
Pattern Recognition 76 (2018) 175–190

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

A framework for dynamic classifier selection oriented by the

classification problem difficulty

André L. Brun

a , Alceu S. Britto Jr. a , b , ∗, Luiz S. Oliveira

c , Fabricio Enembreck

a ,
Robert Sabourin

d

a Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
b Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
c Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
d École de technologie supérieure (ÉTS), Université du Québec, Montreal, QC, Canada

a r t i c l e i n f o

Article history:

Received 28 March 2017

Revised 26 August 2017

Accepted 30 October 2017

Available online 31 October 2017

Keywords:

Multiple classifier systems

Classifier pool generation

Dynamic classifiers selection

Classification problem difficulty

a b s t r a c t

This paper describes a framework for Dynamic Classifier Selection (DCS) whose novelty resides in its use

of features that address the difficulty posed by the classification problem in terms of orienting both pool

generation and classifier selection. The classification difficulty is described by meta-features estimated

from problem data using complexity measures. Firstly, these features are used to drive the classifier pool

generation expecting a better coverage of the problem space, and then, a dynamic classifier selection

based on similar features estimates the ability of the classifiers to deal with the test instance. The ratio-

nale here is to dynamically select a classifier trained on a subproblem (training subset) having a similar

level of difficulty as that observed in the neighborhood of the test instance defined in a validation set. A

robust experimental protocol based on 30 datasets, and considering 20 replications, has confirmed that

a better understanding of the classification problem difficulty may positively impact the performance of

a DCS. For the pool generation method, it was observed that in 126 of 180 experiments (70.0%) adopting

the proposed pool generator allowed an improvement of the accuracy of the evaluated DCS methods. In

addition, the main results from the proposed framework, in which pool generation and classifier selection

are both based on problem difficulty features, are very promising. In 165 of 180 experiments (91.6%), it

was also observed that the proposed DCS framework based on the problem difficulty achieved a better

classification accuracy when compared to 6 well known DCS methods in the literature.

© 2017 Elsevier Ltd. All rights reserved.

1

t

f

a

l

m

fi

[

a

t

C

B

b

m

p

i

a

o

b

o

s

p

g

m

h

0

. Introduction

Many researchers have focused on Dynamic Classifier Selec-

ion (DCS), and have produced interesting solutions. The main dif-

erence between the researchers’ approaches lies in the criterion

dopted in selecting the classifier(s) from the pool. Usually, this se-

ection is based on the concept of classifier competence, which is

ost commonly estimated over a region of the feature space de-

ned as the neighborhood of the test pattern on a validation set. In

1] , a proposed taxonomy organizes the DCS methods taking into

ccount the criterion applied to compute the classifiers’ compe-

ence. In their view, we may organize them in two main groups:
∗ Corresponding author at Pontifícia Universidade Católica do Paraná (PUCPR),

uritiba, PR, Brazil: .

E-mail addresses: abrun@ppgia.pucpr.br (A.L. Brun), alceu@ppgia.pucpr.br (A.S.

ritto Jr.), lesoliveira@inf.ufpr.br (L.S. Oliveira), fabricio@ppgia.pucpr.br (F. Enem-

reck), robert.sabourin@etsmtl.ca (R. Sabourin).

h

t

R

w

v

ttps://doi.org/10.1016/j.patcog.2017.10.038

031-3203/© 2017 Elsevier Ltd. All rights reserved.
ethods based on the sole competence of the classifiers in the

ool, and methods in which the interaction between the classifiers

s considered. Regardless of the large number of different criteria

vailable to measure the competence of the classifiers in the pool,

ne common thread running through them is the use of accuracy-

ased competence analysis, which is carried out over the feature

r decision space.

In such a context, it is known that the pool in which the clas-

ifier selection is executed also plays an important role in the DCS

erformance. However, little effort has been dedicated to investi-

ating new strategies to create a pool well-suited for DCS-based

ethods. Diversity is always expected irrespective of whether a

omogeneous or a heterogeneous pool is used. The most popular

echniques for pool generation are Bagging [2] , Boosting [3] and

andom Subspaces (RSS) [4] . With the exception of Boosting, in

hich future weak classifiers focus more on the examples that pre-

ious weak classifiers misclassified, these techniques usually ma-

https://doi.org/10.1016/j.patcog.2017.10.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.10.038&domain=pdf
mailto:abrun@ppgia.pucpr.br
mailto:alceu@ppgia.pucpr.br
mailto:lesoliveira@inf.ufpr.br
mailto:fabricio@ppgia.pucpr.br
mailto:robert.sabourin@etsmtl.ca
https://doi.org/10.1016/j.patcog.2017.10.038

176 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Fig. 1. Concept of competence estimated in a local region of feature space, defined

as the neighborhood of the test instance in a validation set.

a

h

p

T

r

t

f

S

r

d

2

a

t

c

l

t

t

a

(

b

t

d

s

l

l

i

l

O

T

t

f

c

c

s

g

P

a

m

w

e

c

nipulate the data for training weak and diverse classifiers in a ran-

dom fashion.

To the best of our knowledge, there is no DCS method oriented

by the classification problem properties. A DCS in which the pool is

generated to provide a better compromise with the criterion used

for classifier selection. More than simply classifier accuracy-based

competence, we are talking here about the ability of each classi-

fier in the pool to deal with a specific kind of problem. This idea is

based on works that attempt to find the best learning method for a

specific classification problem, taking into account its difficulty [6–

8] . Similarly, if we consider the space of a classification problem as

commonly composed of subproblems with different levels of diffi-

culty, the best case scenario would be to have a well-suited classi-

fier for each subproblem. Thus, the most promising classifier for a

given test instance could be the one trained on a similar subprob-

lem, i.e., a subproblem with a similar level of difficulty as that esti-

mated in the neighborhood of the test instance. The neighborhood

of the test instance could be used to specify the kind of subprob-

lem to which it belongs. It would appear reasonable to believe that

a classifier trained on a similar subproblem is able to deal with the

given test instance. Nevertheless, in such a DCS-based method, the

pool generated must be able to provide a better coverage of the

problem complexity space, but the methods available in the liter-

ature are not suitable for creating classifiers covering different re-

gions of this space.

To represent the classification problem difficulty, we may ex-

tract features from the problem data using complexity measures.

It is worth noting that the complexity, or difficulty, here involves

more than just the quantities of instances, classes and features. It

considers intrinsic characteristics of a classification problem, which

can be obtained by means of complexity measures applied on the

problem data. For instance, there are measures of difficulty based

on overlap between classes, on the behavior of the edges between

classes, on the class spatial distribution, and so on.

Our first hypothesis is that DCS can be done based on the clas-

sification problem difficulty, i.e., by selecting a classifier trained on

a subproblem showing a similar level of difficulty as that of the

neighborhood of the test instance. In our previous work [9] , we

observed that the adoption of data complexity features in the pro-

cess of evaluating the skill of each classifier, given a test instance,

may contribute to improve the performance of the classifier selec-

tion process. Deviating from that work, here we propose a com-

plete DCS framework to investigate the impact of using problem

complexity information not only in the selection process, but also

for pool generation. Thus, an important hypothesis is evaluated,

which is related to a better compromise between pool generation

and classifier selection in a DCS method. In fact, it is expected

that a pool of classifiers covering the problem complexity space

adequately, i.e., that is trained on data subsets that are diverse in

terms of level of difficulty, may provide better classification perfor-

mance for a DCS, mainly when the selection of classifiers is also

based on the problem difficulty.

In summary, more than just proposing a new framework for

DCS, we intend to answer the following research questions: (a)

Could a pool generated considering the difficulty of the classifica-

tion problem provide gains in terms of classification performance

by covering the problem space better?; (b) What is the impact, in

terms of accuracy, of using the classification problem difficulty to

drive both pool generation and classifier selection of a DCS-based

method? We answered these questions by means of an experi-

mental protocol composed of 30 datasets of classification prob-

lems with different levels of difficulty. We compared the results

obtained with 6 DCS-based methods of the literature. The exper-

iments showed that the strategy of generating and selecting clas-

sifiers based on the problem difficulty is very promising. The pro-

posed DCS provides a better compromise between pool generation
nd classifier selection processes. In addition, similar experiments

ave shown that the proposed pool generation has a positive im-

act on the performance of DCS methods.

The remaining of this manuscript is divided into 6 sections.

he Section 2 presents the main related works. Section 3 summa-

izes some basic concepts and definitions needed to understand

he proposed DCS framework. Section 4 describes the proposed

ramework, detailing its generation and selection phases, while

ection 5 presents the experimental protocol and corresponding

esults. Finally, Section 6 presents the conclusion and future work

irections.

. Related works

Various methods for dynamic selection of classifiers are avail-

ble in the literature. Basically, the difference between them is at

he level of the criterion used to define the competence of the

lassifiers for each test instance in the selection process. Fig. 1 il-

ustrates the concept of competence estimation. A local region of

he feature space, usually represented by the neighborhood of the

est instance in a validation set, is used to estimate the criterion

dopted.

It is common to find competence measures based on accuracy

overall or class-based) [10,11] , ranking of classifiers [12] , proba-

ilistic measures [11,13] , behavior of the classifiers computed on

heir output profiles [14] , Oracle-based criteria [15,16] , etc. In ad-

ition, some measures take into account group-based information

uch as ambiguity [19] , diversity [17,18] , or data handling theory

ike in [20] .

We selected six of the preceding important contributions to the

iterature to implement in our experimental protocol, with 4 be-

ng single classifier selection methods, and 2 being ensemble se-

ection methods. From [10] , we have implemented 2 methods, the

verall Local Accuracy (OLA) and the Local Class Accuracy (LCA).

he first calculates the classifier competence as the percentage of

he correct recognition of the neighbors of the test instance in the

eature space, while the second computes it as the percentage of

orrect classifications within the test instance neighborhood, but

onsidering only those examples where the classifier has given the

ame class as the one it gives for the test instance. The other 2 sin-

le classifier selection methods were implemented from [13] , the A

riori (APRI) and A Posteriori (APOS) methods. In the APRI method,

 classifier is selected based on its class posterior probability esti-

ated in the neighborhood of the test instance. This probability is

eighted by the Euclidian distance between the test instance and

ach neighbor. Unlike in the APRI, the APOS method takes into ac-

ount the class assigned by the classifier to the test instance.

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 177

a

o

p

t

t

t

f

a

o

t

r

n

a

i

u

s

p

[

i

o

i

b

R

b

c

t

c

e

t

f

r

h

w

d

d

i

w

p

i

s

f

t

b

t

t

3

w

i

o

R

t

t

w

i

c

s

l

o

d

r

b

d

t

m

t

t

p

a

c

p

m

t

r

i

i

e

r

c

s

t

t

d

4

T

o

t

b

c
The 2 ensemble selection methods are based on [16] , and

re named KNORA-Eliminate (KE) and KNORA-Union (KU). Both

f them (K-NearestOracles) are methods that have produced very

romising results by considering the neighborhood of the test pat-

ern in a validation set as an “Oracle” which offer advice regarding

he most promising classifiers to be selected. In fact, the classifiers

hat recognize the k-nearest neighbors are selected according to

our different strategies. The two most promising in the literature

re KE and KU. In the KE strategy, a classifier is selected to be part

f the ensemble only if it can recognize all the neighbors of the

est instance, while in the KU strategy, a classifier is selected if it

ecognizes at least one neighbor of the test instance. It should be

oted that all these methods are described in more detail in [1] .

