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In this paper we present a new algorithm for filtering a grey-level image using as attribute the number of

holes of its connected components. Our approach is based on the max-tree data structure, that makes it

possible to implement an attribute filtering of the image with linear computational cost.

To determine the number of holes, we present a set of diverse pixel patterns. These patterns are designed

in a way that the number of holes can be computed recursively, this means that the calculations done for the

components of the image can be inherited by their parent nodes of the max-tree. Since we do not need to

re-calculate the attribute data for all connected components of the image, the computation time devoted to

the attribute computation remains linear.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In mathematical morphology, connected filters [1] are operators

that modify an image by only suppressing connected components,

and thus, preserving its original contours. Attribute filters [2] are

connected operators that keep certain shapes in the image based on a

wide range of criteria. Different attributes can be used, like elongation,

moment of inertia [3], energy [4], noncompactness [5], circularity [6],

etc. The idea behind this approach is to think of attribute filtering

as selecting shapes in images based on prior knowledge of the ob-

jects of interest. A connected component is preserved if it meets the

corresponding attribute criterion, or removed otherwise.

The common attributes used for filtering binary images (like area,

perimeter, moments, or Euler number) can be extended to grey-level

images by threshold decomposition [7]. A grey-scale image can be de-

composed in many binary images (called cross sections or level sets)

by thresholding it at each grey-scale level. A cross section at level h

is given by the set of all pixels greater or equal than h. A straightfor-

ward implementation of this idea, filtering each cross section as an

independent binary image, leads to very inefficient algorithms. Nev-

ertheless, attribute filtering of grey-level images can be efficiently

implemented using Max-Tree algorithms [8–10].

Here, we propose a new algorithm for filtering a grey-level image

using as attribute the number of holes of the image connected compo-
✩ This paper has been recommended for acceptance by G. Borgefors.
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ents. The number of holes of a connected component is a topological

roperty closely related to the Euler number.

The Euler number is defined as the difference between the number

f connected components and the number of holes in a binary image

Equation (1)). It is an important attribute, invariant to several image

ransformations such as translations, rotations, scale, projections, and

ven some non-linear deformations. Traditionally, it has been used

n a great amount of applications, like signature verification [11],

etecting malaria parasites in blood images [12] , reflectance-based

bject recognition [13], etc.

= N − H (1)

There exist some algorithms [14–17], and patents [18] for comput-

ng the Euler number of a binary image. The most popular algorithm

19] is based on counting certain 2 × 2 pixel patterns called bit-quads.

The Euler number and the number of holes are equivalent con-

epts for a single connected component. Since for a single connected

omponent, N value is always 1 in Equation (1), we can conclude

hat ε and H are practically the same thing. The result of computing

he value of the Euler number of a connected component is always

minus its number of holes. Therefore, the same algorithm used for

omputing the Euler number can be used for computing the number

f holes of a connected component.

Although there exist several algorithms for computing the number

f holes (or Euler number) of the blobs in a binary image, to the best

f our knowledge, no algorithm has been proposed up until now

or computing the number of holes of the connected components

f a grey-level image. Classical features used for grey-level attribute

ltering are based on shape or size properties (like moments, volume
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Fig. 1. A synthetic image and its corresponding max-tree. Region grey-level values:

A = 0, B = 1, C = 1, D = 2, E = 2.
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r perimeter), but in this paper, we describe an algorithm that uses a

opological attribute (number of holes) for filtering the image.

The rest of this paper is organized as follows: In Section 2 we re-

iew connected filters and the attribute filtering algorithm. Section 3

ntroduces our algorithm for filtering an image using the number

f holes as attribute. We provide some results of the algorithm in

ection 4, and make some conclusions in Section 5.

. Attribute filtering

Connected filters are those that preserve the contours of the orig-

nal image. They cannot create new contours, or modify the posi-

ion of the existing ones. Therefore, they have very good contour-

reservation properties and are able to low-level filtering and higher-

evel object recognition. These filters modify the image removing only

at zones [20], which are connected components where the image

rey-level is constant.

