
Pattern Recognition 78 (2018) 1–11

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Handwritten digit segmentation: Is it still necessary?

A.G. Hochuli a , L.S. Oliveira

a , ∗, A.S. Britto Jr b , R. Sabourin

c

a Federal University of Parana (UFPR), Rua Cel. Francisco H. dos Santos, 100, Curitiba, PR 81531-990, Brazil
b Pontifical Catholic University of Parana (PUCPR), R. Imaculada Conceição, 1155, Curitiba, PR 80215-901, Brazil
c Ecole de Technologie Superieure, 1100 rue Notre Dame Ouest, Montreal, Quebec, Canada

a r t i c l e i n f o

Article history:

Received 3 January 2017

Revised 31 December 2017

Accepted 7 January 2018

Available online 10 January 2018

a b s t r a c t

Over the last decades, a great deal of research has been devoted to handwritten digit segmentation. Al-

gorithms based on different features extracted from the background, foreground, and contour of images

have been proposed, with those achieving the best results usually relying on a heavy set of heuristics

and over-segmentation. Here, the challenge lies in finding a good set of heuristics to reduce the num-

ber of segmentation hypotheses. Independently of the heuristic over-segmentation strategy adopted, all

algorithms used show their limitations when faced with complex cases such as overlapping digits. In this

work, we postulate that handwritten digit segmentation can be successfully replaced by a set of clas-

sifiers trained to predict the size of the string and classify them without any segmentation. To support

our position, we trained four Convolutional Neural Networks (CNN) on data generated synthetically and

validated the proposed method on two well-known databases, namely, the Touching Pairs Dataset and

NIST SD19. Our experimental results show that the CNN classifiers can handle complex cases of touching

digits more efficiently than all segmentation algorithms available in the literature.

© 2018 Elsevier Ltd. All rights reserved.

1

n

m

t

a

c

k

a

b

f

t

H

v

t

o

m

W

g

c

h

n

o

v

a

r

l

m

t

e

h

m

c

s

t

i

c

i

m

h

0

. Introduction

The design of most systems built to recognize unconstrained

umerical strings includes image acquisition, pre-processing, seg-

entation, representation, and classification. One of the main bot-

lenecks in such a system is the segmentation module, which reads

 string of digits and segments them into isolated characters. The

hallenge here is that a context is lacking; i.e., usually we do not

now the number of digits in the string and so the optimal bound-

ry between them is unknown.

In the last two decades several segmentation algorithms have

een proposed, which rely on several heuristics, background in-

ormation, foreground information, and sometimes the combina-

ion of these in order to generate potential segmentation cuts [20] .

owever, finding optimal segmentation cuts is difficult due to their

ariability in the location. To guarantee that the optimal segmenta-

ion point is generated, a strategy commonly used is the heuristic

ver-segmentation, whose basic idea is to segment the image as

uch as is necessary to produce the optimal segmentation cuts.

hile over-segmentation does indeed maximize the chances of

enerating good segmentation points, it does on the other hand

onsiderably increase the computational cost, since the number of
∗ Corresponding author.

E-mail address: luiz.oliveira@ufpr.br (L.S. Oliveira).

r

l

m

p

ttps://doi.org/10.1016/j.patcog.2018.01.004

031-3203/© 2018 Elsevier Ltd. All rights reserved.
ypotheses that must be assessed by a classifier increases expo-

entially with the number of segmentation cuts.

The problem is then how to reduce the use of heuristics with-

ut increasing the number of segmentation hypotheses, or vice

ersa, given the lack of general rules to describe points, as well

s the variability of points location. A more elaborate strategy to

educe the impacts of over-segmentation was proposed by Vel-

asques et al. in [25] , where the goal was to filter unnecessary seg-

entation cuts using an SVM classifier. They succeeded in reducing

he number of segmentation cuts in about 83%.

Ribas et al. [20] compared various segmentation algorithms and

valuated them in terms of performance, number of segmentation

ypotheses and processing time. They also discussed the perfor-

ance of the segmentation algorithms in different types and lo-

ations of connections. This characterization aimed to identify the

trengths and weaknesses of different segmentation algorithms,

hereby allowing the selection of the best algorithm, given a touch-

ng pair of digits. Implementing such a strategy is problematic be-

ause of the huge variability of touching pairs, owing to the unlim-

ted number of different overlapping and touching types present.

This variability has led some authors to attempt to avoid seg-

entation. To the best of our knowledge, the seminal work in this

egard was published by Matan et al. [17] , who replicated Convo-

utional Neural Networks over large input fields containing unseg-

ented characters. This approach was named SDNN (Spatial Dis-

lacement Neural Network). Instead of producing a single output

https://doi.org/10.1016/j.patcog.2018.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.01.004&domain=pdf
mailto:luiz.oliveira@ufpr.br
https://doi.org/10.1016/j.patcog.2018.01.004

2 A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11

Table 1

Distribution of the data used for training and testing the classi-

fiers. Samples are uniformly distributed among the classes.

Length/Classes Samples Authors Purpose

1 (Isolated digits) 197,784 0 0 0 0-2099 Training

10 classes 23,384 3850-4099 Validation

23,621 3600-3849 Testing

2-Digit String 161,563 10 0 0-1599 Training

100 classes 53,907 1600-1799 Validation

55,091 1800-1999 Testing

3-Digit String 1,44 8,6 80 10 0 0-1599 Training

10 0 0 classes 484,346 1600-1799 Validation

4 91,74 9 1800-1999 Testing

4-Digit String 10 0,0 0 0 10 0 0-1599 Training
a 20,0 0 0 1600-1799 Validation

20,0 0 0 1800-1999 Testing

a Data used to train the Length classifier.

a

b

2

r

t

T

[

S

b

(

H

p

o

d

a

t

w

e

d

3

a

C

p

c

fi

2

b

p

p

w

s

s

[

b

s

i

fi

1
vector, SDNN produces a series of output vectors that are used by

a post-processor to pull out the best possible label sequence from

the vector sequence. The authors reported a performance of 66% of

correct classification on 30 0 0 images of ZIP Codes. As stated by Le-

Cun et al. [14] , SDNN is an attractive technique, but has not yielded

better results than heuristic over-segmentation methods.

