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This paper describes a framework for Dynamic Classifier Selection (DCS) whose novelty resides in its use
of features that address the difficulty posed by the classification problem in terms of orienting both pool
generation and classifier selection. The classification difficulty is described by meta-features estimated
from problem data using complexity measures. Firstly, these features are used to drive the classifier pool
generation expecting a better coverage of the problem space, and then, a dynamic classifier selection
based on similar features estimates the ability of the classifiers to deal with the test instance. The ratio-
nale here is to dynamically select a classifier trained on a subproblem (training subset) having a similar
level of difficulty as that observed in the neighborhood of the test instance defined in a validation set. A
robust experimental protocol based on 30 datasets, and considering 20 replications, has confirmed that
a better understanding of the classification problem difficulty may positively impact the performance of
a DCS. For the pool generation method, it was observed that in 126 of 180 experiments (70.0%) adopting
the proposed pool generator allowed an improvement of the accuracy of the evaluated DCS methods. In
addition, the main results from the proposed framework, in which pool generation and classifier selection
are both based on problem difficulty features, are very promising. In 165 of 180 experiments (91.6%), it
was also observed that the proposed DCS framework based on the problem difficulty achieved a better

classification accuracy when compared to 6 well known DCS methods in the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many researchers have focused on Dynamic Classifier Selec-
tion (DCS), and have produced interesting solutions. The main dif-
ference between the researchers’ approaches lies in the criterion
adopted in selecting the classifier(s) from the pool. Usually, this se-
lection is based on the concept of classifier competence, which is
most commonly estimated over a region of the feature space de-
fined as the neighborhood of the test pattern on a validation set. In
[1], a proposed taxonomy organizes the DCS methods taking into
account the criterion applied to compute the classifiers’ compe-
tence. In their view, we may organize them in two main groups:
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methods based on the sole competence of the classifiers in the
pool, and methods in which the interaction between the classifiers
is considered. Regardless of the large number of different criteria
available to measure the competence of the classifiers in the pool,
one common thread running through them is the use of accuracy-
based competence analysis, which is carried out over the feature
or decision space.

In such a context, it is known that the pool in which the clas-
sifier selection is executed also plays an important role in the DCS
performance. However, little effort has been dedicated to investi-
gating new strategies to create a pool well-suited for DCS-based
methods. Diversity is always expected irrespective of whether a
homogeneous or a heterogeneous pool is used. The most popular
techniques for pool generation are Bagging [2], Boosting [3] and
Random Subspaces (RSS) [4]. With the exception of Boosting, in
which future weak classifiers focus more on the examples that pre-
vious weak classifiers misclassified, these techniques usually ma-
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nipulate the data for training weak and diverse classifiers in a ran-
dom fashion.

To the best of our knowledge, there is no DCS method oriented
by the classification problem properties. A DCS in which the pool is
generated to provide a better compromise with the criterion used
for classifier selection. More than simply classifier accuracy-based
competence, we are talking here about the ability of each classi-
fier in the pool to deal with a specific kind of problem. This idea is
based on works that attempt to find the best learning method for a
specific classification problem, taking into account its difficulty [6-
8]. Similarly, if we consider the space of a classification problem as
commonly composed of subproblems with different levels of diffi-
culty, the best case scenario would be to have a well-suited classi-
fier for each subproblem. Thus, the most promising classifier for a
given test instance could be the one trained on a similar subprob-
lem, i.e., a subproblem with a similar level of difficulty as that esti-
mated in the neighborhood of the test instance. The neighborhood
of the test instance could be used to specify the kind of subprob-
lem to which it belongs. It would appear reasonable to believe that
a classifier trained on a similar subproblem is able to deal with the
given test instance. Nevertheless, in such a DCS-based method, the
pool generated must be able to provide a better coverage of the
problem complexity space, but the methods available in the liter-
ature are not suitable for creating classifiers covering different re-
gions of this space.

To represent the classification problem difficulty, we may ex-
tract features from the problem data using complexity measures.
It is worth noting that the complexity, or difficulty, here involves
more than just the quantities of instances, classes and features. It
considers intrinsic characteristics of a classification problem, which
can be obtained by means of complexity measures applied on the
problem data. For instance, there are measures of difficulty based
on overlap between classes, on the behavior of the edges between
classes, on the class spatial distribution, and so on.

Our first hypothesis is that DCS can be done based on the clas-
sification problem difficulty, i.e., by selecting a classifier trained on
a subproblem showing a similar level of difficulty as that of the
neighborhood of the test instance. In our previous work [9], we
observed that the adoption of data complexity features in the pro-
cess of evaluating the skill of each classifier, given a test instance,
may contribute to improve the performance of the classifier selec-
tion process. Deviating from that work, here we propose a com-
plete DCS framework to investigate the impact of using problem
complexity information not only in the selection process, but also
for pool generation. Thus, an important hypothesis is evaluated,
which is related to a better compromise between pool generation
and classifier selection in a DCS method. In fact, it is expected
that a pool of classifiers covering the problem complexity space
adequately, i.e., that is trained on data subsets that are diverse in
terms of level of difficulty, may provide better classification perfor-
mance for a DCS, mainly when the selection of classifiers is also
based on the problem difficulty.

In summary, more than just proposing a new framework for
DCS, we intend to answer the following research questions: (a)
Could a pool generated considering the difficulty of the classifica-
tion problem provide gains in terms of classification performance
by covering the problem space better?; (b) What is the impact, in
terms of accuracy, of using the classification problem difficulty to
drive both pool generation and classifier selection of a DCS-based
method? We answered these questions by means of an experi-
mental protocol composed of 30 datasets of classification prob-
lems with different levels of difficulty. We compared the results
obtained with 6 DCS-based methods of the literature. The exper-
iments showed that the strategy of generating and selecting clas-
sifiers based on the problem difficulty is very promising. The pro-
posed DCS provides a better compromise between pool generation
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Fig. 1. Concept of competence estimated in a local region of feature space, defined
as the neighborhood of the test instance in a validation set.

and classifier selection processes. In addition, similar experiments
have shown that the proposed pool generation has a positive im-
pact on the performance of DCS methods.

The remaining of this manuscript is divided into 6 sections.
The Section 2 presents the main related works. Section 3 summa-
rizes some basic concepts and definitions needed to understand
the proposed DCS framework. Section 4 describes the proposed
framework, detailing its generation and selection phases, while
Section 5 presents the experimental protocol and corresponding
results. Finally, Section 6 presents the conclusion and future work
directions.

2. Related works

Various methods for dynamic selection of classifiers are avail-
able in the literature. Basically, the difference between them is at
the level of the criterion used to define the competence of the
classifiers for each test instance in the selection process. Fig. 1 il-
lustrates the concept of competence estimation. A local region of
the feature space, usually represented by the neighborhood of the
test instance in a validation set, is used to estimate the criterion
adopted.

It is common to find competence measures based on accuracy
(overall or class-based) [10,11], ranking of classifiers [12], proba-
bilistic measures [11,13], behavior of the classifiers computed on
their output profiles [14], Oracle-based criteria [15,16], etc. In ad-
dition, some measures take into account group-based information
such as ambiguity [19], diversity [17,18], or data handling theory
like in [20].

We selected six of the preceding important contributions to the
literature to implement in our experimental protocol, with 4 be-
ing single classifier selection methods, and 2 being ensemble se-
lection methods. From [10], we have implemented 2 methods, the
Overall Local Accuracy (OLA) and the Local Class Accuracy (LCA).
The first calculates the classifier competence as the percentage of
the correct recognition of the neighbors of the test instance in the
feature space, while the second computes it as the percentage of
correct classifications within the test instance neighborhood, but
considering only those examples where the classifier has given the
same class as the one it gives for the test instance. The other 2 sin-
gle classifier selection methods were implemented from [13], the A
Priori (APRI) and A Posteriori (APOS) methods. In the APRI method,
a classifier is selected based on its class posterior probability esti-
mated in the neighborhood of the test instance. This probability is
weighted by the Euclidian distance between the test instance and
each neighbor. Unlike in the APRI, the APOS method takes into ac-
count the class assigned by the classifier to the test instance.
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The 2 ensemble selection methods are based on [16], and
are named KNORA-Eliminate (KE) and KNORA-Union (KU). Both
of them (K-NearestOracles) are methods that have produced very
promising results by considering the neighborhood of the test pat-
tern in a validation set as an “Oracle” which offer advice regarding
the most promising classifiers to be selected. In fact, the classifiers
that recognize the k-nearest neighbors are selected according to
four different strategies. The two most promising in the literature
are KE and KU. In the KE strategy, a classifier is selected to be part
of the ensemble only if it can recognize all the neighbors of the
test instance, while in the KU strategy, a classifier is selected if it
recognizes at least one neighbor of the test instance. It should be
noted that all these methods are described in more detail in [1].

