
Impacts of verification on a numeral string recognition system

L.S. Oliveira a,b,*, R. Sabourin a,b,c, F. Bortolozzi c, C.Y. Suen b

a �EEcole de Technologie Sup�eerieure, D�eepartement de G�eenie de la Production Automatis�eee, Laboratoire d’Imagerie,

de Vision et d’Intelligence Artificielle (LIVIA), 1100 rue Notre-Dame Ouest, Montreal, Quebec, Canada H3C 1K3
b Centre for Pattern Recognition and Machine Intelligence (CENPARMI), 1455 de Maisonneuve Blvd. West,

Suite GM 606, Montreal, Canada H3G 1M8
c Pont�iificia Universidade Cat�oolica do Paran�aa (PUCPR), Rua Imaculada Conceic�~aao 1155, Prado Velho,

80215-901 Curitiba Pr, Brazil

Abstract

In this paper we discuss the use of high-level verification on handwritten numeral strings. First of all, we introduce

the concept of levels of verification and present the baseline system used to carry out the experiments. Two different

strategies were developed: absolute and one-to-one verifiers. A thorough error analysis is also presented in order to

identify under which conditions high-level verification is more appropriate. Experimental results are presented on NIST

SD19 database.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: High-level verification; Handwritten digit recognition; Neural networks

1. Introduction

Significant improvements have been made in

the recognition rate of handwritten numeral string

recognition systems in the last decade. One of the
most compelling reasons is that researchers have

combined different feature sets and classifiers in

order to achieve better recognition rates (Xu et al.,

1992). However, when considering real business

constraints, there may be some difficulties such as

run time inefficiency, system complexity, and co-

ordination of different organizations. Another

strategy that can increase the recognition rate in a

relatively easy way with a small additional cost is

through the use of high-level verification. Such a

scheme consists of refining the top few candidates

in order to enhance the recognition rate econom-
ically. The focus of this work is to show the im-

plementation of this strategy in an existing

handwritten numeral string recognition system.

For this purpose, we will consider the system

presented in (Oliveira et al., 2001). It takes a seg-

mentation-based recognition approach where an

explicit segmentation algorithm determines the cut

regions and provides a multiple spatial represen-
tation. Such a system considers a strategy based on

recognition and verification where the recognition

function takes into account only a general-purpose

recognizer while the verifiers evaluate the result

*Corresponding author.

E-mail address: soares@cenparmi.concordia.ca (L.S. Olive-

ira).

0167-8655/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8655 (02 )00226-X

Pattern Recognition Letters 24 (2003) 1023–1031

www.elsevier.com/locate/patrec

mail to: soares@cenparmi.concordia.ca


supplied by the recognizer. The integration of all

modules is done through a probabilistic model

inspired by information theory.

In this work we start by introducing the concept

of levels of verification and present a brief over-

view of the system. Afterwards, we describe two
different strategies of high-level verification as well

as the results achieved by them. All experiments

reported in this work were carried out on NIST

SD19 database. In order to get a better compre-

hension of the system, we show a strong error

analysis. Finally, we outline the perspectives for

future works and present our conclusions.

2. Levels of verification

The recognition and verification scheme looks

straightforward, with a verification module em-

bedded in the traditional classification system,

which has a general-purpose recognizer only. The

goal of the general-purpose recognizer is to at-
tribute a given input to one of the n existing classes

of the system, while the pattern verifier assumes

the role of an expert to evaluate precisely the result

of the recognizer in order to compensate for its

weakness due to particular training, and conse-

quently to make the whole system more reliable.

Usually, a pattern verifier is applied after a gen-

eral-purpose recognizer and it is designed to ‘‘plug
and play’’, i.e., it is used without knowing the

implementation details of the recognition modules.

Takahashi and Griffin (1993) define three kinds

of verification: absolute verification for each class

(Is it a ‘‘0’’ ?), one-to-one verification between two

categories (Is it a ‘‘4’’ or a ‘‘9’’ ?) and verification in

clustered, visually similar, categories (Is it a ‘‘0’’,

‘‘6’’ or ‘‘8’’ ?).
In addition to these definitions, we introduce

the concept of levels of verification, where two

levels are considered: high-level and low-level. We

define as high-level verifiers those that deal with a

sub-set of the classes considered by the general-

purpose recognizer. The goal of the verifiers at this

level is to confirm or deny the hypotheses pro-

duced by the general-purpose recognizer by rec-
ognizing them (Takahashi and Griffin, 1993; Zhou

et al., 2000). We define as low-level verifiers those

that deal with meta-classes of the system such as

characters and part of them. The purpose of a low-

level verifier is not to recognize a character, but

rather to determine whether a hypothesis gener-

ated by the general-purpose recognizer is valid or

not (Cho et al., 2000).