Pool generation plays an important role in a DCS-based method,

nd diversity is always expected irrespective of whether the pool

s homogeneous or heterogeneous. A homogeneous pool is built by

sing the same inducer, but its elements are trained on different

ubsets of data. The most popular techniques for generating such

ools are Bagging [2] , Boosting [3] and Random Subspaces (RSS)

4] . The first consists in randomly, and with replacement, choosing

nstances from the training set to form each data subset. The sec-

nd one adopts a similar strategy, but considers weights for each

nstance at the time of the draw. The idea is to form stronger sets

y defining higher weights for the most difficult instances. In the

SS technique, all the instances from the training dataset are kept,

ut only a subset of features are randomly selected to train each

lassifier to compose the pool. For the heterogeneous techniques,

he idea is essentially to create classifiers supported by different

oncepts by varying the inducer or even its parameters.

The novelty of the proposed DCS framework lies in its consid-

ration of information related to the problem difficulty, not only at

he selection phase, but also to generate the pool of classifiers. In

act, since we expect to find a similar subproblem to use the cor-

esponding classifier for the test instance, it could be interesting to

ave a pool characterized by problem difficulty diversity; in other

ords, generating classifiers trained on subproblems representing

ifferent levels of difficulty. The proposed framework shares the

ivide-and-conquer principle already explored by researchers ded-

cated to mixture of experts, such as the authors in [5] . In their

ork, the idea was to divide the problem space between the ex-

erts represented by few networks, which are supervised by a gat-

ng network that decides how to combine them for a given test in-

tance. The subtasks in their work, here are represented using dif-

erent data subsets organized taking into account complexity fea-

ures, while the competence of an expert is determined by com-

ining data complexity and accuracy based features. The next sec-

ion presents some important concepts and definitions related to

he main ideas that support the proposed framework.

. Basic concepts and definitions

To estimate the level of difficulty of a classification problem,

e may apply measures of complexity direct on the problem data,

ndependent of the classifier choice. For that, we need only a set

f training data consisting of points in a d-dimensional real space

d , in which each instance is associated with a class label. Using

his training set, we can compute complexity measures to define

he problem difficulty. Some practical measures of data complexity

ith regard to classification were introduced in [6] , and extended

n [7,21] . They have been used for classifier evaluation [22] , and re-

ently, for meta-learning [24] . The complexity measures were clas-

ified into three categories in [6,7] , as follows: (a) classes over-

apping; (b) classes separability; and (c) classes geometry, topol-

gy and density. We have pre-selected one from each category to

escribe the problem difficulty in the proposed framework. The

eason was to use low correlated measures which are supported
y different concepts. By means of preliminary experiments con-

ucted on 13 UCI databases, we estimated the correlation among

he 14 measures implemented in the DCoL library [25] . The three

easures described in this section presented low Pearson correla-

ion among them, suggesting that they may work in a complemen-

ary fashion.

• F 1 (Fisher’s Discriminant Ratio): this measure belongs to the

first category, and it measures how separable are two classes

considering a particular feature. Let us to consider a given fea-

ture space, and that μ1 , μ2 , σ 1 , and σ 2 are the means and

standard deviations for classes 1 and 2, respectively. F 1 is com-

puted for each feature as denoted in Eq. (1) . The final value for

F 1 corresponds to the largest over the whole set of features.

The larger is the F 1 value, the easier is to separate the classes.

F 1 =

(μ1 − μ2)
2

σ1
2 − σ2

2
(1)

• N 2 (the ratio of intra/inter class nearest neighbor distance):

representing the second category, this measure estimates the

separability of two classes taking into account an analyse of the

border between them. To this end, it considers the distance of

each sample of the problem to its nearest neighbor inside and

outside of the same class. N 2 can be computed as denoted by

Eq. (2) , in which δ(N

=
1 (x i) , x i) corresponds to the Euclidean dis-

tance between the sample i and its nearest neighbor inside the

same class, δ(N

� =
1
(x i) , x i) is the distance from the sample i to

the nearest neighbor of different class, and n is the number of

samples. The smaller is the N 2 value, the easier is to separate

the classes.

N 2 =

∑ n
i =1 δ(N

=
1 (x i) , x i)

∑ n
i =1 δ(N

� =
1
(x i) , x i)

(2)

• N 4 (the nonlinearity of the one-nearest neighbor classifier): as

a representative of the third category was selected the N 4 mea-

sure. It corresponds to the error rate of the 1 NN classifier on a

test set created by the linear interpolation between randomly

drawn pairs of samples from the same class. The smaller is the

N 4 value, the easier is the problem.

Considering the preceding concepts, we can now define the

roblem complexity space. Given a standard training set D , and

 strategy to generate M new training subsets DS i , with each one

ontaining just a percentage of samples obtained from D , by sam-

ling uniformly and with replacement, for each DS i , we can esti-

ate the difficulty by means of complexity measures. Fig. 2 illus-

rates the complexity space of a given classification problem rep-

esented by two complexity measures (F 1 and N 2). Each element

n that space corresponds to a subproblem (data subset, DS i) with

ts own level of difficulty. It should be mentioned that the strat-

gy used to generate the data subsets from D plays an important

ole in the problem space representation. For a clearer explanation,

onsider the neighborhood of a given test instance projected in the

ame space to find a similar subproblem. In the example of Fig. 2 ,

he most similar subproblem is that represented by DS i . We expect

hat a classifier trained on DS i , may present the necessary skills to

eal with the test instance t .

. Proposed framework

Fig. 3 presents an overview of the proposed DCS framework.

he training set of a given classification problem is the input

f a sampling process that initially generates M data subsets

(DS 1
1
, DS 1

2
, . . . , DS 1

M

) . Each DS
p
i

corresponds to the i th individual of

he p th population of a genetic algorithm (GA) which is oriented

y accuracy and features related to the classification problem diffi-

ulty estimated using complexity measures. The idea is to organize

178 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Fig. 2. Problem complexity space using complexity measures F 1 and N 2. Each point

in the space is a training data subset (DS i) of a given problem.

i

G

s

H

o

t

t

d

c

u

s

fi

r

(

s

d

s

i

t

c

t

p

o

t

i

t

d

s

E

D

w

i

c

p

e

s

t

t
subsets of data with different levels of difficulty to train the clas-

sifiers to compose the pool.

The output of the first stage is the pool of classifiers

(C N 1 , C
N
2 , . . . , C

N
M

) , the data subset used to train each member of the

pool (DS N
1
, DS N

2
, . . . , DS N

M

) , and their corresponding complexity sig-

natures (sigDS N
1
, sigDS N

2
, . . . , sigDS N

M

) ; in other words, a set of fea-

tures describing the difficulty of each data subset DS N
i

.

During the classifier selection stage, given a test instance t , a

vector containing three meta-features (f 1 i , f 2 i , f 3 i) is estimated con-

sidering the complexity signature (sigDS N
i
) of data subset DS N

i
used

for training classifier C N
i

and the neighborhood of t in a valida-

tion set. The similarity between the complexity of the test instance

neighborhood and the complexity signature of the training subset

of each classifier is combined with accuracy information to esti-

mate the competence of each classifier. A detailed description of

the pool generation is presented in Section 4.1 , while the particu-

larities of the selection process are described in Section 4.2 .

4.1. Pool generation

A Genetic Algorithm (GA) is used in order to evolve an initial

pool of classifiers, taking into account data complexity features es-

timated on their training subsets, combined with their correspond-
Fig. 3. An overview of the proposed DCS framework, present
ng accuracies. The idea is inspired on the works [21,22] , where a

A successfully allowed the generation of data subsets for a clas-

ification problem covering the problem complexity space better.

owever, here, we use the GA to evolve subsets of data from the

riginal training set. The fitness function uses the difference in

erms of difficulty among the generated subsets, combined with

he accuracy of the corresponding trained classifiers. The base in-

ucer is a parameter of the proposed method. Fig. 4 shows the

hromosome definition of the GA developed.

Each training subset (DS
p
i

) is an individual within the p th pop-

lation. In terms of individual genotype, the genes of the chromo-

omes correspond to the instances used for training each classi-

er. The values of the F 1 and N 2 complexity measures, the accu-

acy (Acc) of the classifier trained on (DS
p
i

), the average dispersion

 Disp) estimated in a pairwise manner between DS
p
i

and all other

ubsets in the population, plus the fitness values, constitute the in-

ividual phenotype.

As can be seen, we used just two of the three complexity mea-

ures pre-selected for our framework. This is because after analyz-

ng different combinations of these three measures, we observed

he best results for pool generation when only F1 and N2 were

onsidered. In fact, it can be explained since the measure N4 uses

he error rate of the 1NN classifier to estimate the problem com-

lexity, and our fitness function already has a component based

n accuracy as shown in Eq. (4) . Thus, in the current version of

he proposed GA method, each individual difficulty or complexity

s estimated based on the F 1 (Maximum Fisher’s discriminant ra-

io) and N 2 (the ratio of average intra / inter class nearest neighbor

istance) metrics. They are used to compute the average disper-

ion of each individual in the population (Disp
DS

p
i

), as denoted by

q. (3) .

isp DS p
i

=

∑ M

j=1

√ ∑ nc
k =1 (x i,k − x j,k) 2

M − 1

(3)

here M corresponds to the number of classifiers in the pool, nc

ndicates the number of complexity measures adopted in the pro-

ess, while x i, k and x j, k correspond to the value of the k th com-

lexity measure for the elements i and j , respectively.

The dispersion in terms of complexity corresponds to the av-

rage distance of the individuals in the population (training sub-

ets). The idea is to have training subsets better distributed over

he problem complexity space. The accuracy Acc
C

p
i

of each classifier

rained on the generated data subsets is combined with the corre-
ing the pool generation and classifier selection stages.

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 179

Fig. 4. Structure of the GA adopted.

s

t

o

s

v

c

F

w

i

D

d

t

s

A

l

p

m

t

s

o

t

a

e

g

o

g

s

g

w

s

o

p

t

s

t

c

s

t

I

s

p

m

c

c

D

t

I

s

t

r

d

r

p

o

f

u

t

a

w

t

a

4

t

r

t

t

a

ponding dispersion value Disp
DS

p
i
, with a validation set used for

his purpose. Thus, a classifier having higher accuracy and trained

n data subset farther from concentration areas in the complexity

pace will have a greater fitness value. Therefore, our method fa-

ors those individuals that are accurate, but exploring the problem

omplexity space, as defined in the fitness denoted by the Eq. (4) .

 it DS p
i

= Acc C p
i

+ Disp
′
DS p

i

(4)

here Disp
′
DS

p
i

corresponds to the normalized metric of Disp
DS

p
i

us-

ng the MinMax method, as denoted in Eq. (5) .

isp
′
DS p

i

=

Disp DS p
i
− Disp min

Disp max − Disp min

(5)

The steps of the GA process are described in the Algorithm 1 .