Another strategy to avoid segmentation was presented by Choi

and Oh [3] , who trained a modular neural network composed of

100 separate subnetworks. They reported a 95.3% recognition rate

on 1374 pairs of digits extracted from the NIST database. A sim-

ilar notion was presented by Ciresan [4] , who trained a 100-class

CNN using 20 0,0 0 0 images, and reported a 94.65% recognition rate.

The author also presented some experiments on 3-digit strings us-

ing two CNNs, one for isolated digits and the other for touching

pairs. Notwithstanding the fact that three overlapping digits were

not considered, a 93.4% performance was reported on 1476 3-digit

strings from the NIST dataset. These above strategies were sup-

ported by the fact that most touching occurs between two con-

secutive digits.

With respect to unconstrained digit string recognition, we note

a dominance of heuristic over-segmentation methods [2,16,19,23] .

These works feature different pre-processing, segmentation, clas-

sification, and post-processing schemes. However, the common

thread running through all the systems is a strong dependence on

the segmentation algorithm. To avoid missing the correct segmen-

tation point, over-segmentation is usually employed, even with its

added burden of higher computational cost.

A deeper perusal of the technical literature shows that the ad-

vances in the field of machine learning, especially with the pop-

ularization and better understanding of deep learning techniques

[1,10] , provided great advances in different areas of handwriting

recognition, such as digit recognition [6,22] , character recognition

[26] , word recognition [21,24,27] , script identification [28] , and sig-

nature verification [11] . However, the recognition of handwritten

digit strings is still limited by the pitfalls presented by segmenta-

tion algorithms.

In this regard, the following questions may be pertinent: Do

we still need to rely on segmentation algorithms? Why do we not

take advantage of the advancements that have occurred in the ma-

chine learning field and make handwriting digit recognition less

dependent on segmentation algorithms? Some works in the litera-

ture [5,15,22] show that deep neural networks were able to achieve

near-human performances on the traditional MNIST handwriting

benchmark and other problems such as object recognition [12] .

In this paper we postulate that strings of digits of any size,

composed of isolated or touching digits, can be recognized with-

out a segmentation module. Instead of relying on a segmentation

algorithm and a general-purpose classifier to assess a huge num-

ber of segmentation hypotheses, we propose a framework based

on four task-specific classifiers. The first one is responsible for es-

timating the number of touching components in the string while

the remaining three are designed to discriminate 10 [0 . . . 9], 100

[0 0 . . . 99], and 10 0 0 [0 0 0 . . . 999] classes. To avoid the laborious

task of feature engineering, we learn the representation from syn-

thetic data using Deep CNNs.

In order to validate such a concept and evaluate the robust-

ness of the framework, we present experiments on the Touching

Pair (TP) dataset of 79,464 touching digits proposed in [20] , as

well as on 11,585 numerical strings extracted from the NIST SD19

database. The experimental results on the TP dataset show that the

proposed strategy surpasses all segmentation algorithms published

in the literature by a fair margin, while avoiding the cost of cre-

ating and filtering segmentation hypotheses. The framework also

shows its efficacy when used to classify the numerical strings of

NIST SD19 ranging from two to six digits. In this case, the method
/

chieves state-of-the-art performance without suffering the heavy

urden of segmentation.

. Synthetic data

In order to efficiently learn representation from data, we had to

ely on a considerable amount of samples. We thus created a syn-

hetic dataset composed of numerical strings of sizes 2, 3, and 4.

he strings are built by concatenating isolated digits of NIST SD19

9] through the algorithm described by Ribas et al. in [20] . The

D19 database, which is an update of SD3 and SD7, is provided

y the American National Institute of Standards and Technology

NIST). This database contains the full page binary images of 3699

andwriting Sample Forms (HSFs) and 814,255 segmented hand-

rinted digits and alphabetic characters from the forms.

To avoid building a biased dataset, we used the information

n the authors available on the NIST SD19, such that digits from

ifferent authors were used exclusively for training, validation,

nd testing. Table 1 shows the purpose (training, validation, and

esting), as well as the amount of data created

1 . Isolated digits

ere extracted from NIST SD19. No data augmentation was nec-

ssary since more than 240,0 0 0 isolated digits are available in this

ataset.

. Proposed framework

The system discussed in this work takes a segmentation-free

pproach based on three main modules: Pre-processing, Length

lassifier, and Classification. Initially, an image I goes through a

re-processing module (Section 3.1) that identifies all connected

omponents (CC s). Each CC is then classified by the Length Classi-

er (Section 3.2.1) which will assign to it a probability of having 1,

, 3 or 4 touching digits. As stated earlier, most of touching occurs

etween two digits and sometimes between three. Strings com-

osed of more than three touching digits are very rare. For exam-

le, we scanned the entire NIST SD19 and found very few strings

ith more than three touching digits. Therefore, if the Length Clas-

ifier assigns 4 to the CC , the string is rejected.

The classification module (Section 3.2.2), comprises three clas-

ifiers (C 1 , C 2 , C 3) designed to discriminate 10 [0 . . . 9], 100

 0 0 . . . 99], and 10 0 0 [0 0 0 . . . 999] classes. The classifiers that will

e used for a given CC depends on the output of the Length Clas-

ifier, and the decisions are made in the fusion module described

n Section 3.3 . Depending on the confidence of the Length Classi-

er, more than one digit classifier may be invoked to mitigate any
All the synthetic data is available upon request for research purposes at https:

/web.inf.ufpr.br/vri/databases-software/touching-digits/ .

https://web.inf.ufpr.br/vri/databases-software/touching-digits/

A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11 3

Fig. 1. Proposed framework.

p

t

I

n

3

d

t

r

p

C

T

o

d

c

p

e

(

i

b

s

a

t

w

b

C

g

s

t

Fig. 2. Definition of various geometric quantities.

e

s

o

i

t

s

o

l

e

c

8

t

i

F

p

i

f

b

p

m

s

c

b

s

3

t

m

a

t

C

f

(

n

t

t

u

(

a

l

t

i

t

c

e

t

i
ossible confusions. Then, the final decision is made by combining

he classification scores produced for all CC s found in the image

 . Fig. 1 depicts the proposed framework which is detailed in the

ext subsections.