The hierarchical representation of the connected components by

eans of max and min-tree, made possible the implementation of

fficient algorithms to compute connected filters [10]. The use of

hese trees allows more sophisticated forms of filtering, like the one

ased on attributes [8]. Component features, called attributes, are

omputed on the nodes of the max-tree. The max-tree should contain

oth the hierarchy of connected components in the image, and the

ttributes for each component to be used as a filter criterion.

Since max-trees are used in many different applications (motion

xtraction [21], MSER feature extraction [22], segmentation, 3D vi-

ualization [6]), several algorithms have been proposed till now to

ompute the max-tree. Some of them are dedicated to a particular

ask, and are not useful for other purposes. In our work, we use the

lgorithm proposed in [10], that uses the max-tree to achieve, specifi-

ally, an efficient sequential implementation of attribute filters. It has

worst-case computational cost O(kN) (being k the number of grey-

evels in the image), but which is effectively linear for most natural

mages. In [23] they provide a full and exhaustive comparison of the

tate-of-the art of algorithms for computing the max-tree.

The algorithm proposes a separation of the filtering process into

wo stages: a tree construction stage, and a filtering stage.

In the first stage, the tree is built sequentially, structuring the

ixels in a way that leads to efficient implementations of the fur-

her filtering process. As seen in Fig. 1, each node of the max-tree

oints to its parent (which has a strictly lower grey-level). The nodes

orresponding to the components with the highest intensity are the

eaves. The root, having the lowest grey-level, points to itself. This

ay of linking nodes simplifies the computation of component at-

ributes since every parent inherits the data of its descendants. When

ealing with increasing attributes (like area or volume), inheritance

s a simple accumulation. The attribute considered in this paper is

on-increasing (case of shape attributes), then the inheritance needs

more complex handling, described in next section.

The tree construction uses a flood-filling approach based on hier-

rchical FIFO queues, where each queue corresponds to a particular

rey-level value. These queues are used to define an appropriate or-

er for scanning and processing the pixels. It performs a depth-first

weep of the tree, starting at the lowest grey level of the image (the

oot), and moving upward in grey scale. When a pixel is processed, the

lgorithm updates the data of the node currently being flooded. After

hat, it inspects its neighbours and places them in their respective

ueues. If a neighbouring pixel is at a higher level, flooding proceeds

ecursively at this new level. Once a node is completely flooded, the

rocess is completed by determining its parent and attribute fields.

he function returns the node attribute information to its parent and

he flooding process goes on at the new level.

The max-tree creation relies on a recursive flooding procedure. The

lgorithm has basically two steps: the first one performs the propaga-

ion and the updating of the status of each pixel being processed, and
omputes the attribute data of each node, whereas the second step

efines the parent/child relationships. The process finishes when all

ixels have been processed. The details of this algorithm can be found

n [10].

In the filtering stage, it is decided which nodes (connected com-

onents) will be suppressed from the tree. The pruning process is

overned by a criterion that may involve simple features such as size,

ontrast, or more complex ones such as texture, motion, or even a

riterion of similarity to predefined shapes. Finally the filtered image

s obtained from the pruned tree.

Attribute filters use a criterion T to determine which connected

omponents (CC) are preserved. If T(CC) is true, then Filter(CC) = CC;

therwise, Filter(CC) = NULL. Usually, T is defined by using some at-

ribute of the connected component, and comparing it to a threshold

alue. The criterion T can be that attribute value is either higher or

ower than the threshold. Any node can be removed from the tree.

here are four typical strategies for removing the filtered nodes:

• the max rule prunes the branches from the leaves up to the first

node that has to be preserved.
• the min rule prunes the branches from the leaves up to the last

node that has to be removed.
• the direct rule consists of removing the selected nodes even if this

does not create a pruning. The pixels belonging to the connected

components that have been removed are merged to the node of

their first ancestor that has to be preserved.
• the subtractive rule [24] is the same as the direct rule except that

the grey levels of surviving descendants of removed nodes are also

lowered, so that the contrast with the local background remains

the same.

