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a b s t r a c t 

Multiple Classifier Systems (MCSs) have been widely used in the area of pattern recognition due to the 

difficult task that is to find a single classifier that has a good performance on a great variety of problems. 

Studies have shown that MCSs generate a large quantity of classifiers and that those classifiers have 

redundancy between each other. Various methods proposed to decrease the number of classifiers without 

worsening the performance of the ensemble succeeded when using diversity to drive the pruning process. 

In this work we propose a pruning method that combines different pairwise diversity matrices through a 

genetic algorithm. The combined diversity matrix is then used to group similar classifiers, i.e., those with 

low diversity, that should not belong to the same ensemble. In order to generate candidate ensembles, 

we transform the combined diversity matrix into one or more graphs and then apply a graph coloring 

method. The proposed method was assessed on 21 datasets from the UCI Machine Learning Repository 

and its results were compared with five state-of-the-art techniques in ensemble pruning. Results have 

shown that the proposed pruning method obtains smaller ensembles than the state-of-the-art techniques 

while improving the recognition rates. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Ensemble methods began gathering attention of the pattern

recognition community after Wolpert’s no free lunch theorem [1]

stated that given enough problems and two classifiers, the number

of problems in which a classifier outperforms the other is roughly

equal. This means that searching for a single classifier model that

had good performance at a wide array of problems is unproductive.

Multiple classifier systems, another name for ensembles of classi-

fiers, avoid the problem stated by Wolpert by combining the out-

put of various classifiers. The combination softens the differences

between problems in which the classifiers of the ensemble have

different performances. Besides this softening effect ensembles use

weaker classifiers which are easier to train. 

The main problem with ensemble methods, such as Bagging or

AdaBoost, is that the final ensemble has a large number of classi-

fiers. In the late 1990s it had been shown that some of the clas-

sifiers in the ensemble could be removed without impairing the

ensembles ability to generalize [2,3] . These findings led to more

research being done on the area of ensemble pruning since search-
✩ This paper has been recommended for acceptance by Egon L. van den Broek. 
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ng exhaustively for the best subset of an ensemble can become

ntractable for relatively small ensemble sizes. 

The seminal work in this field was published by Margineantu

nd Dietterich [3] where the authors compared five different prun-

ng algorithms on ten datasets and concluded that in most of the

xperiments the ensemble of decision trees produced by AdaBoost

ould be pruned substantially with no considerable impacts of the

erformance. Tamon and Xiang [4] proposed an improvement to

ne of the methods described by Margineantu and Dietterich [3] ,

he Kappa pruning, and also addressed the boosting pruning prob-

em from a theoretical perspective. 

Zhou et al. [5] introduced the GASEN (Genetic Algorithm based

elective ENsemble) method, which selects the classifiers to con-

titute an ensemble according to some evolved weights that could

haracterize the fitness of including the classifiers in the ensem-

le. In their empirical study they used neural networks as classi-

ers, genetic algorithms, and 20 different datasets. They show that

he pruned ensemble generated by the GASEN method was able to

utperform the popular ensemble approaches such as Bagging and

oosting. Other examples of methods using global search to prune

he ensembles can be found in [6,7] . 

A different approach, based on a greed local search, was pro-

osed by Martínez-Muñoz and Suárez [8,9] , Martínez-Muñoz et al.

10] . In these works they explored the idea that the order in

hich classifiers are aggregated in ensemble methods can be an

http://dx.doi.org/10.1016/j.patrec.2016.01.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Table 1 

Contingency table for two classifiers d i and d j . 

d i = + d i = −

d j = + a c 
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mportant tool to prune ensembles. Their algorithm is based on

rdering the predictors in the ensemble according to a number of

ules that exploit the complementariness of the individual classi-

ers. Experiments on several UCI repository datasets show that or-

ered ensembles produced a generalization error lower than the

ull ensembles created by Bagging. 

An issue not to be neglected when building ensembles of clas-

ifiers is the diversity, which is the underpinning to successful

eployment of classifiers ensemble. Empirical results have shown

hat there exists positive correlation between performance of the

nsemble and diversity among the base classifiers [11,12] . On the

ther hand, the usefulness of diversity measures to build ensem-

les of classifiers is questioned by some authors. Kuncheva and

hitaker [13] performed a considerable amount of experiments

ut could not find a definitive connection between the diversity

easures and the improvement of the ensemble accuracy. In other

ords, designing diverse classifiers is important but the problem

f measuring this diversity and so using it effectively for building

etter ensembles is still an open problem. Ko et al. [14] investi-

ated 10 diversity measures into a pairwise fusion matrix transfor-

ation to combine classifiers and concluded that the use of diver-

ity might slightly improve the methods for classifier combination

n some problems, but the effect is not significant. Tang et al. [15]

valuated six different measures of diversity and concluded that

one of them is suitable for the task of building ensemble of clas-

ifiers. According to the authors, if one exploits diversity measures

s criteria to select the base classifiers, then the diversity measure

s required to be precise, since the choice of diversity measure will

irectly influence the final ensemble and subsequently the classifi-

ation result. 