In the first GA generation, the population is composed of M in-

ividuals (DS 1
1
, DS 1

2
, ... , DS 1

M

), corresponding to bags of data for

raining potential classifiers, which can be generated using any

ampling technique applied in the initial problem training dataset.

fter determining the fitness of each individual (performed on

ines 12–14 of the Algorithm 1) an elitism process is conducted,

reventing the best elements might change during crossover and

utation phases (conducted on lines 16–19). These elements are

aken directly to the next generation, after which the crossover

tep is performed (lines 21–23). The selection process is carried

ut at random (roulette), and as a result, the higher the fitness of

he elements, the greater their chances of being chosen to prop-

gate their genes to the next generations. Such a selection strat-

gy was defined after we evaluate three different selection strate-

ies (roulette wheel, rank, and tournament). The selection based

n roulette wheel has shown to be more efficient in terms of early

eneration and time processing. Similar behavior has been ob-

erved in [23] , where the authors compare these selection strate-

ies for timetabling problem. A two-point crossover was adopted,

hich are randomly selected. This is an attempt to be more aggres-

ive than consider just one point. However, this choice was based

n the evaluation of three different strategies: one, two and three-

oint crossover. The configuration based on two points has shown

he best results. The idea is that instances (samples of the datasets)
hould be exchanged between the individuals, but however, main-

aining the balance between classes. To ensure that there is no

hange in the proportions, the instances are sorted by class, and

o when the exchange of “segments” between two parents occurs,

here will be no change in the number of instances of each group.

n our implementation, despite the randomness in the two-point

election, we impose a restriction requiring that each crossover

oint be positioned within different classes. Thus, the process is

ore aggressive, ensuring that elements from different classes are

hanged. This process is illustrated in Fig. 5 , where each number

orresponds to an instance that composes the individuals i and j .

ifferent values indicates different classes.

After the new elements are generated through the crossover,

hey are subjected to a mutation process (line 24 of the algorithm).

n our scenario, each instance corresponds to a gene. When it is

ubmitted to mutation, this instance is replaced by another one of

he same class, thus maintaining the class balance. This process is

epresented in Fig. 6 .

The choice by the new gene is made randomly. Initially, a ran-

om individual j , different from i , is selected and, within this, a

andom instance that belongs to the same class is chosen. The last

hase consists of the removal of duplicate instances (lines 27–29

f the algorithm). When a duplicate is present, it is replaced, per-

orming an approach similar to mutation. The process is repeated

ntil each data set has no further duplicates. The main output of

his DCS phase is the pool of generated classifiers. However, we

lso have the subset of data used for training each classifier, as

ell as the complexity signature of each data subset. These addi-

ional outputs are described in detail in the next section, since they

re used in the proposed dynamic classifier selection.

.2. Dynamic classifier selection

Our dynamic selection method, named DSOC (Dynamic Selec-

ion Based on Complexity) combines accuracy with information

elated to the classification problem difficulty. The main assump-

ion is that the most promising classifier for the test instance was

rained on a subset of data presenting a similar level of difficulty

s that estimated in the test neighborhood.

180 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Fig. 5. Crossover process: (a) The two-point selection positioned in two different classes; (b) Swap of the segments between parents i and j .

Fig. 6. Mutation process: the selected instance is swapped by that randomly chosen in a different individual, necessarily belonging to the same class.

Fig. 7. DSOC - Dynamic Classifier Selection based on Complexity.

o

d

p

c

d

p

a

i

c

t

t

s

f

s

l

i

The Algorithm 2 presents each step of the DSOC method, while

a complete description is presented in [9] . Here, we emphasize its

main aspects using the Fig. 7 in which is possible to observe the

complete method which is composed of 4 steps (A, B, C, and D).

In the step (A), we define the neighborhoods γ and δ of the test

instance t in a validation set (Algorithm 2 , lines 5 and 6), which

differ in terms of size, L and K , respectively. Then, in the step (B),

sig γt is estimated as the complexity signature of γ t based on the

complexity measures F 1, N 2 and N 4 (Algorithm 2 , line 7). The sim-

ilarity between sig γt and the complexity signature sig DS i
of each

training set DS i is used to compute the meta-feature f 1 i (step C),

which represents the similarity in terms of difficulty between the

neighborhood of t and each training set (DS i) used for learning the

pool of classifiers. Such a similarity is computed considering the

class α predicted by the classifier C i , since all complexity measures

are usually computed in a one-against-all fashion, showing how

difficult is to classify each class of the given problem. The second

meta-feature f (step C) considers the distance of t to the centroid
2 i
C
f the predicted class (α) in each training set DS i . Since distinct

ata subsets with different distributions in the feature space may

resent similar complexity values, we have defined an additional

riterion to better describe the complexity of each data subset un-

er analysis, i.e. a criterion to distinguish them. This is the pur-

ose of the meta-feature f 2 i . Although not defined in the literature

s a measure of complexity, we may consider f 2 i as a measure to

ndicate how “difficult” is for a specific data subset to provide a

lassifier suitable to classify the test sample under analysis. Finally,

he meta-feature f 3 i is computed in the step (C), which is related

o the local class accuracy of each classifier estimated on δt con-

idering the predicted class (α). These meta-features are computed

or each classifier in the pool (Algorithm 2 , lines 10–12). In the last

tep (D), the computed meta-features are combined (Algorithm 2 ,

ine 14). The best combination strategy was the sum as presented

n Eq. (6} .

omb _ C = (1 − f ′) + (1 − f ′) + f 3 i (6)

i 1 i 2 i

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 181

Algorithm 1: Classifier pool generation based on accuracy and

complexity features.

Input : training set Tr; validation set Va; number of classifiers

M; size of bags Ba; size of elitism El; the base inducer

BI

Output : the final pool C of M classifiers; the complexity

signature of all elements in DS; the final M bags DS

1 DS = {} ;
2 for i ← 1 to M do

3 Generate bag DS 1
i

with Ba size based on T r;

4 DS = DS ∪ DS 1
i

;

5 C 1
i

= Train BI on DS 1
i

bag;

6 Compute the difficulty signature of DS 1
i

;

7 end

8 for p ← 1 to NumGenerations do

9 DS temp = {} ;
10 E = {} ;
11 for i ← 1 to M do

12 Calculate the average distance Disp
DS

p
i

;

13 Compute the accuracy of C
p
i

on Va;

14 Compute the fitness F it
C

p
i

;

15 end

16 for i ← 1 to El do

17 Select the i-th best individual DS
p
i

� E;

18 E = E ∪ DS
p
i

;

19 end

20 while size(DS temp) < (M − El) do

21 Select parents DS p1 and DS p2 ;

22 DS new 1 = two-point crossover of DS p1 and DS p2 ;

23 DS new 2 = two-point crossover of DS p1 and DS p2 ;

24 Apply mutation on DS new 1 and DS new 2 ;

25 DS temp = DS temp ∪ DS new 1 ∪ DS new 2 ;

26 end

27 for each bag DS
p
i

∈ DS temp do

28 Remove duplicated genes;

29 end

30 DS = DS temp ∪ E;

31 for i ← 1 to M do

32 C
p+1
i

= Train BI on DS
p+1
i

bag;

33 Compute the complexity signature of DS
p+1
i

;

34 end

35 end

w

r

(

d

C

e

d

r

m

a

t

5

f

g

Algorithm 2: DSOC - DS on complexity.

Input : the pool C of M classifiers; training, validation and

testing sets, Tr, Va and Te; and the neighborhood sizes

L and K

Output : C ∗, the most promising classifier for each testing

sample t in Te

1 for each classifier C i in the pool do

2 Compute the complexity signature sig DS i
from data subset

DS i ;

3 end

4 for each test t in Te do

5 Find the γt as the L-nearest-neighboors of t in Va;

6 Find the δt as the K-nearest-neighboors of t in Va;

7 Compute the complexity signature of γt ;

8 for each classifier C i in the pool do

9 α = C i (t) ;

10 Compute meta-feature f 1 i using γt , α and sig DS i
;

11 Compute meta-feature f 2 i using DS i and α;

12 Compute meta-feature f 3 i using δt and α;

13 Normalize f 1 i and f 2 i ;

14 Comp _ C i = (1 − f ′
1 i
) + (1 − f ′

2 i
) + f 3 i ;

15 end

16 C ∗ = argmax (Comp _ C i) ;

17 Use the classifier C ∗ to classify t;

18 end

Table 1

Datasets, their main features and corresponding repositories.

Datasets Repository # of instances # of features # of classes

Adult UCI 690 14 2

Banana PRTools 20 0 0 2 2

Blood UCI 748 4 2

CTG UCI 2126 21 3

Diabetes UCI 766 8 2

Ecoli UCI 336 7 8

Faults UCI 1941 27 7

German STATLOG 10 0 0 24 2

Glass UCI 214 9 6

Haberman UCI 306 3 2

Heart STATLOG 270 13 2

ILPD UCI 583 10 2

Image UCI 2310 19 7

Ionosphere UCI 350 34 2

Laryngeal1 LKC 213 16 2

Laryngeal3 LKC 353 16 3

Lithuanian PRTools 20 0 0 2 2

Liver UCI 345 6 2

Magic KEEL 19,020 10 2

Mammo KEEL 830 5 2

Monk KEEL 432 6 2

Phoneme ELENA 5404 5 2

Sonar UCI 208 60 2

Thyroid LKC 692 16 2

Vehicle STATLOG 847 18 4

Vertebral UCI 300 6 2

WBC UCI 569 30 2

WDVG UCI 50 0 0 21 3

Weaning LKC 302 17 2

Wine UCI 178 13 3

U

b

C

w

w

f

l
here f ′
1 i

and f ′
2 i

correspond to the normalized f 1 i and f 2 i ,

espectively. They were normalized using the MinMax scaling

 Algorithm 2 , line 13). Finally, the best classifier C ∗ is selected as

escribed in Eq. (7) (Algorithm 2 , line 16).

∗ = argmax (Comb _ C i) (7)

It is important to mention that to define this combination strat-

gy we have evaluated each meta-feature individually, and also the

ifferent possibilities of combining them (using product and sum

ules). The most promising results were achieved when the three

eta-features were combined using sum rule. In addition, we have

lso investigated different weights for each meta-feature. However,

he results were not promising.

. Experiments

The experimental protocol used to evaluate the proposed

ramework considers 30 datasets previously used in our research

roup [9,30,31] . 28 datasets come from different repositories:
CI machine learning repository [26] , KEEL (Knowledge Extraction

ased on Evolutionary Learning) repository [27] , Ludmila Kuncheva

ollection [28] , and the STATLOG project [29] . The other 2 datasets

ere artificially generated with the Matlab PRTools. These datasets

ere selected taking into account classification problems with dif-

erent levels of difficulty. In addition, we have considered prob-

ems composed of numeric attributes and no missing data. Thus,

182 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Table 2

Comparison of the proposed GA-based method and the Bagging technique both used as pool generators for 4 different DCS methods (OLA, LCA, APRI

and APOS). The average and corresponding standard deviations of 20 replications with the best results in boldface.