. Algorithm for attribute filtering by number of holes

.1. Computing the number of holes for a binary component

Our algorithm for computing the number of holes of a connected

omponent is originally based on the Euler number. The most popular

lgorithm for computing the Euler number of an image is the well

nown algorithm based on locally binary patterns [19], used in the

ATLAB image processing toolbox. The local binary patterns consist

n the following set of 2 × 2 binary pixel quads:

Q1 =
{

0 0
1 0

,
0 0
0 1

,
0 1
0 0

,
1 0
0 0

}

2 =
{

1 1
0 1

,
1 1
1 0

,
1 0
1 1

,
0 1
1 1

}

Q3 =
{

0 1
1 0

,
1 0
0 1

}
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Where Q1 corresponds to outside corners, Q2 to inside corners, and

Q3 to eight-connectivity connections. Let C1, C2, and C3 be the number

of patterns Q1, Q2, and Q3, respectively present in a binary image I.

In [25] they determine that under the definition of four-connectivity,

the Euler number can be computed using Equation (2), and under the

definition of eight-connectivity, Equation (3) should be used.

ε4(I) = C1 − C2 + 2C3

4
(2)

ε8(I) = C1 − C2 − 2C3

4
(3)

Instead of using two equations for the different connectivities

and a single set of quads, we propose to use a single equation

(Equation (4)) and different sets of quads for each connectivity.

Under the definition of 4-C:

QC4
1 =

{
0 −
1 0

,
− 0
0 1

,
0 1
− 0

,
1 0
0 −

}

QC4
2 =

{
1 1
0 1

,
1 1
1 0

,
1 0
1 1

,
0 1
1 1

}

Under the definition of 8-C:

QC8
1 =

{
0 0
1 0

,
0 0
0 1

,
0 1
0 0

,
1 0
0 0

}

QC8
2 =

{
1 −
0 1

,
− 1
1 0

,
1 0
− 1

,
0 1
1 −

}

(Where the pixel value ‘−’ does not care)

ε(I) = C1 − C2

4
(4)

Using this approach, we get rid of Q3 masks, and only count for

outside and inside corners. Q3 is not necessary if using a different set

of masks for different connectivities.

Proof. Q3 only takes into account patterns of pixels that are diag-

onally connected. Let us assume that there is a pixel pattern in the

image like one of those quads of Q3. Then, counting Q1, Q2, and Q3

patterns, C1 = 0, C2 = 0, and C3 = 1. Therefore, ε4 would increase in

two units, and ε8 would decrease in two units, using Equations (2),

and (3) respectively.

Using QC4
1 and QC4

2 patterns, C1 = 2, and C2 = 0. Using QC8
1 and QC8

2

patterns, C1 = 0, and C2 = 2. Therefore ε would also increase in two

units for 4-C, and decrease in two units for 8-C using Equation (4).

Attribute filtering is a connected operator, thus, it filters connected

components. Since the Euler number is defined as the difference be-

tween the number of blobs and the number of holes in the image,

it makes no sense to compute it for a single connected component,

which always consists of a unique blob. Therefore, the real interesting

attribute for filtering the connected components is just their number

of holes, not their Euler number. Equation (5) is a trivial derivation of

Equations (1) and (4) for computing the number of holes of a binary

connected component of an image.

Number of holes (CC) = 1 − C1 − C2

4
(5)

3.2. Extension to grey-level images

First, we need some definitions to extent to grey-level images, the

idea given in previous section.

The h-level set of a grey-level image I is defined as:

Vh = {x ∈ I |f (x) ≥ h } (6)

A dome Dh
i

of a grey-level image is a connected region in which f (x) ≥
h for all x ∈ Dh

i
, and all neighbors of Dh

i
have a grey level smaller than

h. Dh
i

is defined as the ith connected component of the level set Vh.
An extension of attribute filters to grey scale can be made by using

hresholded images Vh. The grey-scale image may be considered as a

tack of level sets, each consisting of progressively bigger domes as h

ecreases.