3. System overview

Basically the baseline system used in this work

(Oliveira et al., 2001) is composed of four parts:

component detection and segmentation, feature

extraction, recognition and verification and post-
processing. Due to the restricted space we have

here, we will discuss just the recognition and ver-

ification module.

The feature extraction is composed of three

different feature sets. The first one, which feeds the

general-purpose recognizer, uses a mixture of

concavity and contour based features. The second

one, which feeds the over-segmentation verifier, is
based on a multi-level concavity analysis. The last

feature set, which feeds the under-segmentation

verifier, takes into account the same concavity

analysis used by the general-purpose recognizer.

The baseline system is composed of all modules

depicted in Fig. 1 except the gray ones, which

represent the feature set and the high-level verifier.

Although many types of neural networks can be
used for classification purposes, we opted for a

multi-layer perceptron (MLP) which is the most

widely studied and used neural network classifier.

Therefore, all classifiers presented in this work are

MLPs trained with the backpropagation algorithm

(Rumelhart et al., 1995). The training and valida-

tion sets were composed of 195,000 and 28,000

samples from hsf_{0,1,2,3} series respectively
while the test set was composed of 60,089 samples

from hsf_7 series. The recognition rates (zero-

rejection level) achieved by the general-purpose

recognizer were 99.66%, 99.45%, and 99.13% on

the training, validation, and test sets respectively.

The recognition system also considers two ver-

ifiers to cope with the over-segmentation and

under-segmentation problems. The objective of
these verifiers is to validate the general-purpose

recognizer hypotheses by using the following

1024 L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031



meta-classes: characters, part of characters and

under-segmented characters. The over-segmenta-

tion verifier was trained with 28,000 samples and it

reached a recognition rate of 99.40% on the test set

(14,000 samples) while the under-segmentation

verifier was trained with 9000 samples and it

reached a recognition rate of 99.17% on the test set
(4000 samples). We have shown that such verifiers

(vo and vu in Fig. 1) provided an improvement of
about 7% in the recognition rate for numeral

strings. However, it is important to emphasize that

these verifiers are low-level verifiers and hence we

will not discuss how they work in this paper.

4. High-level verification

As mentioned previously, the goal of the

high-level verification is to confirm or deny the

hypotheses produced by the general-purpose rec-

ognizer by recognizing them. In this section we

discuss two different strategies of high-level verifi-

cation: absolute and one-to-one. We will describe
how such verifiers were implemented as well as

why they contribute to improve the recognition

rate of the system in some cases and why they fail

in others. We can see this in Fig. 1, where the gray

boxes represent the feature set and the absolute

verifiers.

All verifiers presented in this work are MLPs

trained with the gradient descent applied to a sum-
of-squares error function (Bishop, 1995). The

transfer function employed is the familiar sigmoid

function. In order to monitor the generalization

performance during learning and terminate the

algorithm when there is no longer an improve-

ment, we have used the method of cross-vali-

dation. Such a method takes into account a

validation set, which is not used for learning, to

measure the generalization performance of the
network. During learning, the performance of the

network on the training set will continue to im-

prove, but its performance on the validation set

will only improve to a point, where the network

starts to overfit the training set, that the learning

algorithm is terminated. The databases used were

the same that we described in the previous section.

All networks have one hidden layer where the
units of input and output are fully connected with

units of the hidden layer.

4.1. Absolute high-level verifier

In this experiment 10 absolute verifiers (one for

each numerical class) were considered. Each veri-

fier was trained with two classes: digit and noise.
For example, for the verifier of the digit class 0, we

have used all zeros of the training set (19,500

samples) for the digit class and the same number of

other digits for the noise class. We have tried dif-

ferent feature sets such as concavity analysis in 8-

Freeman directions and moments (Hu, 1962). The

feature set that produced better results was the

same one used by the general-purpose recognizer.
Table 1 shows the recognition rates reached by

each absolute high-level verifier.

Fig. 1. Block diagram of a numeral string recognition system.