Pool generation plays an important role in a DCS-based method,
and diversity is always expected irrespective of whether the pool
is homogeneous or heterogeneous. A homogeneous pool is built by
using the same inducer, but its elements are trained on different
subsets of data. The most popular techniques for generating such
pools are Bagging [2], Boosting [3] and Random Subspaces (RSS)
[4]. The first consists in randomly, and with replacement, choosing
instances from the training set to form each data subset. The sec-
ond one adopts a similar strategy, but considers weights for each
instance at the time of the draw. The idea is to form stronger sets
by defining higher weights for the most difficult instances. In the
RSS technique, all the instances from the training dataset are kept,
but only a subset of features are randomly selected to train each
classifier to compose the pool. For the heterogeneous techniques,
the idea is essentially to create classifiers supported by different
concepts by varying the inducer or even its parameters.

The novelty of the proposed DCS framework lies in its consid-
eration of information related to the problem difficulty, not only at
the selection phase, but also to generate the pool of classifiers. In
fact, since we expect to find a similar subproblem to use the cor-
responding classifier for the test instance, it could be interesting to
have a pool characterized by problem difficulty diversity; in other
words, generating classifiers trained on subproblems representing
different levels of difficulty. The proposed framework shares the
divide-and-conquer principle already explored by researchers ded-
icated to mixture of experts, such as the authors in [5]. In their
work, the idea was to divide the problem space between the ex-
perts represented by few networks, which are supervised by a gat-
ing network that decides how to combine them for a given test in-
stance. The subtasks in their work, here are represented using dif-
ferent data subsets organized taking into account complexity fea-
tures, while the competence of an expert is determined by com-
bining data complexity and accuracy based features. The next sec-
tion presents some important concepts and definitions related to
the main ideas that support the proposed framework.

3. Basic concepts and definitions

To estimate the level of difficulty of a classification problem,
we may apply measures of complexity direct on the problem data,
independent of the classifier choice. For that, we need only a set
of training data consisting of points in a d-dimensional real space
RY, in which each instance is associated with a class label. Using
this training set, we can compute complexity measures to define
the problem difficulty. Some practical measures of data complexity
with regard to classification were introduced in [6], and extended
in [7,21]. They have been used for classifier evaluation [22], and re-
cently, for meta-learning [24]. The complexity measures were clas-
sified into three categories in [6,7], as follows: (a) classes over-
lapping; (b) classes separability; and (c) classes geometry, topol-
ogy and density. We have pre-selected one from each category to
describe the problem difficulty in the proposed framework. The
reason was to use low correlated measures which are supported

by different concepts. By means of preliminary experiments con-
ducted on 13 UCI databases, we estimated the correlation among
the 14 measures implemented in the DCoL library [25]. The three
measures described in this section presented low Pearson correla-
tion among them, suggesting that they may work in a complemen-
tary fashion.

e F1 (Fisher’s Discriminant Ratio): this measure belongs to the
first category, and it measures how separable are two classes
considering a particular feature. Let us to consider a given fea-
ture space, and that wq, o, 01, and o, are the means and
standard deviations for classes 1 and 2, respectively. F1 is com-
puted for each feature as denoted in Eq. (1). The final value for
F1 corresponds to the largest over the whole set of features.
The larger is the F1 value, the easier is to separate the classes.

(1 — p2)’
Fl=- s (1)

N2 (the ratio of intra/inter class nearest neighbor distance):
representing the second category, this measure estimates the
separability of two classes taking into account an analyse of the
border between them. To this end, it considers the distance of
each sample of the problem to its nearest neighbor inside and
outside of the same class. N2 can be computed as denoted by
Eq. (2), in which 6 (N7 (x;), x;) corresponds to the Euclidean dis-
tance between the sample i and its nearest neighbor inside the
same class, S(NT (%;),x;) is the distance from the sample i to
the nearest neighbor of different class, and n is the number of
samples. The smaller is the N2 value, the easier is to separate
the classes.

Sy S(NT (X0, X;)
N4 (the nonlinearity of the one-nearest neighbor classifier): as
a representative of the third category was selected the N4 mea-
sure. It corresponds to the error rate of the 1NN classifier on a
test set created by the linear interpolation between randomly
drawn pairs of samples from the same class. The smaller is the
N4 value, the easier is the problem.

(2)

Considering the preceding concepts, we can now define the
problem complexity space. Given a standard training set D, and
a strategy to generate M new training subsets DS;, with each one
containing just a percentage of samples obtained from D, by sam-
pling uniformly and with replacement, for each DS;, we can esti-
mate the difficulty by means of complexity measures. Fig. 2 illus-
trates the complexity space of a given classification problem rep-
resented by two complexity measures (F1 and N2). Each element
in that space corresponds to a subproblem (data subset, DS;) with
its own level of difficulty. It should be mentioned that the strat-
egy used to generate the data subsets from D plays an important
role in the problem space representation. For a clearer explanation,
consider the neighborhood of a given test instance projected in the
same space to find a similar subproblem. In the example of Fig. 2,
the most similar subproblem is that represented by DS;. We expect
that a classifier trained on DS;, may present the necessary skills to
deal with the test instance t.

4. Proposed framework

Fig. 3 presents an overview of the proposed DCS framework.
The training set of a given classification problem is the input
of a sampling process that initially generates M data subsets
(DS}, DS}, ....DS})). Each DSP corresponds to the ith individual of
the pth population of a genetic algorithm (GA) which is oriented
by accuracy and features related to the classification problem diffi-
culty estimated using complexity measures. The idea is to organize
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Fig. 2. Problem complexity space using complexity measures F1 and N2. Each point
in the space is a training data subset (DS;) of a given problem.

subsets of data with different levels of difficulty to train the clas-
sifiers to compose the pool.

The output of the first stage is the pool of classifiers
(CN,CY,....Cl). the data subset used to train each member of the
pool (DSY, DS, ..., DSN), and their corresponding complexity sig-
natures (sigDSY, sigDSY, ..., sigDS}); in other words, a set of fea-
tures describing the difficulty of each data subset DSf’.

During the classifier selection stage, given a test instance t, a
vector containing three meta-features (fy;, f>;, f3;) is estimated con-
sidering the complexity signature (sigDSf’ ) of data subset DSf’ used
for training classifier C}" and the neighborhood of ¢ in a valida-
tion set. The similarity between the complexity of the test instance
neighborhood and the complexity signature of the training subset
of each classifier is combined with accuracy information to esti-
mate the competence of each classifier. A detailed description of
the pool generation is presented in Section 4.1, while the particu-
larities of the selection process are described in Section 4.2.

4.1. Pool generation
A Genetic Algorithm (GA) is used in order to evolve an initial

pool of classifiers, taking into account data complexity features es-
timated on their training subsets, combined with their correspond-

ing accuracies. The idea is inspired on the works [21,22], where a
GA successfully allowed the generation of data subsets for a clas-
sification problem covering the problem complexity space better.
However, here, we use the GA to evolve subsets of data from the
original training set. The fitness function uses the difference in
terms of difficulty among the generated subsets, combined with
the accuracy of the corresponding trained classifiers. The base in-
ducer is a parameter of the proposed method. Fig. 4 shows the
chromosome definition of the GA developed.

Each training subset (DSfJ ) is an individual within the pth pop-
ulation. In terms of individual genotype, the genes of the chromo-
somes correspond to the instances used for training each classi-
fier. The values of the F1 and N2 complexity measures, the accu-
racy (Acc) of the classifier trained on (DSip), the average dispersion
(Disp) estimated in a pairwise manner between DSI?J and all other
subsets in the population, plus the fitness values, constitute the in-
dividual phenotype.

As can be seen, we used just two of the three complexity mea-
sures pre-selected for our framework. This is because after analyz-
ing different combinations of these three measures, we observed
the best results for pool generation when only F1 and N2 were
considered. In fact, it can be explained since the measure N4 uses
the error rate of the 1NN classifier to estimate the problem com-
plexity, and our fitness function already has a component based
on accuracy as shown in Eq. (4). Thus, in the current version of
the proposed GA method, each individual difficulty or complexity
is estimated based on the F1 (Maximum Fisher’s discriminant ra-
tio) and N2 (the ratio of average intra / inter class nearest neighbor
distance) metrics. They are used to compute the average disper-
sion of each individual in the population (DispDS'p ), as denoted by

Eq. (3).

M
Yimt v ket Kige — Xj1)?

M1 3)

Disppge =
1

where M corresponds to the number of classifiers in the pool, nc
indicates the number of complexity measures adopted in the pro-
cess, while x; ; and x; ; correspond to the value of the kth com-
plexity measure for the elements i and j, respectively.