As h decreases, new flat-zones are added to existing domes, and

onsequently, new inside and outside corners may appear and should

e taken into account. Let p be an already non-processed pixel from

onnected component i, with grey-level h. p will add a new out-

ide corner to Dh
i

if, and only if, all its neighbours have a grey value

trictly lower than h. On the other hand, it will add a new inside

orner if, and only if, one of its neighbours has a grey value strictly

ower than h, and the rest of them have a grey value higher or equal

han h.

We present next, the sets of masks needed to compute this new

orners for both four and eight connectivities. Q2 masks must con-

ider all possible cases where a pixel p has an inside corner as a

eighbour. These cases include patterns where the neighbour pix-

ls of the corner, are equal than pixel p but also those that are

trictly greater than pixel p. The sets of masks are complete be-

ause they must consider all possible patterns, and they are mu-

ually exclusive in a way that the same corner cannot be counted

wice. It can be proved by simple enumeration of all possible

atterns.

C4
1 =

{
L −
p L

,
− L
L p

,
L p
− L

,
p L
L −

}

C4
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G p
L G

,
p G
G L

,
G L
p G

,
L G
G p

p g
L G

,
g p
G L

,
G L
g p

,
L G
p g

g g
L p

,
g g
p L

,
p L
g g

,
L p
g g

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

eing:

• G grey-level higher than pixel p
• L grey-level lower than pixel p
• g grey-level higher or equal than pixel p
• l grey-level lower or equal than pixel p
• - do not care

C8
1 =

{
L L
p L

,
L L
L p

,
L p
L L

,
p L
L L

}

C8
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p −
L G

,
− p
G L

,
G L
− p

,
L G
p −

g −
L p

,
− g
p L

,
p L
− g

,
L p
g −

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The columns of masks are ordered according to the corner pointing

o NE, NW, SW, and SE directions. For every corner direction, Q2 rows

re ordered according to a combination of G-g patterns that guar-

ntees that all possible pixel patterns are considered, and the same

orner is never counted more than once. Fig. 3(a) shows two examples

f different Q2 patterns. Notice that if masks in QC4
2 were not ordered

ccording these G-g patterns (i.e. we only had used g), then the inside

orner of region B (the lower left one) would be counted three times.

For binary images, this new set of masks is equivalent to the one

resented in Section 3.1.

roof. In a binary image, pixel p belongs to a connected pixel from

oreground ( a ‘1’ using Section 3.1 notation). A grey value strictly

ower than p ( a ‘L’ using new notation) is necessarily a ‘0’. Thus, Q1

asks sets from Sections 3.1 and 3.2 are exactly the same.
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(a) (b)

Fig. 2. In DB
1 corner of region C disappears in image (a), but remains in image (b).
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Fig. 3. (a) Example of presence of Q2 patterns. (b) Example of presence of Q3 patterns.
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A ‘G’ value will never show up in a binary image, since there are no

rey values greater than ‘1’. Then, only the masks from last row of Q2

et are possible. A grey value ‘g’ (higher or equal than p) is necessarily

‘1’ in a binary image. Thus, Q2 masks sets from Sections 3.1 and 3.2

re exactly the same.

.3. Computing number of holes of all grey-level components

Pixel quad counting provides a very simple mean of determining

he Euler number of a binary image. The computational complexity of

he algorithm, for a binary image, is linear with the number of pixels

n the image. When extending the algorithm to grey-level images, the

omputation time devoted to the analysis of the max-tree (criterion

ssessment and decision) is a function of the criterion complexity.

his amount of time remains linear if the attribute can be computed

ecursively, that is, if it is possible to take into account the evaluation

one for the child nodes while computing the attribute of the current

ode. For example, computing the area of a node is as simple as to

ount the number of pixels of the current node grey-level and add the

rea of its child nodes.

However, this extension to attribute filtering of grey-level images

s not always so easy, specially when the attribute used is not in-

reasing. The number of holes is not an increasing attribute, since the

umber of holes of a child node can be either higher or lower than the

umber of holes of a parent node. This limitation makes that the lo-

al binary pattern approach cannot be applied straightforward to the

ifferent level sets of a grey-level image. Inheritance of child nodes at-

ributes cannot be done by just simple addition. When a node inherits

he attributes from its children, the amount of local binary patterns

esulting from the fusion strongly depends on both connected com-

onents topologies. A simple example in Fig. 2 shows different results

f attribute inheritance depending on image topology.