L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031 1025



According to the probabilistic model used by
the baseline system, the output of the recognition

module will be the product of four probabilities:

the probability supplied by the general-purpose

recognizer, the probability supplied by its respec-

tive high-level verifier and the probabilities yielded

by the two low-level verifiers (Fig. 1).

We have observed that this strategy of verifi-

cation produces an improvement to naturally iso-
lated digits, however, when the system faces

problems such as touching and fragmentation, it

does not seem very appropriate. Table 2 presents

the results on different string lengths on NIST

SD19 (hsf_7 series). It is worth of remark that 1-

digit string (Table 2) means that isolated digits are

submitted to the system modules without any a

priori knowledge of the image. In addition to
recognition errors, segmentation and fragmenta-

tion errors are also considered and consequently

the system reaches lower recognition rates than

when the isolated digit is submitted directly to

feature extraction and recognition. As we can see,

the overall performance achieved for numeral

strings by the system that considers the absolute

verifiers is worse than the baseline system. This can

be explained by the fact that strings with more

than one digit present several cases of fragmenta-
tion and touching.

This strategy seems to be suitable for systems

that have a weak general-purpose recognizer or

systems that do not face problems such as touch-

ing and fragmentation very often. In such cases,

the verifier can re-rank the list of hypotheses in

order to get the correct answer.

In Table 2 we can also see the importance of the
low-level verifiers. For details about them, see

(Oliveira et al., 2001).

5. One-to-one high-level verifier

The second strategy of high-level verification

that we have implemented was the one-to-one
verifier. Such a strategy is straightforward and

makes it easy to concentrate on the local difference

between two classes. In order to determine the

main confusions of the baseline system, we carried

out an error analysis on the validation set of

isolated digits and we observed 39 different con-

fusions (theoretically, the number of possible

confusing digit pairs is 10� 9=2 ¼ 45). We can
solve 75.05% and 62.76% of all errors focusing on

the top-39 and top-20 confusions respectively.

Therefore, it seems more cost effective focusing on

top-20 confusions, since we have to deal with

about 50% of the confusions produced by the

system. Table 3 presents top-20 confusions with

their respective frequencies.

We trained each verifier with 40,000 samples
(20,000 for each class of digit involved) using the

same feature set that we have used for our general-

purpose recognizer. For these verifiers we have

tried different feature sets such as Edge Maps

(Chim et al., 1998) and histograms, but the one

that brought better results was the same one used

by the general-purpose recognizer. Thereafter, we

used the one-to-one verifiers in the same manner
we have used the absolute verifiers. Thus, for this

experiment the gray module ‘‘high-level verifier’’ in

Table 1

Recognition rates achieved by the absolute high-level verifiers

Class RR (%)

0 99.66

1 99.08

2 99.58

3 99.20

4 99.80

5 99.66

6 99.50

7 99.84

8 99.28

9 99.10

Table 2

Recognition rates (%––zero-rejection level) for numeral strings:

(A) system without verifiers, (B) system with low-level verifiers,

(C) system B with absolute verification and (D) system B with

one-to-one verification

String

length

Number

of strings

System

A B C D

1 60,089 93.71 98.06 98.72 98.02

2 2370 91.56 96.88 96.65 96.10

3 2385 87.98 95.38 95.03 94.98

4 2345 84.91 93.38 92.97 92.91

5 2316 82.00 92.40 92.01 91.03

6 2169 85.66 93.12 92.60 91.77

10 1215 78.97 90.24 89.51 89.00

1026 L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031



Fig. 1 means the one-to-one verifiers. Table 2
(System D) presents the results achieved by this

strategy for different string lengths.

As we can notice, this strategy gave worse re-

sults than the previous one (System C). We ex-

pected better results at least for 1-digit string

problem, once the confusions were detected on the

isolated digit database. But even for this case the

results were unsatisfactory. In order to enhance

the results supplied by this strategy, it is necessary

to improve the verifier training set by including

misrecognized samples. The difficulties of imple-

menting such a solution lie in two points: (i) Lack

of samples to improve the database. If we consider

our most frequent confusion (8-0), we have just 48
cases, and (ii) if we include a few misrecognized

samples in the training set of the verifier, probably

we will introduce noise to our models. We can

visualize this problem from Fig. 2.

In order to identify the different sources of error

of the system and find why the high-level verifi-

cation schemes achieved unsatisfactory results, we

decided to carry out an error analysis on numeral
strings instead of isolated digits.