The dispersion in terms of complexity corresponds to the av-
erage distance of the individuals in the population (training sub-
sets). The idea is to have training subsets better distributed over
the problem complexity space. The accuracy Accp of each classifier

1
trained on the generated data subsets is combined with the corre-
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Fig. 3. An overview of the proposed DCS framework, presenting the pool generation and classifier selection stages.
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sponding dispersion value Disp,.p, with a validation set used for
1

this purpose. Thus, a classifier having higher accuracy and trained
on data subset farther from concentration areas in the complexity
space will have a greater fitness value. Therefore, our method fa-
vors those individuals that are accurate, but exploring the problem
complexity space, as defined in the fitness denoted by the Eq. (4).

Fitpsp = Accer + Disppg (4)

. ’ . . .
where DISpD - corresponds to the normalized metric of Disp,¢p us-
i 1

ing the MinMax method, as denoted in Eq. (5).

DiSst_p - Dispmin

Disp;Jsip = (5)

Dispmax - Dispmin

The steps of the GA process are described in the Algorithm 1.
In the first GA generation, the population is composed of M in-
dividuals (DS}, DS}, .., DS},), corresponding to bags of data for
training potential classifiers, which can be generated using any
sampling technique applied in the initial problem training dataset.
After determining the fitness of each individual (performed on
lines 12-14 of the Algorithm 1) an elitism process is conducted,
preventing the best elements might change during crossover and
mutation phases (conducted on lines 16-19). These elements are
taken directly to the next generation, after which the crossover
step is performed (lines 21-23). The selection process is carried
out at random (roulette), and as a result, the higher the fitness of
the elements, the greater their chances of being chosen to prop-
agate their genes to the next generations. Such a selection strat-
egy was defined after we evaluate three different selection strate-
gies (roulette wheel, rank, and tournament). The selection based
on roulette wheel has shown to be more efficient in terms of early
generation and time processing. Similar behavior has been ob-
served in [23], where the authors compare these selection strate-
gies for timetabling problem. A two-point crossover was adopted,
which are randomly selected. This is an attempt to be more aggres-
sive than consider just one point. However, this choice was based
on the evaluation of three different strategies: one, two and three-
point crossover. The configuration based on two points has shown
the best results. The idea is that instances (samples of the datasets)

should be exchanged between the individuals, but however, main-
taining the balance between classes. To ensure that there is no
change in the proportions, the instances are sorted by class, and
so when the exchange of “segments” between two parents occurs,
there will be no change in the number of instances of each group.
In our implementation, despite the randomness in the two-point
selection, we impose a restriction requiring that each crossover
point be positioned within different classes. Thus, the process is
more aggressive, ensuring that elements from different classes are
changed. This process is illustrated in Fig. 5, where each number
corresponds to an instance that composes the individuals i and j.
Different values indicates different classes.

After the new elements are generated through the crossover,
they are subjected to a mutation process (line 24 of the algorithm).
In our scenario, each instance corresponds to a gene. When it is
submitted to mutation, this instance is replaced by another one of
the same class, thus maintaining the class balance. This process is
represented in Fig. 6.

The choice by the new gene is made randomly. Initially, a ran-
dom individual j, different from i, is selected and, within this, a
random instance that belongs to the same class is chosen. The last
phase consists of the removal of duplicate instances (lines 27-29
of the algorithm). When a duplicate is present, it is replaced, per-
forming an approach similar to mutation. The process is repeated
until each data set has no further duplicates. The main output of
this DCS phase is the pool of generated classifiers. However, we
also have the subset of data used for training each classifier, as
well as the complexity signature of each data subset. These addi-
tional outputs are described in detail in the next section, since they
are used in the proposed dynamic classifier selection.

4.2. Dynamic classifier selection

Our dynamic selection method, named DSOC (Dynamic Selec-
tion Based on Complexity) combines accuracy with information
related to the classification problem difficulty. The main assump-
tion is that the most promising classifier for the test instance was
trained on a subset of data presenting a similar level of difficulty
as that estimated in the test neighborhood.
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Fig. 7. DSOC - Dynamic Classifier Selection based on Complexity.

The Algorithm 2 presents each step of the DSOC method, while
a complete description is presented in [9]. Here, we emphasize its
main aspects using the Fig. 7 in which is possible to observe the
complete method which is composed of 4 steps (A, B, C, and D).
In the step (A), we define the neighborhoods y and § of the test
instance t in a validation set (Algorithm 2, lines 5 and 6), which
differ in terms of size, L and K, respectively. Then, in the step (B),
sigy, is estimated as the complexity signature of y; based on the
complexity measures F1, N2 and N4 (Algorithm 2, line 7). The sim-
ilarity between sigy, and the complexity signature sigps, of each
training set DS; is used to compute the meta-feature f;; (step C),
which represents the similarity in terms of difficulty between the
neighborhood of t and each training set (DS;) used for learning the
pool of classifiers. Such a similarity is computed considering the
class o predicted by the classifier C;, since all complexity measures
are usually computed in a one-against-all fashion, showing how
difficult is to classify each class of the given problem. The second
meta-feature f,; (step C) considers the distance of t to the centroid

of the predicted class («) in each training set DS;. Since distinct
data subsets with different distributions in the feature space may
present similar complexity values, we have defined an additional
criterion to better describe the complexity of each data subset un-
der analysis, i.e. a criterion to distinguish them. This is the pur-
pose of the meta-feature f,;. Although not defined in the literature
as a measure of complexity, we may consider f,; as a measure to
indicate how “difficult” is for a specific data subset to provide a
classifier suitable to classify the test sample under analysis. Finally,
the meta-feature f3; is computed in the step (C), which is related
to the local class accuracy of each classifier estimated on §; con-
sidering the predicted class («). These meta-features are computed
for each classifier in the pool (Algorithm 2, lines 10-12). In the last
step (D), the computed meta-features are combined (Algorithm 2,
line 14). The best combination strategy was the sum as presented
in Eq. (6}.

Comb_c = (1= fl)+ (1= f5) + fii (6)
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Algorithm 1: Classifier pool generation based on accuracy and
complexity features.

Input: training set Tr; validation set Va; number of classifiers
M; size of bags Ba; size of elitism El; the base inducer
BI
Output: the final pool C of M classifiers; the complexity
signature of all elements in DS; the final M bags DS
1DS={};
2 fori< 1toMdo

3 Generate bag DS,,1 with Ba size based on Tr;
4 | DS=DSuU DS} ;
5 | C!=Train BI on DS! bag;
6 Compute the difficulty signature of DS};
7 end
8 for p < 1 to NumGenerations do
9 DStemp = {};
10 | E={};
1 fori < 1toMdo
12 Calculate the average distance Dispjcp;
13 Compute the accuracy of C,.p on Va;
1 Compute the fitness Fit.p;
1
15 | end
16 fori < 1 to El do
17 Select the i-th best individual DS > E;
18 E=EuU DSI?J ;
19 end
20 while size(DStemp)<(M — El) do
21 Select parents DS,; and DSp;;
22 DSpew1 = two-point crossover of DSp; and DSj5;
23 DSpewz = two-point crossover of DS,; and DS;;
24 Apply mutation on DS;ey1 and DSyepn;
25 Dstemp = Dstemp U DSpew1 U DSpewas
26 end
27 | for each bag DSIP € DStemp do
28 \ Remove duplicated genes;
29 end
30 DS = DStemp UE;
31 fori < 1to M do
32 Cip+1 = Train BI on DSIP+l bag;
33 Compute the complexity signature of DS{’“;
34 | end
35 end

where f]; and fJ, correspond to the normalized f;; and f;,
respectively. They were normalized using the MinMax scaling
(Algorithm 2, line 13). Finally, the best classifier C* is selected as
described in Eq. (7) (Algorithm 2, line 16).

C* = argmax(Comb_c,) (7)

It is important to mention that to define this combination strat-
egy we have evaluated each meta-feature individually, and also the
different possibilities of combining them (using product and sum
rules). The most promising results were achieved when the three
meta-features were combined using sum rule. In addition, we have
also investigated different weights for each meta-feature. However,
the results were not promising.

5. Experiments
The experimental protocol used to evaluate the proposed

framework considers 30 datasets previously used in our research
group [9,30,31]. 28 datasets come from different repositories:

Algorithm 2: DSOC - DS on complexity.