In the original Max-Tree algorithm in [10], they use the term

merge’ to refer to the procedure of attribute inheritance from child

odes. For coherence with the original algorithm, we will use the

ame term. That is, Dh
i

is a dome result of the merging of h-level flat

one i with its child nodes D
hj

j
, being hj > h; ∀j.

In the first example (Fig. 2(a)), both flat zones B and C present

North-East corner pattern (first binary quad of Q1), and only one

hould remain in DB
1. In the second example (Fig. 2(b)), B and C

resent the same corner pattern again, but both corners remain in
B
1. Thus, in the image shown of Fig. 2(b), the number of North-East

orners of DB
1 could be computed by simple addition using the number

f NE corners of DC
1, but this approach would give wrong results in

he image of Fig. 2(a).

We need to extend the set of patterns in order to solve the merging

roblem shown in Fig. 2. For this extension we need two new sets of

atterns for every corner direction. The new sets of patterns, Q3 and

4, take into account pixels whose neighbours are corners that will

isappear when the respective components merge (the component

here the pixel p belongs and the one where the corner does). The

ntuitive idea of this extension patterns is to subtract to the attribute

alue, those corners that vanish when different grey-level sets merge.

or example, Fig. 2(a) shows two different corners pointing to NE. The
orner in component C should be considered a corner in DC
1, but it will

isappear in DB
1 (when connected component C merges with its parent

). For this reason, we should decrease the score to the attribute data

f the corresponding B node (that is, Q3 = −1). When region B inherits

he attributes of region C, the score of node B (−1) should neutralize

he score of node C (+1) due to the presence of the NE corner shown

n Fig. 2(a).

We present next the sets of patterns Q3 and Q4 for both four and

ight connectivities (columns of patterns sets are sorted in a NE, NW,

W, SE order). Let C3, and C4 count for the number of patterns Q3,

nd Q4 respectively. Let p be an already non-processed pixel from a

-level connected component. C3 will increase if, and only if, one of

neighbours was an outside corner and all the rest of its neighbours

ave a grey value lower or equal than h. C4 will increase if, and only

f, all of p neighbours have a grey value strictly higher than h (that is,

was an inside corner). Fig. 3(b) shows two examples of presence of

3 patterns.

C4
3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p −
G L

,
− p
L G

,
L G
− p

,
G L
p −

l −
G p

,
− l
p G

,
p G
− l

,
G p
l −

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

C4
4 =

{
G G
p G

,
G G
G p

,
G p
G G

,
p G
G G

}

C8
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L p
G L

,
p L
L G

,
L G
p L

,
G L
L p

p l
G L

,
l p
L G

,
L G
l p

,
G L
p l

l l
G p

,
l l
p G

,
p G
l l

,
G p
l l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C8
4 =

{
G −
p G

,
− G
G p

,
G p
− G

,
p G
G −

}

The functions for updating the attribute information of tree nodes

domes) are detailed in Algorithms 1–3. Algorithm 3 is the one that

omputes attribute information of a parent node, taking into account

he information already computed for its child nodes. The number of

nside and outside corners is updated by adding the number of child

orners, but subtracting the number of corners that disappears in the

erging procedure.

The filtering process, which is executed after flooding, visits each

ode starting from the root. For every node, a criterion is evaluated

epending on its attribute value (the criterion is usually a specified at-

ribute threshold). The function used to get the attribute value (num-

er of holes) of a connected component is given in Algorithm 4, based

n Equation (5).
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Algorithm 1: NewNode(p)

// Creates a new connected component for pixel p

input : pixel being processed

output: creates node data

begin

C1 ←− CountPatternsQ1(p)
C2 ←− CountPatternsQ2(p)
C3 ←− CountPatternsQ3(p)
C4 ←− CountPatternsQ4(p)

end

Algorithm 2: AddToNode(p)