6. Error analysis on numeral strings

In order to gain a better insight of the system,

we divided the errors into four classes: confusions

generated by the general-purpose recognizer, con-
fusions generated by the low-level verifiers, errors

caused by segmentation and errors caused by

fragmentation. This analysis was carried out con-

sidering the baseline system. Table 4 describes all

sources of errors as well as its frequency per string

size.

We can read Table 4 in the following way. For

2-digit strings, we have detected 74 errors which

Table 3

Top-20 digit confusion with frequencies

Confusion Frequency

8–0 48

3–2 40

2–1 29

4–0 28

7–3 28

9–7 28

9–4 27

5–3 22

6–0 22

8–3 22

7–1 17

9–5 17

7–2 16

9–8 15

8–2 15

6–4 14

6–5 12

8–5 11

9–0 11

8–4 10

Fig. 2. Misrecognized samples: 8 confused with 6 and 9 confused with 7.

Table 4

Distribuition of the system errors

String

length

G-P recognizer Verifier Segmentation Fragmentation Total

Errors % Top-10 % Errors % Errors % Errors % Errors %

2 43 1.81 31 1.31 15 0.64 9 0.38 7 0.29 74 3.12

3 78 3.26 40 1.67 15 0.64 9 0.38 8 0.33 110 4.61

4 104 4.46 53 2.27 20 0.86 17 0.73 13 0.56 154 6.61

5 126 5.43 72 3.10 11 0.48 14 0.60 25 1.08 176 7.59

6 98 4.49 65 2.98 31 1.42 13 0.59 8 0.37 150 6.87

10 89 6.73 55 4.16 8 0.60 9 0.68 23 1.74 129 9.75

L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031 1027



correspond to a global error rate of 3.12%. This

error is divided into the following: 43 due to the

general-purpose recognizer, 15 to low-level verifi-

ers, 9 to segmentation and 7 to fragmentation. By

focusing on the top-10 confusions of the general-

purpose recognizer, we can correct 31 of the 43
errors found. In the following subsections, we will

give more details about each source of error.

6.1. General-purpose recognizer

In order to generate the total number of con-

fusions for numeral strings, we carried out the

analysis for each string length independently and
afterwards we summarized the results to compare

with the confusions obtained for isolated digits.

The first interesting fact we observed was that

we have different confusions for different string

lengths. This means that a verification strategy

based on one-to-one verifier could generate im-

provements for some string lengths but will be

difficult to optimize globally the system with this
strategy. Table 5 summarizes the top-10 confu-

sions for each string length.

If we compare the top-10 confusions found on

numeral strings (Table 5) with the top-10 confu-

sions found on isolated digits (Table 3), we can

observe that the confusions do not respect the

same order, and some of the numeral string con-

fusions even do not exist for isolated digits. We
can cite for example, 7–2, 4–1 and 7–1 pair con-

fusions. We observed that the effects generated by

the segmentation algorithm such as ligatures pro-

duce several confusions. Fig. 3 shows the problem

of the confusion between 9–7 (top-1 confusion).

6.2. Low-level verifiers

We divided the error of the low-level verifiers

into two classes: confusion generated by the over-

segmentation verifier and confusion generated by
the under-segmentation verifier. We have observed

that the latter is responsible for 87.7% of the errors

generated at this level, while the former generates

just 12.3% of the errors. About the second low-

level verifier, the confusions are generated when

isolated digits are classified as under-segmented

digits. The classes where this kind of confusion

occurs are the digit classes 6 (44%), 0 (22%), 8
(17%), 4 (12%) and 2 (5%). Fig. 4 shows some

examples of these classes of digits.