Input: the pool C of M classifiers; training, validation and
testing sets, Tr, Va and Te; and the neighborhood sizes
L and K
Output: C*, the most promising classifier for each testing
sample t in Te
1 for each classifier C; in the pool do

2 Compute the complexity signature sigps, from data subset
DS,-;

3 end

4 for each test t in Te do

5 Find the y; as the L-nearest-neighboors of t in Va;

6 Find the §; as the K-nearest-neighboors of t in Va;

7 Compute the complexity signature of y;;

8 for each classifier C; in the pool do

9 o = G(t);

10 Compute meta-feature fy; using y;, o and sigps;;

1 Compute meta-feature f,; using DS; and «;

12 Compute meta-feature f3; using &; and «;

13 Normalize f;; and f5;;

14 Comp_c, = (1= fi)) + (A = f5) + fais

15 end

16 C* = argmax(Comp_g,);

17 | Use the classifier C* to classify t;

18 end
Table 1
Datasets, their main features and corresponding repositories.
Datasets Repository  # of instances  # of features  # of classes
Adult ucl 690 14 2
Banana PRTools 2000 2 2
Blood udl 748 4 2
CTG ucl 2126 21 3
Diabetes ucl 766 8 2
Ecoli udl 336 7 8
Faults ucl 1941 27 7
German STATLOG 1000 24 2
Glass udl 214 9 6
Haberman ucl 306 3 2
Heart STATLOG 270 13 2
ILPD udl 583 10 2
Image udl 2310 19 7
Ionosphere  UCI 350 34 2
Laryngeall LKC 213 16 2
Laryngeal3 LKC 353 16 3
Lithuanian PRTools 2000 2 2
Liver udl 345 6 2
Magic KEEL 19,020 10 2
Mammo KEEL 830 5 2
Monk KEEL 432 6 2
Phoneme ELENA 5404 5 2
Sonar ucl 208 60 2
Thyroid LKC 692 16 2
Vehicle STATLOG 847 18 4
Vertebral ucl 300 6 2
WBC ucl 569 30 2
WDVG udl 5000 21 3
Weaning LKC 302 17 2
Wine ucl 178 13 3

UCI machine learning repository [26], KEEL (Knowledge Extraction
based on Evolutionary Learning) repository [27], Ludmila Kuncheva
Collection [28], and the STATLOG project [29]. The other 2 datasets
were artificially generated with the Matlab PRTools. These datasets
were selected taking into account classification problems with dif-
ferent levels of difficulty. In addition, we have considered prob-
lems composed of numeric attributes and no missing data. Thus,
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Table 2
Comparison of the proposed GA-based method and the Bagging technique both used as pool generators for 4 different DCS methods (OLA, LCA, APRI
and APOS). The average and corresponding standard deviations of 20 replications with the best results in boldface.

OLA LCA APRI APOS

Dataset Bagging GA Bagging GA Bagging GA Bagging GA

Adult 84.04 (2.87) 84.77 (2.80) 83.26 (2.52) 83.52 (2.87) 84.01 (2.34)  85.73 (2.78)*  83.55(2.60)  85.20 (2.91)*
Banana 85.03 (1.73) 84.87 (1.68) 84.88 (1.78)*  84.68 (1.79) 84.52 (1.64) 84.57 (1.87) 83.82 (1.69) 83.83 (1.76)

Blood 76.12 (0.26) 76.12 (0.26) 75.86 (1.23) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26)

CTG 86.99 (0.89) 86.70 (1.04) 80.94 (0.95) 81.33 (0.82)* 86.45 (1.38) 86.76 (0.76) 86.28 (1.29) 86.30 (0.85)
Diabetes 64.92 (2.85) 65.00 (2.27) 62.37 (2.64) 63.75 (2.89)*  65.00 (2.03) 64.51 (2.46) 64.38 (2.44)  64.41 (2.76)

Ecoli 64.94 (4.74) 62.38 (3.09) 52.56 (5.52) 52.72 (5.91) 64.05 (5.05)  64.46 (4.83) 63.39 (4.00) 62.38 (3.94)

Faults 58.35 (2.31)*  56.82 (2.99) 37.96 (10.5) 38.84 (10.1)* 56.08 (2.15) 55.70 (3.42) 54.63 (2.25)  54.73 (3.66)
German 71.90 (2.35) 7348 (242)*  64.22 (3.31) 65.88 (2.98)  71.74 (2.54) 72.80 (3.08) 69.80 (2.39)  71.52 (2.85)

Glass 53.77 (4.79) 51.89 (7.46) 2415 (9.04) 25.47 (10.2) 4792 (741) 53.11 (6.09) 24.72 (19.5) 30.75 (16.9)

Haberman 73.68 (0.59) 7414 (0.75) 73.62 (0.88) 74.41 (1.74)* 73.82 (0.39) 74.41 (1.35) 73.68 (0.59)  73.29 (3.00)
Heart 78.58 (4.04) 80.37 (4.12) 70.15 (4.58) 72.84 (5.31)* 78.81 (4.02)  80.67 (3.73) 72.24 (8.64)  77.31 (4.10)*
ILPD 69.72 (3.38) 68.62 (2.91) 61.76 (3.67) 63.79 (3.82)*  69.24 (3.22)  70.34 (2.97) 67.52 (4.16) 68.41 (3.68)
Image 42.03 (2.30) 41.25 (2.12) 32.18 (4.11) 32.82 (3.87)*  40.68 (1.82) 41.33 (1.99) 40.29 (2.35) 4142 (2.34)

lonosphere 8091 (3.88) 8148 (456)  69.72 (421) 7210 (414)  80.63 (472) 8072 (414)  77.84 (462)  81.02 (4.36)
Laryngeall  80.09 (4.40)  78.87 (5.08) 7094 (624) 7349 (5.04) 8113 (557) 80.00 (3.89) 7811 (6.92)  77.08 (5.11)
Laryngeal3  66.02 (419) 6722 (490) 5534 (5.77)  58.81 (625)  66.02 (470) 6614 (3.23)  62.84 (618)  63.92 (4.43)
Lithuanian  68.30 (249)  67.06 (3.19)  70.38 (1.84)  69.03 (240) 6706 (2.42) 6749 (321) 6450 (3.36)  65.15 (3.16)

Liver 60.99 (3.63) 60.17 (3.14) 50.06 (5.30) 51.34 (5.15) 58.90 (5.51)  57.38 (4.96) 55.17 (5.47) 54.24 (8.20)
Magic 79.22 (0.70) 79.00 (0.56) 78.17 (0.55) 78.23 (0.60) 78.73 (0.81) 78.78 (0.53) 78.59 (0.83)  78.53 (0.63)
Mammo 79.78 (2.29) 80.56 (2.96) 76.23 (3.11) 77.97 (3.08)* 80.10 (3.17) 80.51 (3.44) 79.08 (2.74) 79.15 (3.44)
Monk 81.99 (3.56) 82.59 (3.22) 69.26 (3.98) 72.73 (3.81)* 79.58 (4.07)  81.48 (4.86)* 66.76 (12.8) 68.19 (14.5)
Phoneme 7718 (1.25) 77.22 (0.82) 76.54 (0.96) 76.77 (0.86) 76.17 (1.47) 7714 (0.98)* 76.08 (1.55) 77.05 (0.96)*
Sonar 61.73 (6.32) 60.29 (5.38) 46.83 (7.28) 45.96 (5.73) 58.65 (6.10) 61.44 (5.94) 41.63 (22.5) 45.96 (20.8)
Thyroid 93.67 (1.25) 93.73 (1.45) 91.88 (1.97) 91.99 (1.71) 93.29 (1.71) 9341 (1.92) 9251 (2.79)  92.02 (1.97)
Vehicle 32.16 (3.87) 32.44 (2.65) 24.53 (4.66) 23.96 (4.74) 30.28 (3.92)  32.04 (3.33) 29.55 (3.85)  31.11 (4.01)
Vertebral 81.53 (4.35) 80.73 (4.70) 71.67 (5.13) 73.20 (5.20) 82,53 (3.32) 81.67 (5.07) 78.00 (6.06)  77.87 (8.13)
WBC 7736 (14.6) 77.57 (13.5) 84.86 (3.70) 84.89 (3.25) 7775 (14.1) 79.79 (1218)  70.32 (17.3) 79.01 (10.6)
WDVG 79.92 (1.13) 80.24 (0.88) 67.81 (3.77) 69.91 (341)* 79.18 (1.21) 80.08 (1.19)* 78.37 (1.35) 7949 (1.33)
Weaning 76.87 (4.14) 77.27 (4.43) 60.40 (5.50) 63.33 (6.57)* 75.67 (5.21) 78.40 (4.19)* 59.13 (16.8) 64.93 (19.9)
Wine 33.52 (3.44) 33.52 (2.95) 45.23 (14.1) 43.86 (13.3) 34.32 (4.71)  35.68 (7.58) 32.61 (2.41) 33.41 (2.88)
Table 3

Comparison of the proposed GA-based method and the Bagging technique both used as pool generators for 2 ensemble selection methods (KE and
KU), the combination of all classifiers in the pool (ALL), and the use of the best classifier in the pool (SB). The average and corresponding standard
deviations of 20 replications with the best results in boldface.