OLA LCA APRI APOS

Dataset Bagging GA Bagging GA Bagging GA Bagging GA

Adult 84.04 (2.87) 84.77 (2.80) 83.26 (2.52) 83.52 (2.87) 84.01 (2.34) 85.73 (2.78) ∗ 83.55 (2.60) 85.20 (2.91) ∗

Banana 85.03 (1.73) 84.87 (1.68) 84.88 (1.78) ∗ 84.68 (1.79) 84.52 (1.64) 84.57 (1.87) 83.82 (1.69) 83.83 (1.76)

Blood 76.12 (0.26) 76.12 (0.26) 75.86 (1.23) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26)

CTG 86.99 (0.89) 86.70 (1.04) 80.94 (0.95) 81.33 (0.82) ∗ 86.45 (1.38) 86.76 (0.76) 86.28 (1.29) 86.30 (0.85)

Diabetes 64.92 (2.85) 65.00 (2.27) 62.37 (2.64) 63.75 (2.89) ∗ 65.00 (2.03) 64.51 (2.46) 64.38 (2.44) 64.41 (2.76)

Ecoli 64.94 (4.74) 62.38 (3.09) 52.56 (5.52) 52.72 (5.91) 64.05 (5.05) 64.46 (4.83) 63.39 (4.00) 62.38 (3.94)

Faults 58.35 (2.31) ∗ 56.82 (2.99) 37.96 (10.5) 38.84 (10.1) ∗ 56.08 (2.15) 55.70 (3.42) 54.63 (2.25) 54.73 (3.66)

German 71.90 (2.35) 73.48 (2.42) ∗ 64.22 (3.31) 65.88 (2.98) ∗ 71.74 (2.54) 72.80 (3.08) 69.80 (2.39) 71.52 (2.85)

Glass 53.77 (4.79) 51.89 (7.46) 24.15 (9.04) 25.47 (10.2) 47.92 (7.41) 53.11 (6.09) 24.72 (19.5) 30.75 (16.9)

Haberman 73.68 (0.59) 74.14 (0.75) 73.62 (0.88) 74.41 (1.74) ∗ 73.82 (0.39) 74.41 (1.35) 73.68 (0.59) 73.29 (3.00)

Heart 78.58 (4.04) 80.37 (4.12) 70.15 (4.58) 72.84 (5.31) ∗ 78.81 (4.02) 80.67 (3.73) 72.24 (8.64) 77.31 (4.10) ∗

ILPD 69.72 (3.38) 68.62 (2.91) 61.76 (3.67) 63.79 (3.82) ∗ 69.24 (3.22) 70.34 (2.97) 67.52 (4.16) 6 8.41 (3.6 8)

Image 42.03 (2.30) 41.25 (2.12) 32.18 (4.11) 32.82 (3.87) ∗ 40.68 (1.82) 41.33 (1.99) 40.29 (2.35) 41.42 (2.34)

Ionosphere 80.91 (3.88) 81.48 (4.56) 69.72 (4.21) 72.10 (4.14) ∗ 80.63 (4.72) 80.72 (4.14) 77.84 (4.62) 81.02 (4.36) ∗

Laryngeal1 80.09 (4.40) 78.87 (5.08) 70.94 (6.24) 73.49 (5.04) ∗ 81.13 (5.57) 80.00 (3.89) 78.11 (6.92) 77.08 (5.11)

Laryngeal3 66.02 (4.19) 67.22 (4.90) 55.34 (5.77) 58.81 (6.25) ∗ 66.02 (4.70) 66.14 (3.23) 62.84 (6.18) 63.92 (4.43)

Lithuanian 6 8.30 (2.4 9) 67.06 (3.19) 70.38 (1.84) 69.03 (2.40) 67.06 (2.42) 67.49 (3.21) 64.50 (3.36) 65.15 (3.16)

Liver 60.99 (3.63) 60.17 (3.14) 50.06 (5.30) 51.34 (5.15) 58.90 (5.51) 57.38 (4.96) 55.17 (5.47) 54.24 (8.20)

Magic 79.22 (0.70) 79.00 (0.56) 78.17 (0.55) 78.23 (0.60) 78.73 (0.81) 78.78 (0.53) 78.59 (0.83) 78.53 (0.63)

Mammo 79.78 (2.29) 80.56 (2.96) 76.23 (3.11) 77.97 (3.08) ∗ 80.10 (3.17) 80.51 (3.44) 79.08 (2.74) 79.15 (3.44)

Monk 81.99 (3.56) 82.59 (3.22) 69.26 (3.98) 72.73 (3.81) ∗ 79.58 (4.07) 81.48 (4.86) ∗ 66.76 (12.8) 68.19 (14.5)

Phoneme 77.18 (1.25) 77.22 (0.82) 76.54 (0.96) 76.77 (0.86) 76.17 (1.47) 77.14 (0.98) ∗ 76.08 (1.55) 77.05 (0.96) ∗

Sonar 61.73 (6.32) 60.29 (5.38) 46.83 (7.28) 45.96 (5.73) 58.65 (6.10) 61.44 (5.94) 41.63 (22.5) 45.96 (20.8)

Thyroid 93.67 (1.25) 93.73 (1.45) 91.88 (1.97) 91.99 (1.71) 93.29 (1.71) 93.41 (1.92) 92.51 (2.79) 92.02 (1.97)

Vehicle 32.16 (3.87) 32.44 (2.65) 24.53 (4.66) 23.96 (4.74) 30.28 (3.92) 32.04 (3.33) 29.55 (3.85) 31.11 (4.01)

Vertebral 81.53 (4.35) 80.73 (4.70) 71.67 (5.13) 73.20 (5.20) 82.53 (3.32) 81.67 (5.07) 78.00 (6.06) 77.87 (8.13)

WBC 77.36 (14.6) 77.57 (13.5) 84.86 (3.70) 84.89 (3.25) 77.75 (14.1) 79.79 (12.18) 70.32 (17.3) 79.01 (10.6)

WDVG 79.92 (1.13) 80.24 (0.88) 67.81 (3.77) 69.91 (3.41) ∗ 79.18 (1.21) 80.08 (1.19) ∗ 78.37 (1.35) 79.49 (1.33)

Weaning 76.87 (4.14) 77.27 (4.43) 60.40 (5.50) 63.33 (6.57) ∗ 75.67 (5.21) 78.40 (4.19) ∗ 59.13 (16.8) 64.93 (19.9)

Wine 33.52 (3.44) 33.52 (2.95) 45.23 (14.1) 43.86 (13.3) 34.32 (4.71) 35.68 (7.58) 32.61 (2.41) 33.41 (2.88)

Table 3

Comparison of the proposed GA-based method and the Bagging technique both used as pool generators for 2 ensemble selection methods (KE and

KU), the combination of all classifiers in the pool (ALL), and the use of the best classifier in the pool (SB). The average and corresponding standard

deviations of 20 replications with the best results in boldface.

SB ALL KNORA-U KNORA-E

Dataset Bagging GA Bagging GA Bagging GA Bagging GA

Adult 84.74 (2.92) 85.29 (2.93) 86.83 (2.58) 86.66 (2.67) 83.08 (2.03) 84.24 (1.85) ∗ 81.92 (1.85) 83.72 (1.92) ∗

Banana 84.49 (1.43) 84.10 (1.61) 84.16 (1.59) 84.40 (1.76) 87.59 (1.24) 87.42 (1.12) 85.06 (1.46) 85.06 (1.45)

Blood 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26)

CTG 86.62 (1.24) 86.85 (1.54) 88.14 (1.12) 88.14 (1.14) 84.67 (0.96) 85.01 (0.93) ∗ 83.95 (0.89) 84.21 (0.89) ∗

Diabetes 64.95 (2.06) 65.09 (2.38) 64.48 (1.31) 65.26 (2.54) 64.48 (0.95) 64.64 (0.87) 64.56 (1.09) 64.79 (1.11)

Ecoli 63.63 (7.54) 65.06 (4.65) 53.39 (12.5) 53.75 (13.7) 54.40 (2.77) 54.44 (2.77) 52.02 (2.10) 52.26 (1.99)

Faults 55.76 (1.94) 55.85 (3.11) 44.16 (11.7) 43.98 (11.8) 43.65 (2.49) 44.96 (2.80) ∗ 37.41 (1.96) 39.25 (2.27) ∗

German 72.74 (2.99) 72.28 (3.21) 76.38 (2.28) 75.70 (2.01) 71.88 (1.02) 72.94 (1.36) ∗ 71.52 (0.88) 72.28 (1.15) ∗

Glass 52.26 (7.98) 50.00 (4.64) 48.77 (6.76) 49.15 (8.23) 51.13 (5.37) 51.98 (5.15) 45.28 (5.13) 47.45 (4.71) ∗

Haberman 74.01 (1.24) 73.75 (0.65) 73.75 (0.29) 73.95 (0.79) 73.68 (0.00) 73.68 (0.00) 73.68 (0.00) 73.68 (0.00)

Heart 79.40 (4.54) 79.93 (4.49) 84.33 (2.52) 83.36 (3.48) 75.67 (4.77) 77.16 (4.50) 74.55 (4.21) 76.19 (4.31)

ILPD 69.48 (3.94) 69.76 (3.88) 71.86 (3.89) 71.83 (3.83) 71.90 (0.61) 71.90 (0.75) 71.83 (0.45) 71.83 (0.45)

Image 40.75 (3.10) 41.05 (3.53) 25.60 (7.83) 25.76 (7.81) 36.39 (1.28) 36.35 (1.52) 35.86 (1.19) 35.88 (1.48)

Ionosphere 81.59 (3.74) 82.39 (4.03) 82.61 (2.62) 83.24 (3.33) 89.38 (3.54) 87.73 (3.40) 88.69 (3.83) 87.50 (3.17)

Laryngeal1 80.47 (4.40) 80.19 (4.94) 81.89 (4.60) 81.42 (4.55) 73.58 (4.77) 74.25 (3.79) 72.08 (4.57) 72.74 (4.07)

Laryngeal3 67.05 (4.07) 67.10 (3.42) 70.68 (2.80) 69.94 (3.62) 61.14 (3.48) 61.02 (3.43) 58.64 (3.86) 59.37 (3.25)

Lithuanian 63.67 (2.97) 64.43 (4.02) 65.50 (2.26) 66.39 (2.46) 58.43 (0.98) 59.87 (1.40) ∗ 56.69 (0.80) 58.04 (1.21) ∗

Liver 63.02 (6.00) 60.17 (5.25) 61.45 (4.05) 62.56 (4.97) 56.63 (5.59) 57.09 (6.77) 52.21 (3.51) 55.17 (4.58) ∗

Magic 78.74 (0.76) 78.74 (0.57) 78.85 (0.58) 78.87 (0.57) 78.90 (0.58) 78.95 (0.58) 78.80 (0.55) 78.80 (0.58)

Mammo 80.58 (3.06) 80.66 (3.57) 81.76 (2.15) 81.86 (2.41) 78.50 (2.66) 79.13 (2.93) 77.85 (2.83) 78.77 (2.76) ∗

Monk 79.58 (3.98) 79.21 (3.43) 79.86 (1.75) 82.64 (5.43) ∗ 79.31 (3.26) 78.84 (3.67) 78.15 (3.72) 79.86 (3.08)

Phoneme 77.08 (1.06) 77.15 (0.86) 76.59 (0.63) 77.11 (0.80) ∗ 74.77 (0.74) 75.74 (0.81) ∗ 74.07 (0.64) 75.17 (0.74) ∗

Sonar 61.06 (5.40) 61.63 (4.65) 61.54 (5.27) 64.62 (6.21) 53.37 (1.03) 55.00 (1.86) ∗ 53.17 (0.92) 53.85 (1.36) ∗

Thyroid 93.61 (1.97) 93.21 (2.86) 96.42 (1.06) ∗ 95.61 (1.32) 89.22 (2.73) 88.70 (4.11) 88.79 (2.82) 88.38 (4.05)

Vehicle 31.30 (3.68) 30.52 (4.08) 32.39 (5.21) 33.65 (5.24) 27.51 (1.69) 28.22 (2.57) 26.30 (1.23) 26.75 (1.31)

Vertebral 81.33 (4.02) 80.93 (5.64) 83.53 (3.16) 83.13 (4.22) 79.27 (4.47) 80.47 (4.64) 78.47 (3.80) 79.67 (4.58)

WBC 67.78 (20.2) 81.73 (15.7) ∗ 85.92 (3.06) 90.18 (2.16) ∗ 89.15 (3.16) 88.49 (2.96) 88.59 (3.72) 88.27 (3.47)

WDVG 79.86 (1.14) 79.54 (0.97) 81.50 (0.79) 81.54 (1.02) 71.07 (1.12) 72.71 (1.15) ∗ 69.66 (1.05) 71.6 (1.18) ∗

Weaning 75.60 (5.45) 76.60 (4.82) 81.47 (4.56) 83.18 (3.42) 66.93 (4.98) 71.07 (3.96) ∗ 64.47 (4.45) 68.47 (3.58) ∗

Wine 34.43 (6.32) 36.59 (9.00) 32.84 (1.13) 38.30 (10.9) ∗ 32.84 (1.13) 32.84 (1.13) 32.84 (1.13) 32.84 (1.13)

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 183

Fig. 8. Comparison between both pool generation methods (GA-based and Bagging) in terms of wins, ties and losses, considering different DCS methods (KE, KU, APOS, APRI,

LCA and OLA), the combination of all classifiers in the pool (ALL) and the single best classifier in the pool (SB). In blue, green, and red, we have, respectively, the number of

wins, ties and losses related to the GA-based method. The dashed line illustrates the critical value (19.5). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Table 4

Average dispersion in the complexity space of

the generated training subsets.

