (with dynamic information of the strokes), it

s possible to compare the two approaches to the problem. In the

iterature, online signature verification systems empirically demon-
 a  
trate better performance than offline systems [2] , which is of-

en attributed to the lack of dynamic information of the signature

riting process in the offline signatures. The gains in performance

sing the method proposed in this paper reduce the gap between

he two approaches. Using offline signatures, we obtained 2.87%

ER userthresholds using 10 samples per user. Using online data, the

est results reported in the literature achieve 2.85% EER [51] and

.36% EER [52] , also using 10 samples per user. We note, how-

ver, that in our work we do not address the issue of selecting

ser-specific thresholds (or performing user-specific score normal-

zation), which is left as future work. In constrast, both [51] and

52] use score normalization, followed by a single global thresh-

ld, so the comparison of these papers to our work is not direct. 

.2.3. Varying the number of genuine samples available for training 

Fig. 6 shows the improvement in performance on the four

atasets as we obtain more samples per user for training. Each

oint represents the performance of the WD classifiers trained

ith a given number of genuine samples (mean and standard devi-

tion across 10 replications). As in previous work [7,10] , we notice
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Fig. 6. Average performance of the Writer-Dependent classifiers for each dataset, as we vary the number of genuine signatures (per user) available for training. 
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diminishing returns as we collect more samples for each user. It is

worth noting that in the GPDS dataset, even with a single sample

per user we obtain 5.74% EER, which surpasses the state-of-the-art

system that used 12 samples per user, showing that good feature

representations are indeed critical to obtain good performance. 

6. Conclusion 

In this work, we presented different formulations for learning

representations for offline signature verification. We showed that

features learned in a writer-independent way can be very effec-

tive for signature verification, improving performance on the task,

compared to the methods that rely on hand-engineered features. 

In particular, we showed a formulation of the problem to take

advantage of having forgery data from a subset of users, so that

the learned features perform better in distinguishing forgeries for

unseen users. With this formulation, we obtain an EER or 1.72% in

the GPDS-160 dataset, compared to 6.97% reported in the litera-

ture. The visual analysis of the feature space shows that the fea-

tures generalize well to unseen users, by separating genuine signa-

tures and forgeries in different regions of the representation space.

We also noted very good performance of this strategy even when

few samples per user are available. For instance, with 5 samples

per user, we obtained 2.41% EER on this dataset. 

The experiments with the MCYT, CEDAR and Brazilian PUC-

PR datasets demonstrate that the features learned in this Writer-

Independent format not only generalize to different users of the

GPDS dataset, but also to users from other datasets, surpassing

the state-of-the-art performance on all three. We noticed, how-
ver, that the model learned with forgeries in the GPDS dataset

id not perform better in all cases, suggesting that the character-

stics of forgeries in the datasets may be different - this will be

urther studied in future work. Another promising research direc-

ion is the combination of online and offline signature verification

ethods. This can improve robustness of the system since it be-

omes harder to create a forgery that is misclassified by both clas-

ifiers, that is, a forgery having similar strokes in terms of speed of

xecution, and at the same time that is visually similar to a gen-

ine signature from the user. 
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