SB ALL KNORA-U KNORA-E

Dataset Bagging GA Bagging GA Bagging GA Bagging GA

Adult 84.74 (2.92)  85.29 (2.93) 86.83 (2.58) 86.66 (2.67) 83.08 (2.03)  84.24 (1.85)*  81.92 (1.85) 83.72 (1.92)
Banana 84.49 (143)  84.10 (1.61) 84.16 (1.59) 84.40 (1.76) 8759 (1.24) 8742 (1.12) 85.06 (1.46)  85.06 (1.45)
Blood 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26)  76.12 (0.26) 76.12 (0.26)  76.12 (0.26)

CTG 86.62 (1.24)  86.85 (1.54) 88.14 (1.12) 88.14 (1.14) 84.67 (0.96)  85.01 (0.93)*  83.95(0.89)  84.21 (0.89)*
Diabetes 64.95 (2.06)  65.09 (2.38) 64.48 (1.31) 65.26 (2.54) 64.48 (0.95)  64.64 (0.87) 64.56 (1.09)  64.79 (1.11)

Ecoli 63.63 (7.54)  65.06 (4.65) 53.39 (12.5) 53.75 (13.7) 54.40 (2.77)  54.44 (2.77) 52.02 (2.10) 52.26 (1.99)
Faults 55.76 (1.94)  55.85 (3.11) 44.16 (11.7) 43.98 (11.8) 43.65 (249)  44.96 (2.80)*  37.41 (1.96) 39.25 (2.27)*
German 72.74 (2.99) 7228 (3.21) 76.38 (2.28) 75.70 (2.01) 71.88 (1.02) 72.94 (1.36)*  71.52 (0.88) 72.28 (1.15)*
Glass 52.26 (7.98)  50.00 (4.64) 48.77 (6.76) 49.15 (8.23) 5113 (5.37) 51.98 (5.15) 45.28 (5.13) 4745 (4.71)*
Haberman 74.01 (1.24) 73.75 (0.65) 73.75 (0.29) 73.95 (0.79) 73.68 (0.00)  73.68 (0.00) 73.68 (0.00)  73.68 (0.00)
Heart 79.40 (4.54)  79.93 (4.49) 84.33 (2.52) 83.36 (3.48) 75.67 (4.77) 7716 (4.50) 74.55 (4.21)  76.19 (4.31)

ILPD 69.48 (3.94)  69.76 (3.88) 71.86 (3.89) 71.83 (3.83) 71.90 (0.61)  71.90 (0.75) 71.83 (0.45)  71.83 (0.45)

Image 40.75 (3.10)  41.05 (3.53) 25.60 (7.83) 25.76 (7.81) 36.39 (1.28)  36.35(1.52) 35.86 (1.19) 35.88 (1.48)

lonosphere 8159 (3.74)  82.39 (4.03)  82.61 (2.62)  83.24 (3.33) 8938 (3.54) 8773 (340)  88.69 (3.83) 8750 (3.17)

Laryngeall 8047 (440)  80.19 (4.94)  81.89 (4.60) 8142 (4.55)  73.58 (4.77) 74.25(3.79)  72.08 (457) 72.74 (4.07)
Laryngeal3  67.05 (4.07) 6710 (3.42)  70.68 (2.80)  69.94 (3.62) 6114 (348) 6102 (343)  58.64 (3.86) 59.37 (3.25)
Lithuanian  63.67 (297) 6443 (4.02) 6550 (226)  66.39 (246)  58.43 (0.98) 59.87 (140)*  56.69 (0.80)  58.04 (1.21)*

Liver 63.02 (6.00) 6017 (525) 6145 (4.05) 6256 (497)  56.63 (559) 57.09 (6.77) 5221 (351) 5517 (4.58)"
Magic 78.74 (0.76)  78.74 (0.57)  78.85 (0.58)  78.87 (0.57)  78.90 (0.58)  78.95 (0.58)  78.80 (0.55)  78.80 (0.58)
Mammo 80.58 (3.06)  80.66 (3.57) 8176 (215)  81.86 (241) 7850 (2.66) 7913 (2.93)  77.85 (2.83)  78.77 (2.76)
Monk 79.58 (3.98) 7921 (3.43)  79.86 (175)  82.64 (543 79.31(3.26) 78.84 (367)  7815(3.72)  79.86 (3.08)
Phoneme 7708 (1.06) 7715 (0.86)  76.59 (0.63) 7711 (0.80)*  74.77 (0.74)  75.74 (0.81)  74.07 (0.64) 7517 (0.74)
Sonar 6106 (540)  61.63 (4.65) 6154 (527)  64.62(621) 5337 (103) 55.00 (1.86) 53.17 (0.92)  53.85 (1.36)"
Thyroid 93.61 (1.97) 9321 (2.86) 9642 (1.06)* 9561 (1.32)  89.22(2.73) 8870 (411)  88.79 (2.82)  88.38 (4.05)
Vehicle 3130 (3.68) 3052 (4.08) 3239 (521)  33.65(5.24) 2751 (169) 2822 (257) 2630 (123)  26.75 (1.31)
Vertebral 8133 (4.02) 8093 (5.64) 8353 (316) 8313 (422) 7927 (447) 8047 (4.64) 7847 (3.80)  79.67 (4.58)
WBC 67.78 (20.2) 8173 (15.7)* 8592 (3.06) 9018 (216)* 8915 (3.16)  88.49 (2.96)  88.59 (3.72)  88.27 (3.47)
WDVG 79.86 (1.14) 7954 (0.97) 8150 (0.79) 8154 (1.02) 7107 (112) 7271 (115)*  69.66 (105)  71.6 (1.18)*

Weaning 75.60 (545)  76.60 (4.82) 8147 (456) 8318 (342) 6693 (498) 7107 (3.96) 6447 (445)  68.47 (3.58)"
Wine 3443 (632) 3659 (9.00) 32.84 (113) 3830 (10.9)* 32.84 (113) 32.84 (113)  32.84 (113)  32.84 (1.13)
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Fig. 8. Comparison between both pool generation methods (GA-based and Bagging) in terms of wins, ties and losses, considering different DCS methods (KE, KU, APOS, APRI,
LCA and OLA), the combination of all classifiers in the pool (ALL) and the single best classifier in the pool (SB). In blue, green, and red, we have, respectively, the number of
wins, ties and losses related to the GA-based method. The dashed line illustrates the critical value (19.5). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 4

Average dispersion in the complexity space of
the generated training subsets.

Dispersion

Dataset Bagging GA

Adult 0.53 (0.06)  1.26 (0.26)*
Banana 0.20 (0.02)  0.25 (0.03)*
Blood 0.14 (0.01) 0.22 (0.04)*
CTG 0.24 (0.04)  0.25 (0.04)*
Diabetes 0.18 (0.02) 0.28 (0.04)*
Ecoli 204 (4.11) 211 (3.99)*
Faults 0.74 (0.05)  0.73 (0.06)
German 0.12 (0.02) 0.31 (0.14)
Glass 2.62 (1.30) 7.9 (104)*
Haberman 0.17 (0.02) 0.36 (0.08)*
Heart 0.40 (0.09)  2.19 (1.30)*
ILPD 0.08 (0.01)  0.12 (0.01)*
Image 12.7 (2.10) 131 (1.99)
Ionosphere  0.21 (0.03) 0.47 (0.13)*
Laryngeall 0.68 (0.10) 1.59 (0.44)*
Laryngeal3 1.77 (0.25) 1.93 (0.33)"
Lithuanian 0.17 (0.01) 0.24 (0.03)*
Liver 0.10 (0.01) 0.17 (0.03)*
Magic 0.03 (0.00)  0.04 (0.00)
Mammo 0.26 (0.03)  0.30 (0.07)
Monk 0.28 (0.04)  0.60 (0.12)*
Phoneme 0.04 (0.00) 0.06 (0.01)*
Sonar 0.28 (0.04)  0.72 (0.20)*
Thyroid 0.83 (0.09) 1.62 (0.26)*
Vehicle 0.37 (0.03)  0.42 (0.04)*
Vertebral 0.30 (0.04)  0.52 (0.13)*
WBC 0.55 (0.06)  0.86 (0.11)*
WDVG 0.12 (0.01) 0.13 (0.02)
Weaning 0.38 (0.05)  0.65 (0.13)*
Wine 1.90 (0.20) 216 (0.49)*

tion set. The parameters of the DCS methods compared to our ap-
proach, basically the size of the neighborhood used to estimated
the classifiers competence, were defined based on previous studies
[9,16,30,31].