Dispersion

Dataset Bagging GA

Adult 0.53 (0.06) 1.26 (0.26) ∗

Banana 0.20 (0.02) 0.25 (0.03) ∗

Blood 0.14 (0.01) 0.22 (0.04) ∗

CTG 0.24 (0.04) 0.25 (0.04) ∗

Diabetes 0.18 (0.02) 0.28 (0.04) ∗

Ecoli 20.4 (4.11) 21.1 (3.99) ∗

Faults 0.74 (0.05) 0.73 (0.06)

German 0.12 (0.02) 0.31 (0.14)

Glass 2.62 (1.30) 7.9 (10.4) ∗

Haberman 0.17 (0.02) 0.36 (0.08) ∗

Heart 0.40 (0.09) 2.19 (1.30) ∗

ILPD 0.08 (0.01) 0.12 (0.01) ∗

Image 12.7 (2.10) 13.1 (1.99)

Ionosphere 0.21 (0.03) 0.47 (0.13) ∗

Laryngeal1 0.68 (0.10) 1.59 (0.44) ∗

Laryngeal3 1.77 (0.25) 1.93 (0.33) ∗

Lithuanian 0.17 (0.01) 0.24 (0.03) ∗

Liver 0.10 (0.01) 0.17 (0.03) ∗

Magic 0.03 (0.00) 0.04 (0.00)

Mammo 0.26 (0.03) 0.30 (0.07)

Monk 0.28 (0.04) 0.60 (0.12) ∗

Phoneme 0.04 (0.00) 0.06 (0.01) ∗

Sonar 0.28 (0.04) 0.72 (0.20) ∗

Thyroid 0.83 (0.09) 1.62 (0.26) ∗

Vehicle 0.37 (0.03) 0.42 (0.04) ∗

Vertebral 0.30 (0.04) 0.52 (0.13) ∗

WBC 0.55 (0.06) 0.86 (0.11) ∗

WDVG 0.12 (0.01) 0.13 (0.02)

Weaning 0.38 (0.05) 0.65 (0.13) ∗

Wine 1.90 (0.20) 2.16 (0.49) ∗

t

i

c

m

i

d

2

p

t

p

t

[

g

p

s

e

e

n

w

fi

s

i

h

p

b

s

b

t

b

w

w

s

i

o

f

c

5

5

e

B

m

o

s
he final set of problems has 2-class and 3-class problems show-

ng different levels of complexity, and also one 4-class, one 6-

lass, two 7-class and one 8-class problem. Table 1 presents a sum-

ary with the main details of the used datasets. In addition, it

s important to mention that, for each of 20 replications, these

atasets were divided in a random fashion into 50% for training,

5% for validation, 25% for testing. It is worth mentioning that all

arameters empirically estimated were defined using the valida-
ion set. The parameters of the DCS methods compared to our ap-

roach, basically the size of the neighborhood used to estimated

he classifiers competence, were defined based on previous studies

9,16,30,31] .

In the first set of experiments, we evaluated the proposed pool

eneration method. The pool generated for each problem was com-

ared to that generated using the Bagging method. The second

et of experiments evaluated the proposed DCS method, consid-

ring the problem difficulty properties in both phases: pool gen-

ration and classifier selection. In both sets of experiments, 6 dy-

amic selection (DCS) methods already established in the literature

ere considered, being 4 methods for selection of a single classi-

er (LCA , OLA , APRI and APOS), and 2 methods for selection of en-

embles (KE and KU). The only parameter of these DCS methods

s the size of the test instance neighborhood (K). Such a neighbor-

ood is used to define the competence of each classifier. In our ex-

eriments, K was defined as 7, since this value had been proved to

e the most appropriate in previous studies [9,16,30,31] . The same

ize of neighborhood (K = 7) was used to estimate the accuracy

ased meta-feature f 3 i in the DSOC method. On the other hand,

he size of the neighborhood (L) used to estimate the complexity

ased meta-feature (f 1 i) (Algorithm 2 , line 6) for each test instance

as defined as 30. By adopting a larger neighborhood in this step,

e ensure the presence of at least two distinct classes among the

elected instances, making it possible to calculate the complex-

ty measures. However, it is important to say that the adoption

f large neighborhoods would mean that, for small datasets, dif-

erent instances may have the same neighborhood. To drive this

hoice, we evaluated neighborhoods with sizes ranging from 20 to

0 (varying from 5 to 5).

.1. Experiments on pool generation

Two pools composed of 100 perceptrons were generated for

ach classification problem. One of the pools was created using the

agging method [2] , and the other using the proposed GA-based

ethod. In both pools, the size of the bags corresponded to 50%

f the training set. The perceptron was used as the base classifier

ince it represents a weak and unstable learner. In cases of prob-

184 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Fig. 9. Dispersion of the data subsets generated for the Haberman problem in the complexity space. The elements built by Bagging are shown in red, while those in blue

show the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Dispersion of the data subsets generated for the Heart problem in the complexity space. The elements built by Bagging are shown in red, while those in blue show

the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

m

fi

p

s

c

b

e

w

c

o

p

s
lems composed of more than 2 classes, the One-Against-All (OAA)

strategy was adopted. In the GA-method, the elitism size was de-

fined as 4 chromosomes. This value was determined empirically,

once it makes possible to maintain high fitness elements with-

out leading to premature convergence. The crossover probability

was 0.8, meaning that the algorithm would evolve rather quickly,

and that the process for substituting old members with new ones

would be of moderate intensity, thereby limiting any chance of

losing high fitness elements. The mutation rate applied was 5%,

a value which can prevent the stagnation of the process, and in-

creases the possibility of exploration of new areas of the solution

space. 30 generations in all were evolved.

To analyze how adopting the proposed GA contributes to the

literature, we compared its accuracy to that of 6 aforementioned

DCS methods. Each method was tested using the sets generated

by Bagging method and those built by the proposed GA-based
ethod. Furthermore, we considered a combination of all classi-

ers (here, named ALL) and the single best classifier (SB) in the

ool. The SB for each problem were defined using the validation

et. In the combination process, the Majority Vote was used to

ombine the classifiers generated by Bagging, while for those built

y the GA, we used a sigmoid function, as defined by Eq. (8) , to

stimate weights for each classifier based on their fitness.

f (x, a, c) =

1

1 + e −a (x −c)
(8)

here x corresponds to the fitness of each element, a refers to the

urve inclination while c is the curve inflection point. The values

f a and c were empirically defined as 2 and 1, respectively.

The average performance of each approach for all classification

roblems is shown in Tables 2 and 3 . The first one presents the re-

ults obtained by methods in which a single classifier is selected,

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 185

Fig. 11. Dispersion of the data subsets generated for the Laryngeal1 problem in the complexity space. The elements built by Bagging are shown in red, while those in blue

show the pool obtained by the GA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Comparison of the proposed methods (DSOC Bagging and DSOC GA) with the dynamic selection methods, OLA , LCA , A Priori (APRI), A Posteriori

(APOS), Knora-U (KU) and Knora-E (KE). The average accuracy and corresponding standard deviation computed from 20 replications. The values in

boldface are the best results.

OLA LCA APRI APOS KU KE DSOC DSOC

Bagg Bagg Bagg Bagg Bagg Bagg Bagg GA

Adult 84.04 (2.87) 83.26 (2.52) 84.01 (2.34) 83.55 (2.60) 83.08 (2.03) 81.92 (1.85) 86.77 (2.65) ∗ 86.80 (1.85) ∗

Banana 85.03 (1.73) 84.88 (1.78) 84.52 (1.64) 83.82 (1.69) 87.59 (1.24) 85.06 (1.46) 82.17 (1.64) 87.20 (1.62) �

Blood 76.12 (0.26) 75.86 (1.23) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 73.98 (2.80) 76.12 (0.26) �

CTG 86.99 (0.89) 80.94 (0.95) 86.45 (1.38) 86.28 (1.29) 84.67 (0.96) 83.95 (0.89) 85.68 (1.14) 87.50 (1.25) �

Diabetes 64.92 (2.85) 62.37 (2.64) 65.00 (2.03) 64.38 (2.44) 64.48 (0.95) 64.56 (1.09) 66.69 (3.29) 68.41 (3.93) ∗ �

Ecoli 64.94 (4.74) 52.56 (5.52) 64.05 (5.05) 63.39 (4.00) 54.4 0(2.77) 52.02 (2.10) 69.29 (3.23) ∗ 75.00 (2.44) ∗ �

Faults 58.35 (2.31) 37.96 (10.5) 56.08 (2.15) 54.63 (2.25) 43.65 (2.49) 37.41 (1.96) 4 8.6 8 (3.17) ∗ 65.02 (1.58) ∗ �

German 71.90 (2.35) 64.22 (3.31) 71.74 (2.54) 69.80 (2.39) 71.88 (1.02) 71.52 (0.88) 71.88 (2.66) 73.98 (3.28) ∗ �

Glass 53.77 (4.79) 24.15 (9.04) 47.92 (7.41) 24.72 (19.5) 51.13 (5.37) 45.28 (5.13) 53.11 (8.03) 59.25 (5.22) ∗ �

Haberman 73.68 (0.59) 73.62 (0.88) 73.82 (0.39) 73.68 (0.59) 73.68 (0.00) 73.68 (0.00) 74.14 (3.18) 74.61 (2.43)

Heart 78.58 (4.04) 70.15 (4.58) 78.81 (4.02) 72.24 (8.64) 75.67 (4.77) 74.55 (4.21) 83.43 (2.79) ∗ 83.58 (3.24) ∗

ILPD 69.72 (3.38) 61.76 (3.67) 69.24 (3.22) 67.52 (4.16) 71.90 (0.61) 71.83 (0.45) 64.97 (4.10) 66.86 (2.73)

Image 42.03 (2.30) 32.18 (4.11) 40.68 (1.82) 40.29 (2.35) 36.39 (1.28) 35.86 (1.19) 38.30 (1.58) 51.03 (1.11) ∗�

Ionosphere 80.91 (3.88) 69.72 (4.21) 80.63 (4.72) 77.84 (4.62) 89.38 (3.54) 88.69 (3.83) 86.08 (5.12) 86.53 (4.23)