.1. Pre-processing

The input image first goes through a pre-processing step that

ivides the image into groups of CC s. This allows us to convert

he recognition of a string image to that of its partial images thus

educing the complexity of the subsequent tasks. The last pre-

rocessing step tries to overcome the effects of fragmentation. A

C can represent either an integer number of characters or not.

he second case is critical and can compromise the performance

f the system, and should therefore be avoided. To group broken

igits, we have adopted the strategy used in [19] . For the sake of

ompleteness, the grouping technique is described in this section.

Essentially, the grouping step tries to group a character com-

osed of several CC s by detecting potential parts and grouping

ach of them to its nearest neighbor. The median line of the image

SI mediam

) is used as reference. A CC is considered as a broken part

f at least one of the following two conditions is met:

1. The CC does not intersect the median line (SI mediam

) of the nu-

meral string.

2.
max (C C abov e ,C C below)

min (C C abov e ,C C below)
> 5

where CC above and CC below

denote the vertical height of the part

above and below SI mediam

, respectively.

Even when a CC intersects with the median line, it may still

e considered as broken part by the second condition if the inter-

ection point is near to the top or bottom part of the CC . There-

fter, those CC s which are deemed to be broken parts are grouped

o their neighborhood. We have to decide the neighboring CC to

hich a broken part (CC broken) should be grouped. The decision is

ased on the following rule:

IF C C le f t < C C right THEN

Group (C C pre v ious , C C broken)

ELSE

Group (C C broken , C C next)

If a broken CC is on the left or right end of the numeral string,

C left or CC right is set to a very high value to achieve the correct

rouping. Fig. 2 defines the preceding geometric quantities. The re-

ulting partial images are ordered from left to right according to

heir horizontal positions in the SI. In the case of Fig. 2 , we would
xpect three partial images corresponding to “4”, “5”, and “6”, re-

pectively.

All thresholds described in this section were determined based

n experimentation reported in [19] . It is worth of remark that

f this module fails, all other modules will be compromised. In

his context, it is natural to argue that this pre-processing module

hould be a robust one. However the frequency of broken digits

n NIST SD19 does not demand such robustness. In this dataset,

ess than 5% of the digit strings contain broken digits. The strat-

gy described in this section was able to group correctly broken

omponents in 85% of them.

We carried out a further analysis in this module by creating

00 digit strings with poorer handwriting quality by i) cropping

he images at the bottom and top (to simulate a line removal),

i) creating broken digits manually, and iii) adding random noise.

igs. 3 and 4 show some examples of the images where the pre-

rocessing succeeded and failed, respectively.

The performance of the pre-processing module in these exper-

ments is about the same we have observed on the NIST SD19

or images containing broken digits created manually and caused

y cropping (about 85%). For the images with random noise, the

erformance dropped to 70%. However, with some image enhance-

ent (e.g., morphological closing) the performance improves to the

ame 85% observed in the NIST SD19. In summary, if the dataset

ontains very poor quality handwriting with a considerable num-

er of broken digits, a more robust pre-processing will be neces-

ary.

.2. Classifiers

Let x be an input image (CC) that should be assigned to one of

he ω classes. C means the classifier and C(x) = p i (x) |∀ i (1 � i � ω)

eans that the classifier C assigns the input x to each class i with

 probability value p i (x). This definition is used for all classifiers of

he system.

As mentioned earlier, all the classifiers used in this work are

NNs that are constructed using multiple layers considering the

ollowing operations: convolutions, max-pooling, and dot products

fully-connected layers), where convolutional layers and fully con-

ected layers have learnable parameters that are optimized during

raining. With the exception of the last layer in the network, af-

er each learnable layer we apply ReLU non-linearity. The last layer

ses the softmax non-linearity.

Training is performed with the Stochastic Gradient Descent

SGD) using back-propagation with mini-batches of 256 instances,

 momentum factor of 0.9 and a weight decay of 5 × 10 −4 . The

earning rate is set to 10 −2 in the beginning to allow the weights

o quickly fit the long ravines in the weight space, after which it

s reduced over the time (until 5 × 10 −4) to make the weights fit

he sharp curvatures. The network makes use of the well known

ross-entropy loss function.

In the present work, regularization was implemented through

arly-stopping, which prevents overfitting from interrupting the

raining procedure once the performance of the network on a val-

dation set deteriorates. During training, the performance of the

4 A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11

Fig. 3. Broken digits correctly grouped: (a) [9892] bottom part cropped removing part of the digits that may cause broken digits (b) [817] upper part cropped removing part

of the digits that may cause broken digits, (c) [751] broken digits created manually (d) and (e) [85,42] random noise causing broken digits.

Fig. 4. Broken digits not grouped correctly: (a) [570] bottom part cropped removing part of the digits that may cause broken digits (b) [17] upper part cropped removing

part of the digits that may cause broken digits, (c) [4671] broken digits created manually (d) and (e) [2027,33] random noise causing broken digits.

Fig. 5. CNN architecture for L . Layer parameters are represented as Kernel Size @ Stride @ Feature Maps.

Table 2

Confusion matrix (%) for the L on the

testing set.

(1) (2) (3) (4)

(1) 99.9 0.01

(2) 0.02 99.2 0.07

(3) 0.9 96.9 2.3

(4) 2.3 97.7

C

I

i

t

T

n

t

e

s
network on the training set will continue to improve, but its per-

formance on the validation set will only improve up to a certain

point, where the network starts to overfit the training data; at

that point, the learning algorithm is terminated. To implement the

CNN models we have used the Caffe framework [13] on an NVidia

GeForce GTX Titan Black GPU

2 .