Table 5

Top-10 digit confusion with frequencies per string length

2-Digit 3-Digit 4-Digit 5-Digit 6-Digit 10-Digit Total

7–2: 6 4–1: 5 5–3: 7 7–3: 11 9–7: 11 9–7: 9 9–7: 41

9–4: 5 7–1: 5 9–7: 7 7–9: 9 7–3: 9 6–2: 8 8–0: 39

8–0: 4 4–1: 5 4–1: 6 8–0: 9 8–0: 9 8–0: 7 3–2: 31

3–2: 4 3–2: 5 3–2: 5 7–2: 8 3–2: 8 2–1: 7 9–4: 30

6–5: 2 2–1: 5 2–1: 5 9–4: 7 7–2: 7 7–1: 7 7–2: 27

4–1: 2 6–0: 3 6–0: 5 9–8: 6 9–4: 6 9–4: 5 7–3: 24

8–2: 2 9–4: 3 9–4: 5 3–2: 6 8–3: 6 3–2: 3 5–3: 20

8–5: 2 8–0: 3 8–0: 5 5–3: 6 7–1: 6 4–2: 3 4–1: 20

9–0: 2 7–3: 3 7–3: 4 9–5: 5 5–3: 5 6–5: 3 7–1: 20

9–7: 2 2–0: 3 2–0: 4 6–4: 5 8–2: 5 9–1: 3 2–1: 18

Fig. 3. Confusion between 9 and 7: (a) original image, (b) best

hypothesis of segmentation–recognition and (c) correct hy-

pothesis.

Fig. 4. Digits confused with under-segmented class by the

second low-level verifier. This kind of 8 and 0 are sometimes

misverified by the first verifier.

1028 L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031



About the first low-level verifier (vo), the con-
fusion is generated when the verifier fails to detect

the over-segmented parts. Such a fact usually

happens with digit classes 0 (61%) and 8 (39%).

The over-segmentation in these two classes is

generated when the digits are opened (Fig. 4). This
kind of effect is caused usually by pre-processing.

6.3. Segmentation

The segmentation errors can be caused either by

under-segmentation, which is due to a lack of basic

points in the neighbourhood of the connection

stroke, or wrong segmentation. More details about
segmentation errors can be found in (Oliveira et al.,

2000).

6.4. Fragmentation

The confusions produced by fragmentation are

found basically when the algorithm groups the

fragmented part with the wrong neighbor. Usu-
ally, it fails for images that have neighbors (left

and right) with similar distances to the fragmented

part (Fig. 5b) and for images with poor quality

(Fig. 5a).

7. Discussion

So far, we have described two different strate-

gies of high-level verification in order to improve

the recognition rate of the system. We also pre-
sented a strong error analysis carried out on nu-

meral strings. As we can notice, both strategies

(absolute and one-to-one) do not achieve satis-

factory results on numeral strings. Such strategies

become interesting either when there is a diversity

of samples (confusions) to train the verifiers or

when the system has a weak general-purpose rec-

ognizer, e.g., the system presented by Britto Jr et al.
(2001).

The strategy based on absolute verifiers has

brought an improvement for 1-digit string. Such a

fact emphasizes that high-level verifiers should be

built in order to cope with more complex prob-

lems, e.g., all sources of errors presented in the last

section. However, we have seen that it is not a

trivial problem. As described in Table 5, the con-
fusions for numeral strings are not concentrated in

a few classes and for this reason a different strategy

of optimization should be adopted in our case.

One strategy could be the finding of different fea-

ture sets to feed the high-level verifiers. But in this

case, the system should overcome the same kind of

problems faced by multi-classifier systems, e.g.,

run time inefficiency and system complexity.
In spite of the fact the current system can be

optimized in some respects, we already have rec-

ognition rates comparable or better than those

reported in the literature. Table 6 summarizes the

recognition rates claimed by different authors on

NIST SD3/SD19 (hsf_7). Ha et al. (1998) used

about 5000 strings of the NIST SD3. Lee and KimFig. 5. Fragmentation problems.

Table 6

Recognition rates on NIST SD3/SD19––hst_7, zero-rejection level

String

length

Ha et al. (1998) Lee and Kim (1999) Fujisawa et al. (1992) Britto Jr et al. (2001) System B

Strings RR% Strings RR% Strings RR% Strings RR% Strings RR%

2 981 96.2 1000 95.23 1000 89.79 2370 95.23 2370 96.88

3 986 92.7 1000 88.01 1000 84.64 2385 92.62 2385 95.38

4 988 93.2 1000 80.69 1000 80.63 2345 92.11 2345 93.38

5 988 91.1 1000 78.61 1000 76.05 2316 90.00 2316 92.40

6 982 90.3 1000 70.49 1000 74.54 2169 90.09 2169 93.12

10 1215 86.94 1215 90.24

L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031 1029



(1999) used 5000 strings but they did not specify

the data used. Britto Jr et al. (2001) used the same

database we have used. It is important to remark

that the results achieved in Fujisawa’s system were

published in (Lee and Kim, 1999). As we can see,

even considering a larger number of strings we
reach better results than the other systems. Fig. 6a

shows the examples of fields containing touching

or broken characters that were correctly recog-

nized by the baseline system while Fig. 6b shows

the examples of misclassified fields.