As one may notice, understanding how diversity can be used to

uild ensembles remains an open problem. In spite of that, the lit-

rature shows us several cases where the diversity has been suc-

essfully applied to build ensembles of classifiers. Tsymbal et al.

16] point out the importance of the diversity measures during the

earch problem for ensemble feature selection. Oliveira et al. [17]

how that diversity is quite useful to build ensembles of classi-

ers through feature selection since it helps preventing overfitting

uring the search. Li et al. [18] presented a theoretical study on

he effect of diversity in voting. They concluded that by enforc-

ng large diversity, the hypothesis space complexity of voting can

e reduced, and then better generalization performance can be ex-

ected. These findings were used to build a method called DREP

Diversity Regularized Ensemble Pruning) which explicitly exploit

iversity regularization. Experimental results show that with the

elp of diversity regularization, DREP is able to achieve signifi-

antly better generalization performance with smaller ensemble

ize than the compared methods. 

Motivated by the success of Li et al. [18] and also by the find-

ngs of Kuncheva [19] , which suggests that a single measure of di-

ersity might not be accurate enough to capture all the relevant

iversities in the ensemble, in this study we argue that the combi-

ation of several diversity measures can be an useful tool to prune

n ensemble of classifiers. To support this idea, we propose an

nsemble pruning method where the undermining concept is the

ombination of different pairwise diversity matrices. The weights

f this combination are provided by a genetic algorithm. From the

ombined diversity matrix we are able to group similar classifiers,

.e., those with low diversity, that should not belong to the same

nsemble. In order to generate the candidate ensembles, we trans-

orm the combined diversity matrix into one or more graphs and

hen apply a graph coloring method. The fitness of the genetic al-

orithm is provided by the ensemble that minimizes the error on

 validation set. 

Through a set of comprehensive experiments on 21 datasets of

he UCI repository we show that the proposed method is able to
onsiderably reduce the original size of the ensemble while im-

roving the recognition rates. The results reached by our method

ompare favorably to other published methods. 

The rest of this article is organized as follows: Section 2 reviews

he diversity measures used in this work; Section 3 describes the

roposed method for pruning a pool of classifiers; Section 4 re-

iews the methodology and experiments run to validate the pro-

osed method; Section 5 lists the conclusions that can be taken

rom the experiments. 

. Diversity measures 

There is not a widely accepted definition of diversity be-

ween classifiers. For that reason there are many definitions used

hroughout the literature. In the proposed method five pairwise di-

ersity measures are combined to reach a broader definition of di-

ersity. This section describes these five measures and how to cal-

ulate them. 

The diversity measures are calculated using a contingency ta-

le [20] that summarizes the behavior of two classifiers d i and d j 
cross a dataset. Table 1 shows an example of a contingency table.

he values on the table have the following meaning: a is the num-

er of examples in the dataset correctly classified by both d i and

 j ; b is the number of examples correctly classified by d i and in-

orrectly classified by d j ; c is the number of examples incorrectly

lassified by d i and correctly classified by d j ; and d is the number

f examples incorrectly classified by both classifiers. 

Disagreement is the proportion of examples differently classi-

ed by d i and d j . Its value is calculated by Eq. (1) , where m =
 + b + c + d. Its value ranges from 0 to 1, with higher values in-

icating more diversity. 

is i j = 

b + c 

m 

(1) 

The Q-statistic is defined by Eq. (2) . Q ij ranges from −1 to 1,

here 0 means the two classifiers are independent, 1 both classi-

ers make similar predictions, and −1 the classifiers make differ-

nt predictions. 

 i j = 

ad − bc 

ad + bc 
(2) 

The Correlation Coefficient of two classifiers is calculated by

q. (3) and the meaning of its value is similar to that of the Q-

tatistic. 

i j = 

ad − bc √ 

(a + b)(a + c)(c + d)(b + d) 
(3) 

The Kappa-statistic is widely used in statistics and was used

o analyze the diversity between classifiers for the first time by

argineantu and Dietterich [3] . κp ( Eq. (4) ) is equal to 1 if the

lassifiers completely agree, 0 if they randomly agree, and less than

 is a rare case that happens when they agree less than what is

xpected by chance. 

p = 

�1 − �2 

1 − �2 

(4) 

here 

�1 = 

a + d 
, (5) 
m 
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Fig. 1. Outline of the proposed method (DivP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

r  

b  

p  

t  

a  

w

 

 

T  

s  

r  

r  

i

3

 

n  

s  

t  

E

H  

 

c  

b  

w

A  

 

t  

fi  

t  

t  

i

�2 = 

(a + b)(a + c) + (c + d)(b + d) 

m 

2 
(6)

The Double-fault measure [21] is the proportion of examples

misclassified by both classifiers and its value is calculated using

Eq. (7) . 