3.2.1. Length classifier

The length classifier (L) was designed to predict the length of

the CC . We have tested several different architectures for this clas-

sifier but the one that yielded the best results was based on the

well-known LeNet 5 [14] . The final architecture contained three

convolutional layers followed by max pooling layers. This architec-

ture, which was defined empirically on the validation set, is de-

picted in Fig. 5 .

The classifier was trained using the protocol described in

Section 3.2 using 40 0,0 0 0, 79,157 and 79,742, samples (uniformly

distributed) for training, validation, and testing, respectively. Using

the Caffe framework and the hardware mentioned in Section 3.2 , it

took about 90 minutes to train this model over 30,0 0 0 iterations.
2 All trained classifiers are available for research purposes at https://web.inf.ufpr.

br/vri/databases-software/touching-digits/

t

l

v

a

lassifying a single input image takes about 0.4 milliseconds (ms).

n our experiments, the best results were achieved when the input

mage was resized to 64 × 64 pixels. The recognition rate on the

esting set was 98.4% and 99.9% for Top-1 and Top-2, respectively.

able 2 shows the confusion matrix.

Analyzing the confusions resulting from L we conclude that the

umber and location of the vertical strokes seem to bear impor-

ant information needed to determine the size of the string. For

xample, single digits that are classified as 2-digit string are often

lashed zeros, zeros with missing parts, and the digit “6” similar

o those presented in Fig. 6 a and b. Digits that are almost over-

apping such as the “3” and “9” in Fig. 6 c and strings with several

ertical strokes close together such as in the “44” in Fig. 6 d are

lso sources of confusion.

https://web.inf.ufpr.br/vri/databases-software/touching-digits/

A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11 5

Table 3

Data used to train the digit classifiers.

Classifier Number of Amount of data (×10 0 0) for Source Training Classification

Classes Train Validation Testing Time (min) Time (ms)

(C 1) 10 197 23 23 NIST SD 19 70 0.57

(C 2) 100 161 53 55 Synthetic data 90 0.60

(C 3) 10 0 0 1448 484 491 Synthetic data 200 0.63

Fig. 6. Some images misclassified by L : (a) single digit classified as 2-digit string,

(b) 2-digit classified as 3-digit string, (c) 3-digit classified as 2-digit string, and (d)

3-digit classified as 4-digit string.

3

a

b

f

r

fi

a

i

t

S

c

t

t

Table 4

Recognition rate of the digit classifiers on

testing set.

Classifier Top 1 Top 2

Isolated Digits (C 1) 99.6 99.9

2-Digit (C 2) 99.7 100.0

3-Digit (C 3) 97.7 98.9

3

t

c

w

o

b

C

a

r

t

s

t

P

.2.2. Digit classifiers

To recognize isolated digits, and 2- and 3-digit strings, we used

n architecture depicted in Fig. 7 . The three CNNs, which also are

ased on the LeNet 5 [14] , share the same structure but with dif-

erent numbers of filters, kernel sizes, and strides. Fig. 7 summa-

izes the parameters used in all three classifiers, which were de-

ned empirically on the validation set.

Table 3 shows the amount of data used for training, validation,

nd testing for all three classifiers. It also shows training (30,0 0 0

terations) and classification time using the Caffe framework and

he hardware mentioned in Section 3.2 .

All three classifiers were trained using the protocol described in

ection 3.2 and yielded the accuracies reported in Table 4 . As we

an observe, all three classifiers achieved high performances on the

esting set, showing that the CNN is able to learn good representa-

ion from data for the three different classes of problems.
Fig. 7. CNN architecture for isolated, 2- and 3-digit strings. Layer parameter
.3. Fusion

The confusion matrix presented in Table 2 shows that some of

he confusions caused by the classifier L can also be recovered by

onsidering its second highest output (Top-2). With that in mind,

e have proposed a fusion rule that consider the Top-2 outputs

f L .

Let L

i (x) = p i (x) be the probability of the input pattern x

e composed of i, (i = 1 , 2 , 3 , 4) digits. Let C 1 (x) = max 0 ≤i ≤9 p
i (x) ,

 2 (x) = max 0 ≤i ≤99 p
i (x) , and C 3 (x) = max 0 ≤i ≤999 p

i (x) be the prob-

bility produced by 10-class, 100-class, and 10 0 0-class classifiers,

espectively, for the input pattern x . Let Top1(C) and Top2(C) be

he functions that return the classes with first and second highest

cores of a given classifier C, respectively. Then, x is assigned to

he class ω j according to Eq. (1) ,

 (ω j | x)
{

if L (x) < T , max (C Top1(L) (x) , C Top2(L) (x))
otherwise, C Top1(L) (x)

(1)
s are represented as Kernel Size @ Stride @ Number of Feature Maps.

6 A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11

Fig. 8. Example of the fusion strategy.

Fig. 9. Types of connected numeral string (extracted from [20]).

s

r

I

d

m

f

s

a

u

s

T

o

t

t

c

f

c

r

c

V

r

o
where T is a threshold defined empirically on the validation set.

Considering that the input image I may contain n connected

components, the most probable interpretation of the written

amount M is given by Eq. (2) .

P (M| I) =

n ∏

i =1

P (ω j | x i) (2)

Fig. 8 exemplifies the entire process from pre-processing to the

final decision. In this case, the string consists of four CC s. After

pre-processing, the broken digit “5” composed of two strokes is

grouped, thus creating in this way three CC s (“62”, “5”, and “837”).

Then, they are classified by L , which assigns two hypotheses to

them for their lengths. These two hypothesis (Top-1 and Top-2)

may be used to select the digit classifiers, as depicted in Fig. 8 .