8. Conclusion

We have presented in this paper some experi-

ments considering strategies of high-level verifi-

cation. Two different schemes were developed,

namely, absolute verifiers and one-to-one verifiers.

We have introduced the concept of levels of veri-

fication and described the baseline system, which

takes into account a segmentation-based recogni-
tion approach with an explicit segmentation al-

gorithm. We have seen that the absolute verifier

strategy brought an improvement in the recogni-

tion rate for 1-digit string but it reached worse

results on strings with more than one digit due to

the different kinds of errors between isolated digits

and string of digits.

Based on the experiments described in this
work, we can conclude that one of the best ways to

optimize a system with a good overall performance

lies in the optimization (deletion, addition, and

modification) of the feature sets. Therefore, our

next efforts will be focused on the optimization of

the feature sets employed in the system. Finally,

some results claimed by different authors on NIST

SD19 database have been compared.

References

Bishop, C.M., 1995. Neural Networks for Pattern Recognition.

Oxford University Press, Oxford, UK.

Britto Jr., A., Sabourin, R., Bortolozzi, F., Suen, C.Y., 2001. A

two-stage HMM-based system for recognizing handwritten

numeral strings. In: Proc. 6th ICDAR, Seattle-USA, pp.

396–400.

Chim, Y.C., Kassim, A.A., Ibrahim, Y., 1998. Dual classifier

system for handprinted alphanumeric character recognition.

Pattern Anal. Applicat. 1, 155–162.

Cho, S.J., Kim, J., Kim, J.H., 2000. Verification of graphemes

using neural networks in an HMM-based on-line Korean

handwritting recognition system. In: Proc. 7th IWFHR.

Amsterdam, Netherlands, pp. 219–228.

Fujisawa, H., Nakano, Y., Kurino, K., 1992. Segmentation

methods for character recognition: from segmentation to

document structure analysis. Proc. IEEE 80, 1079–1092.

Ha, T.M., Zimmermann, M., Bunke, H., 1998. Off-line hand-

written numeral string recognition by combining segmenta-

tion-based and segmentation-free methods. Pattern

Recognition 31 (3), 257–272.

Hu, M.K., 1962. Visual pattern recognition by moment

invariant. IEEE Trans. Inform. Theory 8, 179–187.

Lee, S.W., Kim, S.Y., 1999. Integrated segmentation and

recognition of handwritten numerals with cascade neural

networks. IEEE Trans. Systems Man, Cybernet. Part C:

Applicat. Rev. 29 (2), 285–290.

Oliveira, L.S., Lethelier, E., Bortolozzi, F., Sabourin, R., 2000.

A new segmentation approach for handwritten digits. In:

Proc. 15th ICPR, Barcelona-Spain, vol. 2, pp. 323–326.

Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y., 2001. A

modular system to recognize numerical amounts on Brazil-

ian bank cheques. In: Proc. 6th ICDAR, Seattle, USA, pp.

389–394.

Fig. 6. Examples of (a) correctly recognized fields and (b) misclassified fields.

1030 L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031



Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y., 1995.

Backpropagation: the basic theory. In: Chauvin, Y., Rumel-

hart, D.E. (Eds.), Back Propagation: Theory, Architectures

andApplications. LawrenceErlbaum,Hillsdale,NJ, pp. 1–34.

Takahashi, H., Griffin, T., 1993. Recognition enhancement by

linear tournament verification. In: Proc. 2nd ICDAR,

Tsukuba, Japan, pp. 585–588.

Xu, L., Krzyzak, A., Suen, C.Y., 1992. Methods of combining

multiple classifiers and their applications to handwritten

recognition. IEEE Trans. Systems Man Cybernet. 22 (3),

418–435.

Zhou, J., Gan, Q., Krzyzak, A., Suen, C.Y., 2000. Recognition

and verification of touching handwritten numerals. In: Proc.

7th IWFHR. Amsterdam, Netherlands, pp. 179–188.

L.S. Oliveira et al. / Pattern Recognition Letters 24 (2003) 1023–1031 1031


	Impacts of verification on a numeral string recognition system
	Introduction
	Levels of verification
	System overview
	High-level verification
	Absolute high-level verifier

	One-to-one high-level verifier
	Error analysis on numeral strings
	General-purpose recognizer
	Low-level verifiers
	Segmentation
	Fragmentation

	Discussion
	Conclusion
	References