In the first set of experiments, we evaluated the proposed pool
generation method. The pool generated for each problem was com-
pared to that generated using the Bagging method. The second
set of experiments evaluated the proposed DCS method, consid-
ering the problem difficulty properties in both phases: pool gen-
eration and classifier selection. In both sets of experiments, 6 dy-
namic selection (DCS) methods already established in the literature
were considered, being 4 methods for selection of a single classi-
fier (LCA, OLA, APRI and APOS), and 2 methods for selection of en-
sembles (KE and KU). The only parameter of these DCS methods
is the size of the test instance neighborhood (K). Such a neighbor-
hood is used to define the competence of each classifier. In our ex-
periments, K was defined as 7, since this value had been proved to
be the most appropriate in previous studies [9,16,30,31]. The same
size of neighborhood (K =7) was used to estimate the accuracy
based meta-feature f3; in the DSOC method. On the other hand,
the size of the neighborhood (L) used to estimate the complexity
based meta-feature (fj;) (Algorithm 2, line 6) for each test instance
was defined as 30. By adopting a larger neighborhood in this step,
we ensure the presence of at least two distinct classes among the
selected instances, making it possible to calculate the complex-
ity measures. However, it is important to say that the adoption
of large neighborhoods would mean that, for small datasets, dif-
ferent instances may have the same neighborhood. To drive this
choice, we evaluated neighborhoods with sizes ranging from 20 to
50 (varying from 5 to 5).

the final set of problems has 2-class and 3-class problems show-
ing different levels of complexity, and also one 4-class, one 6-
class, two 7-class and one 8-class problem. Table 1 presents a sum-
mary with the main details of the used datasets. In addition, it
is important to mention that, for each of 20 replications, these
datasets were divided in a random fashion into 50% for training,
25% for validation, 25% for testing. It is worth mentioning that all
parameters empirically estimated were defined using the valida-

5.1. Experiments on pool generation

Two pools composed of 100 perceptrons were generated for
each classification problem. One of the pools was created using the
Bagging method [2], and the other using the proposed GA-based
method. In both pools, the size of the bags corresponded to 50%
of the training set. The perceptron was used as the base classifier
since it represents a weak and unstable learner. In cases of prob-
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Fig. 9. Dispersion of the data subsets generated for the Haberman problem in the complexity space. The elements built by Bagging are shown in red, while those in blue
show the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Dispersion of the data subsets generated for the Heart problem in the complexity space. The elements built by Bagging are shown in red, while those in blue show

the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

lems composed of more than 2 classes, the One-Against-All (OAA)
strategy was adopted. In the GA-method, the elitism size was de-
fined as 4 chromosomes. This value was determined empirically,
once it makes possible to maintain high fitness elements with-
out leading to premature convergence. The crossover probability
was 0.8, meaning that the algorithm would evolve rather quickly,
and that the process for substituting old members with new ones
would be of moderate intensity, thereby limiting any chance of
losing high fitness elements. The mutation rate applied was 5%,
a value which can prevent the stagnation of the process, and in-
creases the possibility of exploration of new areas of the solution
space. 30 generations in all were evolved.

To analyze how adopting the proposed GA contributes to the
literature, we compared its accuracy to that of 6 aforementioned
DCS methods. Each method was tested using the sets generated
by Bagging method and those built by the proposed GA-based

method. Furthermore, we considered a combination of all classi-
fiers (here, named ALL) and the single best classifier (SB) in the
pool. The SB for each problem were defined using the validation
set. In the combination process, the Majority Vote was used to
combine the classifiers generated by Bagging, while for those built
by the GA, we used a sigmoid function, as defined by Eq. (8), to
estimate weights for each classifier based on their fitness.

1

f(X,a,C)ZW

(8)
where x corresponds to the fitness of each element, a refers to the
curve inclination while c is the curve inflection point. The values
of a and ¢ were empirically defined as 2 and 1, respectively.

The average performance of each approach for all classification
problems is shown in Tables 2 and 3. The first one presents the re-
sults obtained by methods in which a single classifier is selected,



A.L Brun et al./Pattern Recognition 76 (2018) 175-190 185

Laryngeall

08—

06—

03—

02
[

F1

Fig. 11. Dispersion of the data subsets generated for the Laryngeall problem in the complexity space. The elements built by Bagging are shown in red, while those in blue
show the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Comparison of the proposed methods (DSOC Bagging and DSOC GA) with the dynamic selection methods, OLA, LCA, A Priori (APRI), A Posteriori
(APOS), Knora-U (KU) and Knora-E (KE). The average accuracy and corresponding standard deviation computed from 20 replications. The values in

boldface are the best results.

OLA LCA APRI APOS KU KE DSOC DSOC

Bagg Bagg Bagg Bagg Bagg Bagg Bagg GA
Adult 84.04 (2.87)  83.26 (2.52)  84.01 (2.34) 83.55 (2.60)  83.08 (2.03) 81.92 (1.85) 86.77 (2.65) 86.80 (1.85)*
Banana 85.03 (1.73) 84.88 (1.78) 84.52 (1.64) 83.82 (1.69) 87.59 (1.24) 85.06 (1.46) 82.17 (1.64) 87.20 (1.62)¢
Blood 76.12 (0.26) 75.86 (1.23) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 73.98 (2.80) 76.12 (0.26) ©
CTG 86.99 (0.89) 80.94 (0.95) 86.45 (1.38) 86.28 (1.29) 84.67 (0.96) 83.95 (0.89) 85.68 (1.14) 87.50 (1.25) ©
Diabetes 6492 (2.85) 6237 (2.64) 65.00(2.03) 64.38(2.44) 64.48(0.95) 64.56 (1.09) 66.69 (3.29) 68.41 (3.93)* ©
Ecoli 64.94 (4.74) 52.56 (5.52)  64.05(5.05) 6339 (4.00) 54.4 0(2.77) 52.02 (2.10) 69.29 (3.23)* 75.00 (2.44)* ©
Faults 58.35 (2.31) 37.96 (10.5) 56.08 (2.15) 54.63 (2.25) 43.65(2.49) 3741 (1.96) 48.68 (3.17)* 65.02 (1.58)* o
German 71.90 (2.35) 64.22 (3.31)  71.74 (2.54) 69.80 (2.39)  71.88 (1.02) 71.52 (0.88) 71.88 (2.66) 73.98 (3.28)* o
Glass 53.77 (4.79) 2415 (9.04) 4792 (7.41) 24.72 (19.5) 5113 (5.37) 45.28 (5.13) 53.11 (8.03) 59.25 (5.22)* ©
Haberman 73.68 (0.59)  73.62 (0.88)  73.82 (0.39) 73.68 (0.59) 73.68 (0.00) 73.68 (0.00)  74.14 (3.18) 74.61 (2.43)
Heart 78.58 (4.04)  70.15 (4.58) 78.81 (4.02) 72.24 (8.64) 75.67 (4.77) 74.55 (4.21) 83.43 (2.79)  83.58 (3.24)*
ILPD 69.72 (3.38) 61.76 (3.67) 69.24 (3.22) 67.52 (4.16) 71.90 (0.61) 71.83 (0.45) 64.97 (4.10) 66.86 (2.73)
Image 42.03 (2.30)  32.18 (4.11) 40.68 (1.82) 40.29 (2.35) 36.39 (1.28) 35.86 (1.19) 38.30 (1.58) 51.03 (1.11)*¢
Ionosphere  80.91 (3.88) 69.72 (4.21) 80.63 (4.72) 77.84 (4.62) 89.38 (3.54) 88.69 (3.83) 86.08 (5.12) 86.53 (4.23)
Laryngeall 80.09 (4.40) 70.94 (6.24)  81.13 (5.57) 7811 (6.92) 73.58 (4.77) 72.08 (4.57) 80.66 (4.81) 8245 (4.51)
Laryngeal3 66.02 (4.19) 55.34 (5.77)  66.02 (4.70) 62.84 (6.18) 61.14 (3.48) 58.64 (3.86)  65.45 (6.68) 68.75 (5.04)¢
Lithuanian 68.30 (2.49)  70.38 (1.84) 67.06 (2.42) 64.50 (3.36)  58.43 (0.98) 56.69 (0.80)  74.86 (3.00)* 82.47 (2.55)* ¢
Liver 60.99 (3.63)  50.06 (5.30)  58.90 (5.51) 55.17 (5.47) 56.63 (5.59) 52.21 (3.51) 59.36 (5.05) 61.86 (5.39)¢
Magic 79.22 (0.70)  78.17 (0.55) 78.73 (0.81) 78.59 (0.83)  78.90 (0.58) 78.80 (0.55)  78.46 (0.61) 79.99 (0.73)
Mammo 79.78 (2.29)  76.23 (3.11) 80.10 (3.17) 79.08 (2.74) 78.50 (2.66) 77.85 (2.83) 81.04 (2.48) 80.99 (2.23)
Monk 81.99 (3.56) 69.26 (3.98)  79.58 (4.07) 66.76 (12.8) 79.31 (3.26) 78.15 (3.72) 82.69 (2.90) 85.42 (3.44)* ©
Phoneme 7718 (1.25) 76.54 (0.96) 76.17 (1.47) 76.08 (1.55) 74.77 (0.74) 74.07 (0.64) 76.61 (1.20) 79.00 (1.04)* o
Sonar 61.73 (6.32) 46.83 (7.28) 58.65 (6.10) 41.63 (22.5) 53.37 (1.03) 53.17 (0.92) 67.40 (7.44) 68.17 (8.48)
Thyroid 93.67 (1.25) 91.88 (1.97) 93.29 (1.71) 92.51 (2.79) 89.22 (2.73) 88.79 (2.82)  89.10 (2.73) 94.02 (1.60) ©
Vehicle 32.16 (3.87) 24.53 (4.66) 30.28 (3.92) 29.55 (3.85)  27.51 (1.69) 26.30 (1.23) 33.25 (2.21) 3543 (2.28)* ©
Vertebral 81.53 (4.35) 71.67 (5.13) 82.53 (3.32) 78.00 (6.06)  79.27 (4.47) 78.47 (3.80) 7740 (4.14) 80.33 (3.60) ¢
WBC 77.36 (14.6) 84.86 (3.70)  77.75 (14.1) 70.32 (17.3) 89.15 (3.16) 88.59 (3.72)  92.75 (1.88)* 93.13 (2.19)*
WDVG 79.92 (1.13) 67.81 (3.77) 79.18 (1.21) 78.37 (1.35) 71.07 (1.12) 69.66 (1.05) 75.54 (2.38) 82.32 (1.11) ©o
Weaning 76.87 (4.14) 60.40 (5.50)  75.67 (5.21) 59.13 (16.8) 66.93 (4.98) 64.47 (4.45) 80.67 (3.83)" 81.67 (4.48)*
Wine 33.52 (3.44) 4523 (14.1) 3432 (4.71) 32.61 (2.41) 32.84 (1.13) 32.84 (1.13) 49.77 (12.8) 55.68 (11.0)*