In this example, L misclassifies CC 1 by assigning it to class 1 (dig-

its) instead of 2 (digits). However, the output of L is smaller than

T , which means that the final output for CC 1 will be given by

max (C 1 (CC 1) , C 2 (CC 1)) . For the other CC s, only the Top-1 classifiers

are used since L produces scores greater than T .

4. Experiments

In order to validate the proposed framework, we elaborate

two sets of experiments. In the first one, the goal is to com-

pare the proposed segmentation-free approach with traditional

segmentation-recognition algorithms. To accomplish that, we have

used the 79,464 images of touching digits available in the Touching

Pairs (TP) database. In the second scenario, we tested the method

on more than 11,0 0 0 numerical strings ranging from 2 to 6 digits

extracted from NIST SD19.

4.1. Synthetic data

When evaluating the segmentation algorithms, the authors in

[20] were interested in knowing whether or not the segmenta-

tion cuts produced by the algorithms were the good ones, in-

dependently of their quantity. For the algorithms based on the

segmentation-recognition approach, this task is straightforward,
ince there is only one hypothesis to be assessed. For those algo-

ithms based on over-segmentation, all the cuts must be assessed.

n the latter case, the strategy used is as follows: if there are two

igits among the hypotheses (using a classification engine) that

atch to the ground truth, the segmentation is considered success-

ul. It is clear that this strategy considers the best case scenario

ince all misclassifications due to over- and under-segmentation

re not considered.

As indicated earlier, we assume that the size of the string is

nknown. So, C 2 is only used to classify the images that were as-

igned as 2-digit string by L . Otherwise, we count as an error.

hus, there may be two sources of errors, i.e., a wrong estimation

f the number of digits in the string (L) or a misclassification of

he string (C 2).
Table 5 summarizes the results reported in [20] and [7] where

he authors compare several segmentation algorithms in terms of

orrect segmentation on the TP database. Besides the overall per-

ormance, this table also shows the performance depending on the

onnection types depicted in Fig. 9 .

Table 5 also allows us to draw some conclusions. Algo-

ithms based on a single segmentation hypothesis (segmentation

uts = 1) usually fail in more complex touching cases (e.g., type

) since a single segmentation cut is very often not enough to cor-

ectly split the digits. Algorithms based on multiple cuts, on the

ther hand, achieve better performance in terms of finding the cor-

A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11 7

Table 5

Performance of the segmentation algorithms (reported in [20] and [7]), in terms of correct segmentation, on

the TP database.

Method Performance Connection type (%) Segmentation

% I II III V Cuts

Shi and Govindaraju (1997) 59.30 68.31 59.72 60.35 25.44 1

Congedo et al. (1995) 63.07 62.88 67.51 59.40 40.45 1

Lacerda and Mello (2013) 65.79 71.75 71.21 63.64 56.57 1

Elnagar and Alhajajj (2003) 67.34 63.88 71.51 56.40 58.73 1

Pal et al. (2003) 71.21 73.96 74.69 80.09 41.52 1

Oliveira et al. (20 0 0) 88.03 90.40 90.78 89.01 64.88 1

Fusijawa et al. (1992) 89.85 95.45 91.27 83.57 63.72 3.66

Fenrich and Krishnamoorthy (1990) 92.37 97.54 93.79 99.45 65.57 4.07

Gattal and Chibani (2015) 93.24 96.67 93.75 99.68 77.58 24.11

Chen and Wang (20 0 0) 93.80 97.87 94.23 97.55 76.76 45.40

Proposed method 97.12 97.02 97.89 98.97 93.03 0

Fig. 10. (a) Segmentation paths for the string “56” and (b) Images that can be easily confused with digits “0” and “1” [25] .

r

t

m

c

t

p

s

c

m

t

d

d

b

a

s

c

p

p

c

p

w

Fig. 11. Some images not recognized - Input:Prediction[Probability]: (a)

21:24[0.997], (b)12:62[0.914], (c)45:95[0.914].

t

a

w

f

s

s

4

m
ect segmentation cut, but with the computational cost of having

o evaluate several hypotheses.

This problem is exemplified in Fig. 10 . In this example the seg-

entation algorithm produced three segmentation hypotheses. Ac-

ordingly, we may have to evaluate up to 10 different segmenta-

ion hypotheses, and then find the one that maximizes the out-

ut in the segmentation graph. What happens very often is that

ome over-segmented pieces, such as those depicted in Fig. 10 b

an be misclassified with high scores. In that case, the path “510”

ay produce a higher score than the path “56”. To tackle this, au-

hors make use of heuristics or even more elaborated filters to re-

uce the number of segmentation hypotheses [25] . In summary,

issecting the image into several pieces by creating a huge num-

er of segmentation points may produce a good segmentation cut

t some point; however, the cost of filtering and dealing with over-

egmentation may be prohibitive in real cases.

In this context, the proposed approach shows only advantages,

ompared to traditional segmentation algorithms. The expensive

rocess of finding the segmentation cuts, filtering out unlikely hy-

otheses, and classifying the remaining ones is replaced by two

lassifier calls (L and C 2). Furthermore, this segmentation-free ap-

roach achieves the highest performance (97.12% recognition rate)

hen compared to all methods reported in the literature. The to-

fi
al error (2.88%) can be divided into length classification (1.78%)

nd string classification (1.10%). Fig. 11 shows some images that

ere misclassified by C 2 . As reported in Table 5 , the poorest per-

ormance (93%) is achieved on type V (multiple touching), which

hows the highest variability. However, when compared to others,

uch a performance is outstanding.

.2. NIST SD19

The experiments using numeral strings are based on 11,585 nu-

eral strings extracted from the hsf_7 series and distributed into

ve classes: 2_digit (2,370), 3_digit (2,385) 4_digit (2,345), 5_digit

8 A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11

Table 6

Recognition rates for the NIST strings.