Laryngeal1 80.09 (4.40) 70.94 (6.24) 81.13 (5.57) 78.11 (6.92) 73.58 (4.77) 72.08 (4.57) 80.66 (4.81) 82.45 (4.51)

Laryngeal3 66.02 (4.19) 55.34 (5.77) 66.02 (4.70) 62.84 (6.18) 61.14 (3.48) 58.64 (3.86) 65.45 (6.68) 68.75 (5.04) �

Lithuanian 6 8.30 (2.4 9) 70.38 (1.84) 67.06 (2.42) 64.50 (3.36) 58.43 (0.98) 56.69 (0.80) 74.86 (3.00) ∗ 82.47 (2.55) ∗�

Liver 60.99 (3.63) 50.06 (5.30) 58.90 (5.51) 55.17 (5.47) 56.63 (5.59) 52.21 (3.51) 59.36 (5.05) 61.86 (5.39) �

Magic 79.22 (0.70) 78.17 (0.55) 78.73 (0.81) 78.59 (0.83) 78.90 (0.58) 78.80 (0.55) 78.46 (0.61) 79.99 (0.73)

Mammo 79.78 (2.29) 76.23 (3.11) 80.10 (3.17) 79.08 (2.74) 78.50 (2.66) 77.85 (2.83) 81.04 (2.48) 80.99 (2.23)

Monk 81.99 (3.56) 69.26 (3.98) 79.58 (4.07) 66.76 (12.8) 79.31 (3.26) 78.15 (3.72) 82.69 (2.90) 85.42 (3.44) ∗ �

Phoneme 77.18 (1.25) 76.54 (0.96) 76.17 (1.47) 76.08 (1.55) 74.77 (0.74) 74.07 (0.64) 76.61 (1.20) 79.00 (1.04) ∗ �

Sonar 61.73 (6.32) 46.83 (7.28) 58.65 (6.10) 41.63 (22.5) 53.37 (1.03) 53.17 (0.92) 67.40 (7.44) 6 8.17 (8.4 8)

Thyroid 93.67 (1.25) 91.88 (1.97) 93.29 (1.71) 92.51 (2.79) 89.22 (2.73) 88.79 (2.82) 89.10 (2.73) 94.02 (1.60) �

Vehicle 32.16 (3.87) 24.53 (4.66) 30.28 (3.92) 29.55 (3.85) 27.51 (1.69) 26.30 (1.23) 33.25 (2.21) 35.43 (2.28) ∗ �

Vertebral 81.53 (4.35) 71.67 (5.13) 82.53 (3.32) 78.00 (6.06) 79.27 (4.47) 78.47 (3.80) 77.40 (4.14) 80.33 (3.60) �

WBC 77.36 (14.6) 84.86 (3.70) 77.75 (14.1) 70.32 (17.3) 89.15 (3.16) 88.59 (3.72) 92.75 (1.88) ∗ 93.13 (2.19) ∗

WDVG 79.92 (1.13) 67.81 (3.77) 79.18 (1.21) 78.37 (1.35) 71.07 (1.12) 69.66 (1.05) 75.54 (2.38) 82.32 (1.11) �

Weaning 76.87 (4.14) 60.40 (5.50) 75.67 (5.21) 59.13 (16.8) 66.93 (4.98) 64.47 (4.45) 80.67 (3.83) ∗ 81.67 (4.48) ∗

Wine 33.52 (3.44) 45.23 (14.1) 34.32 (4.71) 32.61 (2.41) 32.84 (1.13) 32.84 (1.13) 49.77 (12.8) 55.68 (11.0) ∗

w

b

(

t

t

p

c

p

c

p

t

m

(

p

O
hile the second one presents the results related to the ensem-

le selection methods, the combination of all classifiers in the pool

ALL), and the single best classifier (SB). The boldfaced values in

hese tables represent the best result for each problem. In order

o compare the behavior of the approaches, the Wilcoxon test was

erformed with a confidence of 95%. The “∗” symbol highlights the

ases where a significant difference was observed between the ap-

roaches. When comparing the behavior of the DCS methods, we
an see that in 126 of the 180 experiments (70.00%), adopting the

roposed GA to generate the pool led to improved accuracy. On

he other hand, in 22.22% of the scenarios (40 experiments), it was

ore appropriate to employ only the Bagging method. 14 cases

7.78%) demonstrated similar results.

An analysis of the combination of all classifiers available in the

ool reveals that the GA prevails in 63.33% of the experiments.

n the other hand, Bagging achieves a higher accuracy in 30.00%

186 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

Table 6

Comparison of the DSOC GA with the OLA, LCA, A Priori (APRI), A Posteriori (APOS), Knora-U (KU) and Knora-E (KE) DCS methods

using the same pool generated by the proposed method. The average accuracy and corresponding standard deviation computed

from 20 replications. The values in boldface are the best results.

OLA LCA APRI APOS KU KE DSOC

GA GA GA GA GA GA GA

Adult 84.77 (2.80) 83.52 (2.87) 85.73 (2.78) 85.20 (2.91) 84.24 (1.85) 83.72 (1.92) 86.80 (2.24)

Banana 84.87 (1.68) 84.68 (1.79) 84.57 (1.87) 83.83 (1.76) 87.42 (1.12) 85.06 (1.45) 87.20 (1.62)

Blood 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26) 76.12 (0.26)

CTG 86.70 (1.04) 81.33 (0.82) 86.76 (0.76) 86.30 (0.85) 85.01 (0.93) 84.21 (0.89) 87.50 (1.25) ∗

Diabetes 65.00 (2.27) 63.75 (2.89) 64.51 (2.46) 64.41 (2.76) 64.64 (0.87) 64.79 (1.11) 68.41 (3.93) ∗

Ecoli 62.38 (3.09) 52.72 (5.91) 64.46 (4.83) 62.38 (3.94) 54.44 (2.77) 52.26 (1.99) 75.00 (2.44) ∗

Faults 56.82 (2.99) 38.84 (10.1) 55.70 (3.42) 54.73 (3.66) 44.96 (2.80) 39.25 (2.27) 65.02 (1.58) ∗

German 73.48 (2.42) 65.88 (2.98) 72.80 (3.08) 71.52 (2.85) 72.94 (1.36) 72.28 (1.15) 73.98 (3.28)

Glass 51.89 (7.46) 25.47 (10.2) 53.11 (6.09) 30.75 (16.9) 51.98 (5.15) 47.45 (4.71) 59.25 (5.22) ∗

Haberman 74.14 (0.75) 74.41 (1.74) 74.41 (1.35) 73.29 (3.00) 73.68 (0.00) 73.68 (0.00) 74.61 (2.43)

Heart 80.37 (4.12) 72.84 (5.31) 80.67 (3.73) 77.31 (4.10) 77.16 (4.50) 76.19 (4.31) 83.58 (3.24) ∗

ILPD 68.62 (2.91) 63.79 (3.82) 70.34 (2.97) 6 8.41 (3.6 8) 71.9 (0.75) 71.83 (0.45) 66.86 (2.73)

Image 41.25 (2.12) 32.82 (3.87) 41.33 (1.99) 41.42 (2.34) 36.35 (1.52) 35.88 (1.48) 51.03 (1.11) ∗

Ionosphere 81.48 (4.56) 72.10 (4.14) 80.72 (4.14) 81.02 (4.36) 87.73 (3.40) 87.50 (3.17) 86.53 (4.23)

Laryngeal1 78.87 (5.08) 73.49 (5.04) 80.00 (3.89) 77.08 (5.11) 74.25 (3.79) 72.74 (4.07) 82.45 (4.51)

Laryngeal3 67.22 (4.90) 58.81 (6.25) 66.14 (3.23) 63.92 (4.43) 61.02 (3.43) 59.37 (3.25) 68.75 (5.04)

Lithuanian 67.06 (3.19) 69.03 (2.40) 67.49 (3.21) 65.15 (3.16) 59.87 (1.40) 58.04 (1.21) 82.47 (2.55) ∗

Liver 60.17 (3.14) 51.34 (5.15) 57.38 (4.96) 54.24 (8.20) 57.09 (6.77) 55.17 (4.58) 61.86 (5.39)

Magic 79.00 (0.56) 78.23 (0.60) 78.78 (0.53) 78.53 (0.63) 78.92 (0.58) 78.80 (0.58) 79.99 (0.73) ∗

Mammo 80.56 (2.96) 77.97 (3.08) 80.51 (3.44) 79.15 (3.44) 79.13 (2.93) 78.77 (2.76) 80.99 (2.23)

Monk 82.59 (3.22) 72.73 (3.81) 81.48 (4.86) 68.19 (14.5) 78.84 (3.67) 79.86 (3.08) 85.42 (3.44) ∗

Phoneme 77.22 (0.82) 76.77 (0.86) 77.14 (0.98) 77.05 (0.96) 75.74 (0.81) 75.17 (0.74) 79.00 (1.04) ∗

Sonar 60.29 (5.38) 45.96 (5.73) 61.44 (5.94) 45.96 (20.8) 55.00 (1.86) 53.85 (1.36) 6 8.17 (8.4 8) ∗

Thyroid 93.73 (1.45) 91.99 (1.71) 93.41 (1.92) 92.02 (1.97) 88.70 (4.11) 88.38 (4.05) 94.02 (1.60)

Vehicle 32.44 (2.65) 23.96 (4.74) 32.04 (3.33) 31.11 (4.01) 28.22 (2.57) 26.75 (1.31) 35.43 (2.28) ∗

Vertebral 80.73 (4.70) 73.20 (5.20) 81.67 (5.07) 77.87 (8.13) 80.47 (4.64) 79.67 (4.58) 80.33 (3.60)

WBC 77.57 (13.5) 84.89 (3.25) 79.79 (12.2) 79.01 (10.6) 88.49 (2.96) 88.27 (3.47) 93.13 (2.19) ∗

WDVG 80.24 (0.88) 69.91 (3.41) 80.08 (1.19) 79.49 (1.33) 72.71 (1.15) 71.60 (1.18) 82.32 (1.11) ∗

Weaning 77.27 (4.43) 63.33 (6.57) 78.40 (4.19) 64.93 (19.9) 71.07 (3.96) 68.47 (3.58) 81.67 (4.48)

Wine 33.52 (2.95) 43.86 (13.3) 35.68 (7.58) 33.41 (2.88) 32.84 (1.13) 32.84 (1.13) 55.68 (10.98) ∗

Fig. 12. Ranking produced by the Nemenyi test considering DSOC GA and the other

DCS methods using a pool generated with Bagging.

c

>

d

m

t

s

q

f

i

m

r

t

D

w

r

c

c

m

i

p

p

a

“

F

m

p

o

m
of the cases. 2 ties were observed among the strategies (6.67%).

For the single best classifier, an improvement was observed in

17 of the 30 tested cases (56.67%), while a decrease in accuracy

was noted in 11 scenarios (36.67%). As well, 2 ties were observed

among the solutions, corresponding to 6.67%.

Fig. 8 shows the pairwise comparison between Bagging and the

proposed GA-based method for all 6 DCS-based approaches, a com-

bination of all classifiers (ALL), and the single best classifier (SB).

The red columns correspond to the scenarios in which the use of

the Bagging method to generate subsets represents the best option,

while the blue columns correspond to the cases in which the GA-

based method was able to obtain the highest accuracy. The repre-

sentation in green indicates where there was a tie between the ap-

proaches. The dashed line illustrates the critical value (cv = 19 . 5).