// Adds p to an existing connected component

input : pixel being processed

output: updates node data

begin

C1 ←− C1 + CountPatternsQ1(p)
C2 ←− C2 + CountPatternsQ2(p)
C3 ←− C3 + CountPatternsQ3(p)
C4 ←− C4 + CountPatternsQ4(p)

end

Algorithm 3: MergeNode(node,child)

// Inherits attribute information from child and updates

attribute information of parent component

input : parent connected component, child connected

component

output: updates parent node data

begin

C1 ←− C1 + Child_C1 − C−
3

C2 ←− C2 + Child_C2 − C−
4

end

Algorithm 4: GetAttributeValue(p)

// Gives the number of holes of connected component

input : pixel identifying a connected component

output: the number of holes of the connected component

begin

return 1 − C1−C2
4

end

(a) (b)
Fig. 4. (a) Quads found in C using 8-C. (b) Quads found in C using 4-C.

(a) (b)
Fig. 5. (a) Quads found in B using 8-C. (b) Quads found in B using 4-C.
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4. Some tests

First of all, we test the proposed algorithm for computing the

number of holes by means of counting corners, using the synthetic

image shown in Figs. 4 and 5. Dome DC
1 has one hole considering

eight-connectivity, and has no holes considering four-connectivity.

Dome DB
1 has no holes in any case.

Fig. 4(a) shows the QC8
1 and QC8

2 patterns detected in flat zone C.

For visual counting purpose, pixels p of QC8
1 are marked with a slash,

while pixels p of QC8
2 are marked with a cross. There is no presence

of patterns QC8
3 or QC8

4 in C. There can be found six QC8
1 patterns

(CC8
1 = 6) and six QC8

2 patterns (CC8
2 = 6), thus, using Equation (5) the

number of holes of dome DC is 1. Fig. 4(b) shows the QC4 and QC4

1 1 2
atterns detected in flat zone C. For the case of four-connectivity

e get CC4
1 = 8, and CC4

2 = 4, therefore, DC
1 has no holes considering

our-connectivity.

Fig. 5(a) shows the QC8
3 and QC8

4 patterns detected in flat zone

. Pixels p of QC8
3 are marked with a slash, while pixels p of QC8

4

re marked with a cross. There is no presence of patterns QC8
1 or

C8
2 in B. We count CC8

3 = 1, CC8
4 = 5. Using the merging procedure

escribed, we obtain CC8
1 (B) = CC8

1 (C)− CC8
3 (B) = 5, CC8

2 (B) = CC8
2 (C)−

C8
4 (B) = 1. Thus, using Equation (5) the number of holes of dome DB

1

s 0.

Fig. 5(b) shows the QC4
3 and QC4

4 patterns detected in flat zone B.

here is a pixel with a double slash because two different quads in
C4
3 match the pixel pattern. The same pixel presents also a QC4

2 quad.

here is no presence of QC4
1 patterns in B. We count CC4

2 = 1, CC4
3 = 3,

C4
4 = 4. Therefore, we get CC4

1 (B) = CC4
1 (C)− CC4

3 (B) = 5, CC4
2 (B) = 1 +

C4
2 (C)− CC4

4 (B) = 1. Notice that, regardless of which connectivity is

eing considered, DB
1 has five outside corners and one inside corner.

he number of holes of dome DB
1, using Equation (5), is 0.

We show next an example of the results of filtering real images

sing the number of holes as attribute. Once the max-tree has been

reated, the filtering strategy consists in simplifying the tree and re-

onstructing a new image from the simplified one. The tree nodes

ight be preserved or removed depending on the number of holes

f their respective connected components. The objective in all cases

s to enhance some image structures containing the desired number

f holes, while reducing or suppressing other components with an

nappropriate number of holes.

In our experiments we have chosen a direct rule strategy for re-

oving the filtered nodes, that is, surviving connected components

emain with the same grey level than in the original image. This choice

as not a determining effect on the final result. We use direct filter-

ng just for presentation purposes because it gives higher contrasted

utput images.