while the second one presents the results related to the ensem-
ble selection methods, the combination of all classifiers in the pool
(ALL), and the single best classifier (SB). The boldfaced values in
these tables represent the best result for each problem. In order
to compare the behavior of the approaches, the Wilcoxon test was
performed with a confidence of 95%. The “*” symbol highlights the
cases where a significant difference was observed between the ap-
proaches. When comparing the behavior of the DCS methods, we

can see that in 126 of the 180 experiments (70.00%), adopting the
proposed GA to generate the pool led to improved accuracy. On
the other hand, in 22.22% of the scenarios (40 experiments), it was
more appropriate to employ only the Bagging method. 14 cases
(7.78%) demonstrated similar results.

An analysis of the combination of all classifiers available in the
pool reveals that the GA prevails in 63.33% of the experiments.
On the other hand, Bagging achieves a higher accuracy in 30.00%
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Table 6
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Comparison of the DSOC GA with the OLA, LCA, A Priori (APRI), A Posteriori (APOS), Knora-U (KU) and Knora-E (KE) DCS methods
using the same pool generated by the proposed method. The average accuracy and corresponding standard deviation computed

from 20 replications. The values in boldface are the best results.

OLA LCA APRI APOS KU KE DSOC

GA GA GA GA GA GA GA
Adult 8477 (2.80) 83.52 (2.87) 8573 (2.78) 8520 (2.91) 8424 (185) 83.72(192)  86.80 (2.24)
Banana 84.87 (168)  84.68 (179) 8457 (1.87) 83.83 (1.76) 8742 (112)  85.06 (145)  87.20 (1.62)
Blood 7612 (0.26) 7612 (0.26) 7612 (0.26) 7612 (0.26) 7612 (0.26) 7612 (0.26)  76.12 (0.26)
CTG 86.70 (104) 8133 (0.82) 86.76 (0.76)  86.30 (0.85)  85.01 (0.93) 84.21 (0.89)  87.50 (1.25)
Diabetes 65.00 (2.27) 63.75(2.89) 6451 (246) 6441 (2.76) 64.64 (0.87) 6479 (111)  68.41 (3.93)*
Ecoli 62.38 (3.09) 5272 (5.91)  64.46 (4.83) 62.38 (3.94) 5444 (2.77) 5226 (199)  75.00 (2.44)
Faults 56.82 (2.99) 38.84(101) 5570 (3.42) 5473 (3.66) 44.96 (2.80) 3925 (227)  65.02 (1.58)"
German 7348 (242) 6588 (2.98) 72.80 (3.08) 7152 (2.85) 7294 (136) 7228 (115)  73.98 (3.28)
Glass 51.89 (746) 2547 (102) 53.11(6.09)  30.75(169) 5198 (515) 4745 (471)  59.25 (5.22)
Haberman 7414 (0.75) 7441 (1.74)  74.41(135) 7329 (3.00) 73.68 (0.00) 73.68 (0.00) 74.61 (2.43)
Heart 80.37 (412) 7284 (531) 8067 (3.73) 7731 (410) 7716 (450) 7619 (431)  83.58 (3.24)"
ILPD 68.62 (291) 63.79 (3.82) 70.34 (2.97) 6841 (3.68) 719 (0.75) 7183 (045)  66.86 (2.73)
Image 4125(212)  32.82 (3.87) 4133 (199) 4142 (234) 3635 (152) 3588 (148) 5103 (1.11)
lonosphere 8148 (4.56) 7210 (414) 8072 (414) 8102 (436) 8773 (340) 8750 (3.17)  86.53 (4.23)
Laryngeall  78.87 (5.08)  73.49 (5.04) 80.00 (3.89) 7708 (5.11) 7425 (3.79)  72.74 (4.07)  82.45 (4.51)
Laryngeal3 6722 (490) 58.81(6.25) 6614 (323) 6392 (443) 6102 (343) 5937 (3.25) 68.75 (5.04)
Lithuanian 6706 (3.19)  69.03 (240) 6749 (3.21)  6515(3.16)  59.87 (140)  58.04 (121)  82.47 (2.55)"
Liver 6017 (314) 5134 (515) 5738 (4.96) 54.24 (820) 5709 (6.77) 5517 (458)  61.86 (5.39)
Magic 79.00 (0.56)  78.23 (0.60)  78.78 (0.53)  78.53 (0.63)  78.92 (0.58)  78.80 (0.58)  79.99 (0.73)*
Mammo 80.56 (2.96) 7797 (3.08)  80.51 (3.44) 7915 (3.44) 7913 (293) 78.77 (2.76)  80.99 (2.23)
Monk 82.59 (322) 7273 (3.81) 8148 (4.86) 6819 (145) 7884 (3.67) 79.86 (3.08) 85.42 (3.44)
Phoneme 7722 (0.82) 7677 (0.86) 7714 (0.98)  77.05 (0.96) 7574 (0.81) 7517 (0.74)  79.00 (1.04)*
Sonar 6029 (538) 4596 (5.73) 6144 (5.94) 4596 (20.8) 55.00 (186) 53.85(136)  68.17 (8.48)
Thyroid 93.73 (145) 9199 (171)  93.41(1.92)  92.02 (1.97) 8870 (411)  88.38 (4.05)  94.02 (1.60)
Vehicle 3244 (2.65) 23.96 (474) 32.04 (3.33) 3111 (401) 2822 (2.57) 2675 (131) 3543 (2.28)
Vertebral 80.73 (470)  73.20 (520) 8167 (5.07) 7787 (813)  80.47 (464) 79.67 (4.58)  80.33 (3.60)
WBC 7757 (135)  84.89 (325) 7979 (122)  79.01 (10.6)  88.49 (2.96) 88.27 (3.47) 9313 (2.19)
WDVG 80.24 (0.88)  69.91 (3.41)  80.08 (119) 7949 (1.33) 7271 (115) 7160 (118)  82.32 (111)*
Weaning 7727 (443) 6333 (657) 7840 (419) 6493 (19.9) 7107 (3.96)  68.47 (3.58)  81.67 (4.48)
Wine 33.52 (2.95) 43.86 (13.3) 3568 (758)  33.41 (2.88) 32.84 (113)  32.84 (113)  55.68 (10.98)
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Fig. 12. Ranking produced by the Nemenyi test considering DSOC GA and the other
DCS methods using a pool generated with Bagging.

of the cases. 2 ties were observed among the strategies (6.67%).
For the single best classifier, an improvement was observed in
17 of the 30 tested cases (56.67%), while a decrease in accuracy
was noted in 11 scenarios (36.67%). As well, 2 ties were observed
among the solutions, corresponding to 6.67%.