This cv value was obtained from the wins, ties and losses by com-

puting the test sign [32] with a significance level α = 0 . 05 . If we

consider half the ties added to the wins and the other half to the

losses, the GA-based method shows a significant improvement in

most of scenarios, except when OLA and SB were adopted. The best
ontribution was observed when using the LCA as DCS method (25

 19.5). On the other hand, when OLA was adopted as DCS, we

id not notice a significant contribution (16 < 19.5).

We observed a positive impact on the classification perfor-

ance when information related to problem complexity was used

o orient the classifier pool generation. However, additional analy-

is is a must in order to obtain a full answer to our first research

uestion. To check the coverage of the problem complexity space

or each classification problem, we calculate the average complex-

ty dispersion of both pools, namely, the one generated by the GA

ethod and the other generated by the Bagging method.

Table 4 shows the average value of dispersion along the 20

eplications, as defined in the Eq. (9) . The bold values corresponds

o the highest coverage space for each problem.

ispersion =

∑ r
1

∑ M
j=1

√ ∑ nc
k =1 (x i,k −x j,k) 2

M−1

r
(9)

here M corresponds to the number of classifiers in the pool, nc

efers to the number of complexity measures adopted in the pro-

ess, r represents the number of repetitions, while x i, k and x j, k
orrespond to the value of the k th complexity measure for the ele-

ents i and j , respectively. As we can see, there is a clear increase

n the dispersion among the subsets when the proposed GA-based

ool generator is adopted. In order to compare the behavior of the

ools, the Wilcoxon test was applied to compare these results with

 5% significance level. Significant differences are marked with a
∗”.

The occupation of the data complexity space is illustrated in

igs. 9–11 , which show changes in the space defined by F 1 and N 2

etrics. In the representations, the red circles correspond to the

ool generated by Bagging, and the blue markers to the final set

btained by the GA pool generation. These figures reflect a com-

on behavior observed in the studied problems: the complexity

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 187

Fig. 13. Pairwise comparison of the proposed DSOC GA with 6 DCS methods appearing in the literature using Bagging. The blue bars represent the number of problems in

which DSOC GA prevailed, the red bars refer to its losses, while green bars are related to ties. The dashed line illustrates the critical value (19.5). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Ranking produced by the Nemenyi test. DSOC GA and the other DCS meth-

ods also using the proposed GA-based method.

d

r

F

d

i

p

r

n

t

a

s

5

p

p

t

m

T

p

r

D

t

m

W

a

a

d

i

T

G

n

p

i

s

1

p

N

t

E

t

d

s

t

s

c

t

G

d

l

t

b

A

i

B

c
istribution of the pool generated by the GA allows a better explo-

ation of the F 1 × N 2 complexity space. However, the variation in

 1 is more evident, while the fluctuation in the N 2 axis is more

iscrete, and is characterized for a shift of the set. This behavior

s caused by the search for the space coverage, once the built sets

resent farther centroids (higher F 1) and, at the same time, border

egions more intricate, evidenced by the increasing on N 2. We can

ow therefore complete the answer of our first research question:

he adopted strategy for pool generation can provide better cover-

ge of the problem complexity space. In addition, it has been used

uccessfully with different dynamic classifiers selection methods.

.2. Experiments on classifier selection

The objective of this set of experiments was to evaluate the

roposed DCS framework. To that end, we have considered two

ossible approaches, namely, DSOC Bagging and DSOC GA. In

he former, the pool generation is performed using the Bagging

ethod, while in the latter, the GA-based pool generator is used.

he average performance of each approach for each classification

roblem is shown in Table 5 . The boldfaced values in the table rep-

esent the highest accuracy for each problem.

The penultimate column of Table 5 shows the results of the

SOC Bagging. When compared with the methods appearing in
he literature, this approach prevailed in 114 out of 180 experi-

ents (63.3%), and lagged in 66 experiments (36.6%). The Kruskal

allis statistical test was performed to compare the DSOC Bagging

gainst the 6 DCS methods in the literature. A confidence of 95%

nd a degree of freedom of 6 were used. We observed a significant

ifference in 7 of 30 classification problems, and the 7 carry a “∗”

n the penultimate column of Table 5 .

On the other hand, our main results are in the last column of

able 5 , and are related to the DSOC GA approach. By using the

A-based pool generator in combination with the proposed dy-

amic selection method, this DCS prevailed in 165 out of 180 ex-

eriments (91.67%), lost in 10 experiments (5.56%), and saw a tied

n 5 others (2.78%). A statistical analysis of significance in this case

howed a significant difference in 15 out of 30 experiments. The

5 cases carry a “∗” in the last column of Table 5 . For these ex-

eriments, Fig. 12 presents a ranking produced by means of the

emenyi post-hoc test.

We could note that our DSOC GA obtained the best position in

he ranking when compared to the 6 DCS methods using Bagging.

xcept for the OLA method, the distances between DSOC GA and

he other methods are greater than the critical distance. In ad-

ition, Fig. 13 shows the pairwise comparison between the DCS

trategies in the literature using the pool built by Bagging and

hose built using the proposed DSOC GA. The red columns repre-

ent the scenarios in which the use of Bagging for pool generation

ombined with the DCS methods of the literature was the best op-

ion, while the columns in blue indicate the cases in which DSOC

A achieved the highest accuracy. The representations in green in-

icate where there was a tie between the approaches. The dashed

ine illustrates the critical value (cv = 19 . 5). As mentioned before,

he cv value was obtained from the number of wins, ties and losses

y computing the test sign [32] with a significance level α = 0 . 05 .

s we can see, the DSOC GA is significantly superior in all scenar-

os.

Still in Table 5 , we also compared the performance of DSOC

agging against DSOC GA. The Wilcoxon test with a 5% signifi-

ance was applied to compare the results of these strategies. Sig-

188 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

A

C

n

R

[

[

nificant differences appears with a “�” marker in the last column

of Table 5 . For 18 out of 30 classification problems, there is a sig-

nificant increase in performance when the DSOC method is used

in a pool generated by the proposed GA-based generator.

Finally, in the last set of experiments, we compared all DCS

methods using the same pool generated by the GA-based method,

and Table 6 summarizes the results. The proposed DCS prevailed

in 158 out of 180 experiments (87.78%), lost in 16 experiments

(8.89%), and was tied in 6 others (3.33%). The statistical analysis of

significance shows a significant difference in this case in 16 out of

30 experiments. Fig. 14 shows a ranking produced by the Nemenyi

post-hoc test.

As can be seen, the results are quite similar to those observed

when considering the other DCS methods in the literature that use

Bagging. For instance, here, we observed a significant difference

in 16 classification problems, while in the previous comparison of

DSOC GA versus other DCS using Bagging, it was observed for 15

problems.

Based on all these experiments, we can answer our second re-

search question, saying that the use of data complexity features

for pool generation and classifier selection has shown some inter-

esting contribution in terms of classification performance. It can

be concluded that the proposed selection strategy may profit the

better coverage of the problem complexity space provided by the

GA-based pool generation method.

In a last analysis we have computed the average time for

the classification task when using the OLA, KU and DSOC meth-

ods. From the methods of the literature, OLA presented the most

promising results during our experiments, being a simple strategy

that selects just one classifier, while KU has shown the best results

when an ensemble of classifiers is selected. The OLA method spent

in average 0.70 ms (milliseconds) to classify each test instance, the

KU method takes 3.63 ms, while the proposed DSOC takes 9.08 ms.

As expected, the proposed method is more time consuming. The

reason is the need to compute the complexity of the neighborhood

of the test instance. However, this process can be optimized since

in the current version of our method, we are using an external li-

brary (DCOL Library) to compute the complexity measures.

6. Conclusion

In this paper, we proposed a DCS method whose novelty lies

in its use of features related to the classification problem diffi-

culty during pool generation and classifier selection. To represent

the classification problem difficulty, we extracted features from the

problem data using complexity measures. A robust experimental

protocol based on 30 datasets, and considering 20 replications,

confirms our two main hypotheses. A better comprehension of the

classification problem difficulty may have a positively impact on

the performance of a DCS method. The main results, in which

pool generation and classifier selection are both based on com-

plexity features, are very promising. In 165 out of 180 experiments

(91.67%), adopting the proposed GA to generate the pool, combined

with the proposed DCS, allowed an improvement of the classifica-

tion accuracy. For the pool generation method, in 126 out of 180

experiments (70.00%), adopting the proposed GA to generate the

pool allowed improved accuracy. In addition, we conclude that the

proposed pool generation strategy could achieve a better coverage

of the problem complexity space, and the proposed dynamic selec-

tion method could take advantage of this scenario. Future works

could follow two main directions. First, we could look at tuning

the parameters of the proposed DCS, by evaluating different base

classifiers, or different optimization algorithms. Secondly, we could

investigate other measures in order to better describe the classifi-

cation problem complexity space.
cknowledgment

This research has been supported by the Brazilian National

ouncil for Scientific and Technological Development (CNPq) (grant

o. 307277/2014-3).

eferences

[1] A.S. BrittoJr., R. Sabourin, L.E.S. Oliveira, Dynamic selection of classifiers - a
comprehensive review, Pattern Recognit. 47 (11) (2014) 3665–3680, doi: 10.

1016/j.patcog.2014.05.003 .

[2] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140, doi: 10.
1023/A:1018054314350 .

[3] Y. Freund , R.E. Schapire , Experiments with a new boosting algorithm, in: Pro-
ceedings of the 13th International Conference on Machine Learning, 1996,

pp. 148–156 .
[4] T.K. Ho, The random subspace method for constructing decision forests, IEEE

Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 832–844, doi: 10.1109/34.

709601 .
[5] R.A. Jacobs , M.I. Jordan , S.J. Nowlan , G.E. Hinton , Adaptive mixtures of local

experts, Neural Comput. 3 (1) (1991) 79–87 . Spring.
[6] T.K. Ho, M. Basu, Complexity measures of supervised classification problems,

Pattern Anal. Mach. Intell. IEEE Trans. 24 (3) (20 02) 289–30 0, doi: 10.1109/34.
990132 .

[7] T. Ho , M. Basu , M. Law , Measures of geometrical complexity in classifica-

tion problems, in: M. Basu, T. Ho (Eds.), Data Complexity in Pattern Recogni-
tion, Advanced Information and Knowledge Processing, Springer, London, 2006,

pp. 1–23 .
[8] N. Macià, E. Bernadó-Mansilla, A. Orriols-Puig, T.K. Ho, Learner excellence bi-

ased by data set selection: a case for data characterisation and artificial data
sets, Pattern Recognit. 46 (3) (2013) 1054–1066, doi: 10.1016/j.patcog.2012.09.

022 .
[9] A .L. Brun, A .S. Britto, L.S. Oliveira, F. Enembreck, R. Sabourin, Contribution of

data complexity features on dynamic classifier selection, in: 2016 International

Joint Conference on Neural Networks (IJCNN), Springer-Verlag, Vancouver, CA,
2016, pp. 4396–4403, doi: 10.1109/IJCNN.2016.7727774 .

[10] K. Woods, W.P. KegelmeyerJr., K. Bowyer, Combination of multiple classifiers
using local accuracy estimates, IEEE Trans. Pattern Anal. Mach. Intell. 19 (4)

(1997) 405–410, doi: 10.1109/34.588027 .
[11] L. Didaci , G. Giacinto , F. Roli , G.L. Marcialis , A study on the performances of dy-

namic classifier selection based on local accuracy estimation, Pattern Recognit.