Length Samples Recognition Error 4-digit

Rate (%) Pre-Processing Length Misclassification Rejection

2 2370 97.6 0.2 0.5 1.7 0.0

3 2385 96.2 0.5 0.6 2.7 0.0

4 2345 94.6 0.8 0.8 3.5 0.3

5 2316 94.1 1.1 1.5 3.2 0.1

6 2169 93.3 1.3 1.5 3.6 0.3

Average 95.2 0.8 1.0 2.9 0.1

0.990.950.900.850.800.750.700
T

93

93.5

94

94.5

95

R
ec

og
ni

tio
n

R
at

e
(%

)

Fig. 12. Sensitivity analysis of parameter T from Eq. (1) .

i

a

r

t

c

a

c

T

s

i

w

S

i

t

o

i

o

a

f

l

w

J

t

f

t

O

L

(2,316), and 6_digit (2,169) strings, respectively. These data exhibit

different problems such as touching and fragmentation and they

were also used as a test set in [2,16,19,23] . It is important to men-

tion that at any moment the authors of hsf_7 were not used for

training.

Table 6 summarizes the results for this experiment where the

threshold value T from Eq. (1) was set to 0.95 (defined empirically

on the validation set). Fig. 12 shows how sensitive the performance
Fig. 13. Examples of digit strings (NIST SD19): (a), (b) and (c) Not recognized and (d), (e)

its label (input) and the output of the system (pred) with is final probability. The lower-p

digit classifiers. A red bounding box indicates those components misclassified. For examp

 but C 2 assigned 31 with a very high score instead of 34. (For interpretation of the refe

this article.)
s to changes in T . As can be seen, a very similar performance is

chieved for T ranging from 0.85 to 0.95. Besides the recognition

ates, Table 6 also shows how the error is distributed among the

hree modules of the system, i.e., pre-processing (grouping), length

lassifier, and digit classifiers. The last column shows the percent-

ge of strings classified as 4-digit that were rejected by the system.

As we can see, the main sources of error are i) digit mis-

lassification, ii) length misclassification, and iii) pre-processing.

he number of strings classified as 4-digit, hence rejected, is very

mall. Figs. 13 (a), (b), and (c) show some examples of misclassified

mages, while Figs. 13 (d), (e), and (f) show examples of images that

ere correctly recognized by the system.

Fig. 14 depicts the number of classifier calls per string size.

ince most of the strings of NIST SD19 contains only isolated dig-

ts, the number of requests for classifiers L and C 1 is roughly equal

o the number of characters to be recognized. Classifiers C 2 and C 3 ,
n the other hand, are only requested a few times by the system,

ncluding the times they are used as the second option (Top2) in

rder to resolve some confusion. The results show that, although

ll classifiers were trained on synthetic data (except C 1), the per-

ormance of the system on real data is compelling.

Table 7 compares the recognition rates of several systems pub-

ished in the literature on NIST SD19. In the first part of the table

e group those works that used the same number of strings. Britto

r. et al. [2] used a two-stage HMM-based recognition method

o compensate for any possible loss in terms of recognition per-

ormance caused by the necessary trade-off between segmenta-

ion and recognition in an implicit segmentation-based strategy.

liveira et al. [19] proposed a system based on over-segmentation,
 and (f) recognized. The upper-part of each figure contains the original string with

art, contains the connected components and the results of the length classifier and

le, in (a), the first connected component, which is a 34, was classified correctly the

rences to colour in this figure legend, the reader is referred to the web version of

A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11 9

2 3 4 5 6
String Length

0

2000

4000

6000

8000

10000

12000

14000

C
la

ss
ifi

er
 C

al
ls

L
C1

C2

C3

40
383

12672

56
454

11173
10797

49
444

8564
8959

52
357

6791
6460

12
230

45554364

12369

Fig. 14. Number of classifier calls per string size.

Table 7

Comparison of the recognition rates on NIST SD19.

Length Samples Britto Oliveira Oliveira Sadri ∗ Sadri Gattal Proposed Samples Liu Ciresan

et al. [2] et al. [19] et al. [18] et al. [23] et al. [23] et al. [8] method et al. [16] et al. [4]

2 2370 94.8 96.8 97.6 95.5 98.9 99.0 97.6

3 2385 91.6 95.3 96.2 91.4 97.2 97.3 96.2 1476 96.8 93.4

4 2345 91.3 93.3 94.2 91.0 96.1 96.5 94.6

5 2316 88.3 92.4 94.0 88.0 95.8 95.9 94.1

6 2169 89.0 93.1 93.8 88.6 96.1 96.6 93.3 1471 96.7

w

t

T

M

p

s

p

p

w

[

w

A

s

a

s

p

s

r

a

a

r

l

c

t

m

d

s

t

d

i

s

F

o

5

d

b

d

t

b
ith some modules designed to reduce the number of segmenta-

ion hypotheses. All classifiers were multi-layer perceptrons (MLP).

he same authors in [18] replaced the MLPs by Support Vector

achines (SVMs) and obtained an improvement of one percentage

oint in general.

Sadri et al. [23] also proposed a system based on over-

egmentation, in which they deal with multiple segmentation hy-

otheses as an optimization problem. To solve the optimization

roblem, they applied a genetic algorithm, thereby adding in this

ay another layer of complexity to the system. The authors in

23] show a second set of experiments (marked with

∗ in Table 7)

here they define a set of heuristics, at the top of the Genetic

lgorithm, to deal with multiple segmentation hypotheses. They

how an important improvement, but the results are somehow bi-

sed since the heuristics were defined using a subset of the testing

et.

Another costly over-segmentation algorithm has been recently

roposed by Gattal et al. [8] , and combines contour information,

keleton, and Radon transform on a sliding window. The authors

eport very interesting recognition rates on NIST SD19; however,

 considerable number of segmentation parameters appear to be

djusted on the testing set, which makes it difficult to assess the

esults. The authors only mention a validation set composed of iso-

i

ated digits used to train the Support Vector Machines used for

lassification.