Fig. 8 shows the pairwise comparison between Bagging and the
proposed GA-based method for all 6 DCS-based approaches, a com-
bination of all classifiers (ALL), and the single best classifier (SB).
The red columns correspond to the scenarios in which the use of
the Bagging method to generate subsets represents the best option,
while the blue columns correspond to the cases in which the GA-
based method was able to obtain the highest accuracy. The repre-
sentation in green indicates where there was a tie between the ap-
proaches. The dashed line illustrates the critical value (cv = 19.5).
This cv value was obtained from the wins, ties and losses by com-
puting the test sign [32] with a significance level a = 0.05. If we
consider half the ties added to the wins and the other half to the
losses, the GA-based method shows a significant improvement in
most of scenarios, except when OLA and SB were adopted. The best

contribution was observed when using the LCA as DCS method (25
> 19.5). On the other hand, when OLA was adopted as DCS, we
did not notice a significant contribution (16 < 19.5).

We observed a positive impact on the classification perfor-
mance when information related to problem complexity was used
to orient the classifier pool generation. However, additional analy-
sis is a must in order to obtain a full answer to our first research
question. To check the coverage of the problem complexity space
for each classification problem, we calculate the average complex-
ity dispersion of both pools, namely, the one generated by the GA
method and the other generated by the Bagging method.

Table 4 shows the average value of dispersion along the 20
replications, as defined in the Eq. (9). The bold values corresponds
to the highest coverage space for each problem.
Zq DRV, Z]\E]%ixi.k_xj.k)z o

! (9)
where M corresponds to the number of classifiers in the pool, nc
refers to the number of complexity measures adopted in the pro-
cess, r represents the number of repetitions, while x; | and x;
correspond to the value of the k™ complexity measure for the ele-
ments i and j, respectively. As we can see, there is a clear increase
in the dispersion among the subsets when the proposed GA-based
pool generator is adopted. In order to compare the behavior of the
pools, the Wilcoxon test was applied to compare these results with
a 5% significance level. Significant differences are marked with a

wgn

Dispersion =

The occupation of the data complexity space is illustrated in
Figs. 9-11, which show changes in the space defined by F1 and N2
metrics. In the representations, the red circles correspond to the
pool generated by Bagging, and the blue markers to the final set
obtained by the GA pool generation. These figures reflect a com-
mon behavior observed in the studied problems: the complexity
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Fig. 13. Pairwise comparison of the proposed DSOC GA with 6 DCS methods appearing in the literature using Bagging. The blue bars represent the number of problems in
which DSOC GA prevailed, the red bars refer to its losses, while green bars are related to ties. The dashed line illustrates the critical value (19.5). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Ranking produced by the Nemenyi test. DSOC GA and the other DCS meth-
ods also using the proposed GA-based method.

distribution of the pool generated by the GA allows a better explo-
ration of the F1 x N2 complexity space. However, the variation in
F1 is more evident, while the fluctuation in the N2 axis is more
discrete, and is characterized for a shift of the set. This behavior
is caused by the search for the space coverage, once the built sets
present farther centroids (higher F1) and, at the same time, border
regions more intricate, evidenced by the increasing on N2. We can
now therefore complete the answer of our first research question:
the adopted strategy for pool generation can provide better cover-
age of the problem complexity space. In addition, it has been used
successfully with different dynamic classifiers selection methods.

5.2. Experiments on classifier selection

The objective of this set of experiments was to evaluate the
proposed DCS framework. To that end, we have considered two
possible approaches, namely, DSOC Bagging and DSOC GA. In
the former, the pool generation is performed using the Bagging
method, while in the latter, the GA-based pool generator is used.
The average performance of each approach for each classification
problem is shown in Table 5. The boldfaced values in the table rep-
resent the highest accuracy for each problem.

The penultimate column of Table 5 shows the results of the
DSOC Bagging. When compared with the methods appearing in

the literature, this approach prevailed in 114 out of 180 experi-
ments (63.3%), and lagged in 66 experiments (36.6%). The Kruskal
Wallis statistical test was performed to compare the DSOC Bagging
against the 6 DCS methods in the literature. A confidence of 95%
and a degree of freedom of 6 were used. We observed a significant
difference in 7 of 30 classification problems, and the 7 carry a “*”
in the penultimate column of Table 5.

On the other hand, our main results are in the last column of
Table 5, and are related to the DSOC GA approach. By using the
GA-based pool generator in combination with the proposed dy-
namic selection method, this DCS prevailed in 165 out of 180 ex-
periments (91.67%), lost in 10 experiments (5.56%), and saw a tied
in 5 others (2.78%). A statistical analysis of significance in this case
showed a significant difference in 15 out of 30 experiments. The
15 cases carry a “*” in the last column of Table 5. For these ex-
periments, Fig. 12 presents a ranking produced by means of the
Nemenyi post-hoc test.

We could note that our DSOC GA obtained the best position in
the ranking when compared to the 6 DCS methods using Bagging.
Except for the OLA method, the distances between DSOC GA and
the other methods are greater than the critical distance. In ad-
dition, Fig. 13 shows the pairwise comparison between the DCS
strategies in the literature using the pool built by Bagging and
those built using the proposed DSOC GA. The red columns repre-
sent the scenarios in which the use of Bagging for pool generation
combined with the DCS methods of the literature was the best op-
tion, while the columns in blue indicate the cases in which DSOC
GA achieved the highest accuracy. The representations in green in-
dicate where there was a tie between the approaches. The dashed
line illustrates the critical value (cv = 19.5). As mentioned before,
the cv value was obtained from the number of wins, ties and losses
by computing the test sign [32] with a significance level o = 0.05.
As we can see, the DSOC GA is significantly superior in all scenar-
ios.

Still in Table 5, we also compared the performance of DSOC
Bagging against DSOC GA. The Wilcoxon test with a 5% signifi-
cance was applied to compare the results of these strategies. Sig-
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nificant differences appears with a “¢” marker in the last column
of Table 5. For 18 out of 30 classification problems, there is a sig-
nificant increase in performance when the DSOC method is used
in a pool generated by the proposed GA-based generator.

Finally, in the last set of experiments, we compared all DCS
methods using the same pool generated by the GA-based method,
and Table 6 summarizes the results. The proposed DCS prevailed
in 158 out of 180 experiments (87.78%), lost in 16 experiments
(8.89%), and was tied in 6 others (3.33%). The statistical analysis of
significance shows a significant difference in this case in 16 out of
30 experiments. Fig. 14 shows a ranking produced by the Nemenyi
post-hoc test.

As can be seen, the results are quite similar to those observed
when considering the other DCS methods in the literature that use
Bagging. For instance, here, we observed a significant difference
in 16 classification problems, while in the previous comparison of
DSOC GA versus other DCS using Bagging, it was observed for 15
problems.

Based on all these experiments, we can answer our second re-
search question, saying that the use of data complexity features
for pool generation and classifier selection has shown some inter-
esting contribution in terms of classification performance. It can
be concluded that the proposed selection strategy may profit the
better coverage of the problem complexity space provided by the
GA-based pool generation method.

In a last analysis we have computed the average time for
the classification task when using the OLA, KU and DSOC meth-
ods. From the methods of the literature, OLA presented the most
promising results during our experiments, being a simple strategy
that selects just one classifier, while KU has shown the best results
when an ensemble of classifiers is selected. The OLA method spent
in average 0.70 ms (milliseconds) to classify each test instance, the
KU method takes 3.63 ms, while the proposed DSOC takes 9.08 ms.
As expected, the proposed method is more time consuming. The
reason is the need to compute the complexity of the neighborhood
of the test instance. However, this process can be optimized since
in the current version of our method, we are using an external li-
brary (DCOL Library) to compute the complexity measures.

6. Conclusion

In this paper, we proposed a DCS method whose novelty lies
in its use of features related to the classification problem diffi-
culty during pool generation and classifier selection. To represent
the classification problem difficulty, we extracted features from the
problem data using complexity measures. A robust experimental
protocol based on 30 datasets, and considering 20 replications,
confirms our two main hypotheses. A better comprehension of the
classification problem difficulty may have a positively impact on
the performance of a DCS method. The main results, in which
pool generation and classifier selection are both based on com-
plexity features, are very promising. In 165 out of 180 experiments
(91.67%), adopting the proposed GA to generate the pool, combined
with the proposed DCS, allowed an improvement of the classifica-
tion accuracy. For the pool generation method, in 126 out of 180
experiments (70.00%), adopting the proposed GA to generate the
pool allowed improved accuracy. In addition, we conclude that the
proposed pool generation strategy could achieve a better coverage
of the problem complexity space, and the proposed dynamic selec-
tion method could take advantage of this scenario. Future works
could follow two main directions. First, we could look at tuning
the parameters of the proposed DCS, by evaluating different base
classifiers, or different optimization algorithms. Secondly, we could
investigate other measures in order to better describe the classifi-
cation problem complexity space.
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