38 (11) (2005) 2188–2191 .
[12] M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classifier combination for hand-

printed digit recognition, in: Document Analysis and Recognition, 1993, Pro-
ceedings of the Second International Conference on, 1993, pp. 163–166, doi: 10.

1109/ICDAR.1993.395758 .
[13] G. Giacinto, F. Roli, Methods for dynamic classifier selection, in: Image Analy-

sis and Processing, 1999. Proceedings, 10th International Conference on, 1999,

pp. 659–664, doi: 10.1109/ICIAP.1999.797670 .
[14] G. Giacinto , F. Roli , G. Fumera , Selection of classifiers based on multiple clas-

sifier behaviour, in: Proceedings of the Joint IAPR International Workshops
on Advances in Pattern Recognition, Springer-Verlag, London, UK, UK, 20 0 0,

pp. 87–93 .
[15] L. Kuncheva, J. Rodriguez, Classifier ensembles with a random linear Oracle,

Knowl. Data Eng. IEEE Trans. 19 (4) (2007) 500–508, doi: 10.1109/TKDE.2007.

1016 .
[16] A. Ko, R. Sabourin, A. BrittoJr., From dynamic classifier selection to dynamic

ensemble selection, Pattern Recognit. 41 (5) (2008) 1718–1731, doi: 10.1016/j.
patcog.2007.10.015 .

[17] A. Santana, R. Soares, A. Canuto, M.C.P.d. Souto, A dynamic classifier selection
method to build ensembles using accuracy and diversity, in: Neural Networks,

2006. SBRN ’06. Ninth Brazilian Symposium on, 2006, pp. 36–41, doi: 10.1109/

SBRN.2006.1 .
[18] Y. Yan, X.-C. Yin, Z.-B. Wang, X. Yin, C. Yang, H.-W. Hao, Sorting-based dynamic

classifier ensemble selection, in: Document Analysis and Recognition (ICDAR),
2013 12th International Conference on, 2013, pp. 673–677, doi: 10.1109/ICDAR.

2013.138 .
[19] E. dos Santos, R. Sabourin, P. Maupin, Ambiguity-guided dynamic selection of

ensemble of classifiers, in: Information Fusion, 2007 10th International Confer-

ence on, 2007, pp. 1–8, doi: 10.1109/ICIF.2007.4408123 .
[20] J. Xiao, C. He, Dynamic classifier ensemble selection based on gmdh, in: Com-

putational Sciences and Optimization, 2009. CSO 2009, in: International Joint
Conference on, volume Vol. 1, 2009, pp. 731–734, doi: 10.1109/CSO.2009.276 .

[21] N. Macià, A. Orriols-Puig, E. Bernadó-Mansilla, In search of targeted-complexity
problems, in: Proceedings of the 12th Annual Conference on Genetic and Evo-

lutionary Computation, GECCO ’10, ACM, New York, NY, USA, 2010, pp. 1055–
1062, doi: 10.1145/1830483.1830674 .

22] N. Macià, E. Bernadó-Mansilla, A. Orriols-Puig, T.K. Ho, Learner excellence bi-

ased by data set selection: a case for data characterisation and artificial data
sets, Pattern Recognit. 46 (3) (2013) 1054–1066, doi: 10.1016/j.patcog.2012.09.

022 .
23] W. Chinnasri , N. Sureerattanan , Comparison of performance between different

selection strategies on genetic algorithm with course timetabling problem, in:

https://doi.org/10.13039/501100003593
https://doi.org/10.1016/j.patcog.2014.05.003
https://doi.org/10.1023/A:1018054314350
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0003
https://doi.org/10.1109/34.709601
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0005
https://doi.org/10.1109/34.990132
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0007
https://doi.org/10.1016/j.patcog.2012.09.022
https://doi.org/10.1109/IJCNN.2016.7727774
https://doi.org/10.1109/34.588027
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0011
https://doi.org/10.1109/ICDAR.1993.395758
https://doi.org/10.1109/ICIAP.1999.797670
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0014
https://doi.org/10.1109/TKDE.2007.1016
https://doi.org/10.1016/j.patcog.2007.10.015
https://doi.org/10.1109/SBRN.2006.1
https://doi.org/10.1109/ICDAR.2013.138
https://doi.org/10.1109/ICIF.2007.4408123
https://doi.org/10.1109/CSO.2009.276
https://doi.org/10.1145/1830483.1830674
https://doi.org/10.1016/j.patcog.2012.09.022
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0023

A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190 189

[

[

[

[

[

[

[

Proceedings of IEEE International Conference on Advanced Management Sci-
ence(ICAMS), vol. 2. July, 2010, pp. 105–108 .

24] R.G. Mantovani , A.L.D. Rossi , J. Vanschoren , B. Bischl , A.C.P. de Leon Ferreira , To
tune or not to tune: recommending when to adjust SVM hyper-parameters via

meta-learning, IJCNN, 2015 .
25] A. Orriols-Puig , N. Macià, T.K. Ho , Documentation for the data complexity li-

brary in C ++ , Tech. rep., 2010 . Barcelona, Spain.
26] K. Bache, M. Lichman, UCI machine learning repository, 2013. URL http://

archive.ics.uci.edu/ml .

[27] J. Alcalá-Fdez , A. Fernández , J. Luengo , J. Derrac , S. García , L. Sánchez , F. Her-
rera , Keel data-mining software tool: data set repository, integration of algo-

rithms and experimental analysis framework, J. Mult.-Valued Logic Soft Com-
put. 17 (2–3) (2011) 255–287 . Cited By 275.

28] L. Kuncheva, Statlog: Comparison of classification algorithms on large real-
world problems, 2004. URL http://pages.bangor.ac.uk/ ∼mas00a/activities/real _

data.htm .
29] R.D. King, C. Feng, A. Sutherland, Statlog: comparison of classification algo-
rithms on large real-world problems, 1995.

30] R.M. Cruz, R. Sabourin, G.D. Cavalcanti, T.I. Ren, Meta-des: a dynamic ensem-
ble selection framework using meta-learning, Pattern Recognit. 48 (5) (2015)

1925–1935, doi: 10.1016/j.patcog.2014.12.003 .
[31] R.M. Cruz , R. Sabourin , G.D. Cavalcanti , META-DES. Oracle: meta-learning and

feature selection for dynamic ensemble selection, Inf. Fusi. 38 (2017) 84–103 .
32] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.

Learn. Res. 7 (2006) 1–30 . URL http://dl.acm.org/citation.cfm?id=1248547.

124 854 8 .

http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0025
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0026
http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm
https://doi.org/10.1016/j.patcog.2014.12.003
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30444-2/sbref0028
http://dl.acm.org/citation.cfm?id=1248547.1248548

190 A.L. Brun et al. / Pattern Recognition 76 (2018) 175–190

 Estadual do Oeste do Paraná (UNIOESTE, Brazil) in 2007, and Ph.D. degree in Informatics
, he joined the Informatics Department of the Universidade Estadual do Oeste do Paraná

attern Recognition.

eral de Educação Tecnológica do Paraná (CEFET-PR, Brazil) in 1996, and Ph.D. degree in
il) in 2001. In 1989, he joined the Informatics Department of the Universidade Estadual

partment of the Pontifícia Universidade Católica do Paraná (PUCPR) and, in 2001, the
Recognition, Machine Learning, Image Analysis, and Evolutionary Computation.

 PR, Brazil, the M.Sc. degree in electrical engineering and industrial informatics from the

nd Ph.D. degree in Computer Science from Ecole de Technologie Superieure, Universite du
 of the Computer Science Department at Pontifical Catholic University of Parana, Curitiba,

, where he is professor of the Department of Informatics. His current interests include
n.

iversity of Ponta Grossa in 1997, M.Sc. in Applied Computer Science from the Pontifical

nd Systems from the Université de Technologie de Compiegne in 2003. Currently he is

aduate Program in Informatics, directing researches of MSc and PhD students. He has
ms, acting on the following topics: distributed artificial intelligence, multi-agent systems,

here he was responsible for the design, experimentation and development of scientific
i bution was the design and the implementation of a microprocessor-based fine tracking

f of the École de Technologie Supérieure, Université du Québec, in Montréal where he
urrently Full Professor and teaches Pattern Recognition, Evolutionary Algorithms, Neural

tment of the Pontifícia Universidade Católica do Paraná (Curitiba, Brazil) where he was
 Ph.D. program in applied computer science. Since 1996, he is a senior member of the

ersity). Dr. Sabourin is the author (and co-author) of more than 260 scientific publications

mmittee of CIFED’98 (Conférence Internationale Francophone sur l’Écrit et Le Document,
riting Recognition, Tokyo, Japan). He was nominated as Conference co-chair of ICDAR’07

n held in Curitiba, Brazil, in 2007. His research interests are in the areas of handwriting
raphy.
A. L. Brun received M.Sc. degree in Agricultural Engineering from the Universidade
from the Pontifícia Universidade Católica do Paraná (PUCPR, Brazil) in 2017. In 2008

(Unioeste, Brazil). His research interests are in the areas of Machine Learning and P

A. S. Britto Jr. received M.Sc. degree in Industrial Informatics from the Centro Fed
Computer Science from the Pontifícia Universidade Católica do Paraná (PUCPR, Braz

de Ponta Grossa (UEPG, Brazil). In 1995, he also joined the Computer Science De
Post-graduate Program in Informatics (PPGIa). His current interests include Pattern

L.E.S. Oliveira received the B.S. degree in Computer Science from UnicenP, Curitiba,

Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Curitiba, PR, Brazil, a
Quebec in 1995, 1998, and 2003, respectively. From 2004 to 2009 he was professor

PR, Brazil. In 2009 he joined the Federal University of Parana, Curitiba, PR, Brazil
Pattern Recognition, Neural Networks, Image Analysis, and Evolutionary Computatio

F. Enembreck received his graduate degree in Computer Science from the State Un

Catholic University of Paraná in 1999 and his Ph.D. in Information Technologies a

professor at the Pontifical Catholic University of Paraná and researcher at the Gr
experience in Computer Science with emphasis on Architecture of Computing Syste

adaptive agents, information retrieval and machine learning.

R. Sabourin joined in 1977 the Physics Department of the Montreal University w
nstrumentation for the Mont Mégantic Astronomical Observatory. His main contri

system combined with a low-light level CCD detector. In 1983, he joined the staf
cofounded the Department of Automated Manufacturing Engineering where he is c

Networks and Fuzzy Systems. In 1992, he joined also the Computer Science Depar
co-responsible for the implementation in 1995 of a master program and in 1998 a

Centre for Pattern Recognition and Machine Intelligence (CENPARMI, Concordia Univ

including journals and conference proceedings. He was co-chair of the program co
Québec, Canada) and IWFHR’04 (9th International Workshop on Frontiers in Handw

(9th International Conference on Document Analysis and Recognition) that has bee
recognition, signature verification, intelligent watermarking systems and bio-cryptog

	A framework for dynamic classifier selection oriented by the classification problem difficulty
	1 Introduction
	2 Related works
	3 Basic concepts and definitions
	4 Proposed framework
	4.1 Pool generation
	4.2 Dynamic classifier selection

	5 Experiments
	5.1 Experiments on pool generation
	5.2 Experiments on classifier selection

	6 Conclusion
	 Acknowledgment
	 References