A deeper analysis of the aforementioned systems may show

hat they all face two bottlenecks, namely, creating multiple seg-

entation hypotheses and then proposing some strategy to re-

uce them in order to allow the string to be recognized in a rea-

onable amount of time. Both problems, which are byproducts of

he segmentation, are avoided by the proposed method. The non-

ependence of segmentation, coupled with representation learn-

ng, make the system design simpler since there is no need to de-

ign hand-crafted features for either segmentation or recognition.

urthermore, the performance of the system is comparable to what

btains in the literature.

. Conclusion

Our aim in this work was to answer the title question, i.e., Is

igit string segmentation still necessary in order to build a ro-

ust reading system for unconstrained numerical strings? We have

emonstrated through a series of comprehensive experiments on

wo datasets that digit segmentation can be successfully replaced

y CNN classifiers trained on synthetic data for two specific tasks,

.e., string length classification and digit classification.

10 A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11

[

[

[

The digit classification comprises three classifiers that are re-

sponsible for classifying isolated digits, and 2-digit, and 3-digit

strings. These classifiers are used according to the output of the

length classifier. To avoid a hard decision and overcome some of

the confusion caused by the length classifier, the fusion method

may use the outputs of two digit classifiers to produce the final

decision.

Experiments on the TP database highlight the advantages of the

proposed method by achieving a 97% of recognition rate. The clos-

est result reported in the literature reaches 93.8% of correct seg-

mentation but with an associated cost of having to assess a huge

number of hypotheses that are created by more than 45 segmen-

tation cuts. In the experiment on NIST SD19, where most of the

strings contain only isolated digits, the method compares favorably

against others published in the literature that are based on some

kind of heuristic over-segmentation technique.

For future works, we plan to deploy the system on a real

dataset of numerical string that we are currently building.

Acknowledgements

This research has been supported by The National Coun-

cil for Scientific and Technological Development (CNPq) grant

303513/2014-4 . In addition, we gratefully acknowledge the support

of NVIDIA Corporation with the donation of the Titan Xp GPU used

for this research.

References

[1] Y. Bengio , A. Courville , P. Vincent , Representation learning: a review and new

perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828 .
[2] A. Britto Jr , R. Sabourin , F. Bortolozzi , C.Y. Suen , The recognition of handwrit-

ten numeral strings using a two-stage HMM-based method, Int. J. Doc. Anal.
Recognit. 5 (2) (2003) 102–117 .

[3] S. Choi , I. Oh , A segmentation-free recognition of two touching numerals using
neural networks, in: Proc. of 5 th International Conference on Document Analy-

sis and Recognition, 1999, pp. 253–256 . Bangalore, India

[4] D. Ciresan , Avoiding segmentation in multi-digit numeral string recognition by
combining single and two-digit classifiers trained without negative examples,

in: 10th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2008, pp. 225–230 .

[5] D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for
image classification, in: 2012 IEEE Conference on Computer Vision and Pattern

Recognition, 2012, pp. 3642–3649, doi: 10.1109/CVPR.2012.6248110 .
[6] R.S.N. Das , A. K.Saha , M. Nasipuri , A multi-objective approach towards cost

effective isolated handwritten Bangla character and digit recognition, Pattern

Recognit. 58 (2016) 172–189 .
[7] A. Gattal , Y. Chibani , SVM-based segmentation-verification of handwritten con-

nected digits using the oriented sliding window, Int. J. Comput. Intell. Appl. 14
(1) (2015) 1–17 .
[8] A. Gattal , Y. Chibani , B. Hadjadji , Segmentation and recognition system for
unknown-length handwritten digit strings, Pattern Anal. Appl. 20 (2) (2017)

307–323 .
[9] P.J. Grother , NIST Special Database 19 - Handprinted forms and characters

database, NIST, 2016 .
[10] J. Gu , Z. Wang , J. Kuen , L. Ma , A. Shahroudy , B. Shuai , T. Liu , X. Wang , G. Wang ,

J. Cai , T. Shen , Recent advances in convolutional neural networks, Pattern
Recognit. (2017) .

[11] L.G. Hafemann , R. Sabourin , L.S. Oliveira , Learning features for offline hand-

written signature verification using deep convolutional neural networks, Pat-
tern Recognit. (2017) 163–176 .

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
arXiv preprint arXiv: 1512.03385 (2015).

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: convolutional architecture for fast feature embedding, arXiv

preprint arXiv: 1408.5093 (2014).

[14] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 .

[15] Z. Liao , G. Carneiro , A deep convolutional neural network module that pro-
motes competition of multiple-size filters, Pattern Recognit. 71 (2017) 94–105 .

[16] C.-L. Liu , H. Sako , H. Fujisawa , Effects of classifier structures and training
regimes on integrated segmentation and recognition of handwritten numeral

strings, IEEE Trans. Pattern Anal. Mach. Intell. 26 (11) (2004) 1395–1407 .

[17] O. Matan , J.C. Burges , Y. LeCun , J.S. Denker , Multi-digit recognition using a
space displacement neural network, in: J.E. Moody, S.J. Hanson, R.L. Lippmann

(Eds.), Advances in Neural Information Processing Systems, 4, Morgan Kauf-
mann, 1992, pp. 4 88–4 95 .

[18] L.S. Oliveira , R. Sabourin , Support vector machines for handwritten numerical
string recognition, in: 9th International Workshop on Frontiers in Handwriting

Recognition, 2004, pp. 39–44 .

[19] L.S. Oliveira , R. Sabourin , F. Bortolozzi , C.Y. Suen , Automatic recognition of
handwritten numerical strings: a recognition and verification strategy, IEEE

Trans. Pattern Anal. Mach. Intell. 24 (11) (2002) 1438–1454 .
[20] F.C. Ribas , L.S. Oliveira , A.S. Britto , R. Sabourin , Handwritten digit segmenta-

tion: a comparative study, Int. J. Doc. Anal. Recognit. 16 (2) (2013) 567–578 .
[21] P. Roy , A . Bhunia , A . Das , P. Dey , U. Pal , HMM-based Indic handwritten word

recognition using zone segmentation, Pattern Recognit. 60 (2016) 1057–1075 .