In this test we try to detect car license plates in outdoor scenes

sing the proposed attribute filtering. The criterion used for filtering

he image is to retain connected components having exactly seven or

ight holes. Small holes are also filtered using an area closing to avoid
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Fig. 6. (a) and (b) Original images, (c) and (d) binary images using Otsu’s thresholding,

(e) and (f) binary images using Pun’s thresholding, (g) and (h) results using number of

holes attribute filtering.
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Fig. 7. (a) and (b) Original images, (c) and (d) results using shape attribute filtering,

(e) and (f) results using number of holes attribute filtering.
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he presence of small holes due to noise effect or irrelevant regions.

e have not used any information about the hypothetical position or

rientation of the license plates in the image.

Since it does not exist another algorithm for filtering a grey-level

mage by its number of holes, we compared our results with two other

ifferent approaches. The first one is simply to threshold the image,

nd filter the binary blobs according to their number of holes. The

econd approach is to use a grey-level attribute filtering using other

hape attributes and compare the results with the filtering using the

umber of holes attribute.

In the first test we select those blobs in the binary image whose

umber of holes is equal to seven or eight. We have chosen the thresh-

ld level using two different classical algorithms, the first one based

n clustering [26], the second one based on entropy maximization

27]. Fig. 6(c) and (d) shows the result of binarizing the car images

sing Otsu’s threshold. The result shown in Fig. 6(d) is good, and the

lob corresponding to the plate would be selected because it has eight
oles. However, some numbers are lost in Fig. 6(c) due to the binariza-

ion process, thus, the plate would be removed because it has only

our holes. If we use Pun’s threshold instead, the result is good for

he first car image (Fig. 6(e)), but now some holes are lost in Fig. 6(f)

ecause they end up connected to the background. The conclusion

f this experiment, as could be expected, is that it does not exist a

hreshold that suits for all images, and the result is too dependent on

he thresholding process. Fig. 6(g) and (h) shows the result of filtering

he grey-level images using the number of holes as attribute.

In a second test, we filter the grey-level images using shape at-

ributes or the number of holes attribute. Concretely, Fig. 7(c) and (d)

s the filtered image using elongation and compactness as attribute

espectively. Shapes with an elongation lower than 2 have been re-

oved, and the surviving shapes with a low compactness have been

lso removed because they present a complex shape. The result is that

ome unwanted objects (but compact and elongated shapes), like the

aper on the back slide, the sticker in the rear screen, or some reflec-

ions are not removed. Using the number of holes attribute, only the

lates remain (Fig. 7(e) and (f)). The conclusion of this experiment is

hat the number of holes can be a discriminative attribute, and give

aluable information to the filtering process.

The objective of this paper is not to present a method for license

late detection, but to show the results of our algorithm in a real ap-

lication. For an exhaustive evaluation of a method for license plate

etection, we should definitely use additional shape attributes, but

his is out of the scope of this work. The objectives of this experiment

re, first, to show that the number of holes of connected components

an be a useful attribute, second, to show that the proposed algorithm
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filters correctly an image based on the number of holes, and third, to

test the computing time of the algorithm. The algorithms were im-

plemented in C language on a PC workstation (Core Duo at 3.0 GHz,

2GB RAM). We have used 515 (640 × 480) grey-level images for test-

ing (available at: www.zemris.fer.hr/projects/LicensePlates/english/

baza_slika.zip). Processing time of the attribute filtering based on

number of holes is 0.38 seconds in average.

5. Conclusions

We have proposed a new algorithm for filtering the connected

components of an image according to their number of holes. This topo-

logical property gives important information about the components

of an image, and used together with other attributes can enhance the

robustness of a filtering process.

The algorithm for computing the number of holes of each con-

nected component was originally based on the use of the well known

pixel quads patterns, but we propose a new set of patterns with the

aim of extending the algorithm to grey-level images. The proposed

new set of patterns ensures that the attribute data of each component

should not be re-computed for every cross section of the image. The

component attributes are updated by simple additions and subtrac-

tions each time that a new pixel is processed.

The filtering algorithm is based on a max-tree, which has a linear

computational cost. Together with the fact that attribute data of every

node can be computed recursively using the previous evaluation of

their child nodes, the resulting implementation is suitable for real-

time operation.
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