22] S. Sabour , N. Frosst , G. Hinton , Dynamic routing between capsules, Advances
in Neural Information Processing Systems 30 (NIPS 2017), 2017 .

[23] J. Sadri , C.Y. Suen , T.D. Bui , A genetic framework using contextual knowl-
edge for segmentation and recognition of handwritten numeral strings, Pattern

Recognit. 40 (2007) 898–919 .
[24] Z. Tamen , H. Drias , D. Boughaci , An efficient multiple classifier system for Ara-

bic handwritten words recognition, Pattern Recognit. Lett. 93 (123–132) (2017) .

25] E. Vellasques , L.S. Oliveira , A.S.B. Britto Jr , A. Koerich , R. Sabourin , Filtering seg-
mentation cuts for digit string recognition, Pattern Recognit. 41 (10) (2008)

3044–3053 .
[26] X. Xiao , L. Jin , Y. Yang , W. Yang , J. Sun , T. Chang , Building fast and compact

convolutional neural networks for offline handwritten Chinese character recog-
nition, Pattern Recognit. 72–81 (2017) .

[27] F. Yina , Y. Wua , C.L. Liu , Improving handwritten Chinese text recognition us-
ing neural network language models and convolutional neural network shape

models, Pattern Recognit. 65 (2017) 251–264 .

28] F. Ziyong , Y. Zhaoyang , J.L.H. Shuanping , S. Jun , Robust shared feature learn-
ing for script and handwritten/machine-printed identification, Pattern Recog-

nit. Lett. 100 (6–13) (2017) .

https://doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0004
https://doi.org/10.1109/CVPR.2012.6248110
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0011
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1408.5093
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30003-7/sbref0026

A.G. Hochuli et al. / Pattern Recognition 78 (2018) 1–11 11

A UCPR Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil, in 2004 and 2007,
r he Federal University of Parana, Curitiba, Brazil. His interests include pattern recognition

a

L , PR, Brazil, the M.Sc. degree in electrical engineering and industrial informatics from the
C and Ph.D. degree in Computer Science from Ecole de Technologie Superieure, Universite

d ofessor of the Computer Science Department at Pontifical Catholic University of Parana,
C razil, where he is a professor of the Department of Informatics and Head of the Graduate

P chine Learning, and Image Analysis.

A ederal de Educação Tecnológica do Paraná (CEFET-PR, Brazil) in 1996, and Ph.D. degree in
C il) in 2001. In 1989, he joined the Informatics Department of the Universidade Estadual

d rtment of the Pontifícia Universidade Católica do Paraná (PUCPR) and, in 2001, the Post-
g ocument analysis and handwriting recognition.

R where he was responsible for the design, experimentation and development of scientific

i bution was the design and the implementation of a microprocessor-based fine tracking

s of the École de Technologie Supeérieure, Université du Québec, in Montréal where he
c urrently Full Professor and teaches Pattern Recognition, Evolutionary Algorithms, Neural

N tment of the Pontifícia Universidade Católica do Paraná (Curitiba, Brazil) where he was
c Ph.D. program in applied computer science. Since 1996, he is a senior member of the

C ersity). Dr. Sabourin is the author (and co-author) of more than 260 scientific publications
i mmittee of CIFED’98 (Conférence Internationale Francophone sur l’Écrit et Le Document,

Q iting Recognition, Tokyo, Japan). He was nominated as a Conference co- chair of ICDAR’07

(n held in Curitiba, Brazil, in 2007. His research interests are in the areas of handwriting
r raphy.
ndre. G. Hochuli received the B.S. and M.Sc. degrees in Computer Science from P
espectively. Currently he is a Ph.D. candidate in the Department of Informatics of t

nd machine learning.

uiz S. Oliveira received the B.S. degree in Computer Science from UnicenP, Curitiba
entro Federal de Educacao Tecnologica do Parana (CEFET-PR), Curitiba, PR, Brazil,

u Quebec in 1995, 1998, and 2003, respectively. From 2004 to 2009 he was a pr
uritiba, PR, Brazil. In 2009 he joined the Federal University of Parana, Curitiba, PR, B

rogram in Computer Science. His current interests include Pattern Recognition, Ma

lceu S. Britto Jr. received M.Sc. degree in Industrial Informatics from the Centro F
omputer Science from the Pontifícia Universidade Católica do Paraná (PUCPR, Braz

e Ponta Grossa (UEPG, Brazil). In 1995, he also joined the Computer Science Depa
raduate Program in Informatics (PPGIa). His research interests are in the areas of d

obert Sabourin joined in 1977 the Physics Department of the Montreal University

nstrumentation for the Mont Mégantic Astronomical Observatory. His main contri

ystem combined with a low-light level CCD detector. In 1983, he joined the staff
ofounded the Department of Automated Manufacturing Engineering where he is c

etworks and Fuzzy Systems. In 1992, he joined also the Computer Science Depar
o-responsible for the implementation in 1995 of a master program and in 1998 a

entre for Pattern Recognition and Machine Intelligence (CENPARMI, Concordia Univ
ncluding journals and conference proceedings. He was a co-chair of the program co

uébec, Canada) and IWFHR’04 (9th International Workshop on Frontiers in Handwr

9th International Conference on Document Analysis and Recognition) that has bee
ecognition, signature verification, intelligent watermarking systems and bio-cryptog

	Handwritten digit segmentation: Is it still necessary?
	1 Introduction
	2 Synthetic data
	3 Proposed framework
	3.1 Pre-processing
	3.2 Classifiers
	3.2.1 Length classifier
	3.2.2 Digit classifiers

	3.3 Fusion

	4 Experiments
	4.1 Synthetic data
	4.2 NIST SD19

	5 Conclusion
	 Acknowledgements
	 References