DF i j = 

d 

m 

(7)

3. Proposed method 

In this section we introduce the proposed method, which com-

bines diversity measures for ensemble pruning. We call it DivP. It

is composed of two main modules: computation of the diversity

matrices based on the initial pool of classifiers and the pruning

method that is performed inside a genetic algorithm. Fig. 1 depicts

all the modules of the proposed method, which are described in

the following sections. 

3.1. Initial pool of classifiers 

In this work the initial pool of classifiers D of size L was cre-

ated using Bagging [22] . To take advantage of this method, the base

classifier must be unstable, i.e., minor changes in the training set

can lead to major changes in the classifier output. The unstable

classifier used in our experiments was the Perceptron with thresh-

old activation function. 

3.2. Diversity measures 

The five pairwise diversity measures reviewed in Section 2 were

considered in this work: Disagreement ( M 1 ), Q-Statistics ( M 2 ), Cor-

relation Coefficient ( M 3 ), Kappa-statistic ( M 4 ), and Double-fault

measure ( M 5 ). Here it is worth mentioning that the method is not

limited to these five measures. They were selected because, to the

best of our knowledge, they are the most commonly pairwise di-

versity measures used in the literature. 

The output of this module consists in five L × L matrices. The

diversity values for each pair of classifiers are calculated using the

validation set V 1 . The weights used to combine these matrices are
found by the genetic algorithm as discussed below. 
.3. Genetic algorithm 

The pruning mechanism is based on a genetic algorithm with

eal representation, crossover intermediate function, adaptive feasi-

le mutation, stochastic uniform selection, and elitism which is im-

lemented using a generational procedure. The following parame-

er settings were employed: population size: 22, number of gener-

tions: 600, and probability of crossover: 0.8. All these parameters

ere defined empirically. 

The chromosome encodes six real values, five weights

(ω 1 , . . . , ω 5 ) to combine the diversity matrices and the threshold

 used to compute the adjacency matrix. The fitness function con-

ists in finding the candidate ensemble that minimizes the error

ate on the validation set V 2 . In the end, the fittest individual rep-

esents the pruned ensemble that minimizes the error rate on an

ndependent validation set. 

.3.1. Computing the fitness 

In this section we explain in details how do compute the fit-

ess function based on the pairwise diversity matrices. The first

tep is to calculate the combined diversity matrix ( H ) considering

he weights produced by the genetic algorithm. This is done by

q. (8) . 

 = 

5 ∑ 

i =1 

ω i M i (8)

Thereafter we create the adjacency matrix, which is defined ac-

ording to Eq. (9) . This rule specifies that if the combined diversity

etween classifiers d i and d j is smaller than the threshold T there

ill be an edge between the vertices i and j . 

 i j = 

{
1 if H i, j < T 
0 if H i, j ≥ T 

(9)

Eqs. (10) and (11) show examples of H and A matrices, respec-

ively. These matrices were computed using a pool of five classi-

ers; in this example, the threshold T = 1 . 1 . So, applying the ma-

rix H to Eq. (9) we obtain the matrix A showed in (11) . Notice

hat the main diagonal is set to zero to avoid linking a vertice to

tself. 
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Fig. 2. Two graphs created from the adjacency matrix A grouping classifiers with 

low diversity among them. 

Fig. 3. Two possible color configurations for the graphs depicted in Fig. 2 . 
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Table 2 

Datasets used in this work sorted by the number of instances. 

Dataset # Instances # Attributes # Classes 

Wine 178 13 3 

Parkinsons 195 22 2 

Ecoli 336 7 8 

Ionosphere 351 34 2 

Musk 476 166 2 

Balance-scale 625 4 3 

Transfusion 748 4 2 

Pima 768 8 2 

CMC 1473 9 3 

Wineq-red 1599 11 6 

Segment 2310 19 7 

Spambase 4601 57 2 

Wineq-white 4898 11 7 

Waveform 50 0 0 21 3 

Phoneme 5404 5 2 

Wall-following 5456 24 4 

Page-blocks 5473 10 5 

Satimage 6435 36 6 

Pen-digits 10992 16 10 

Magic04 19020 10 2 

Shuttle 580 0 0 9 7 

(  

f

 

i  

t  

c  

c

 

m  

s  

a  

a

4

 

m  

i  

d  

t

 

c  

e  

L  

i

 

d  

t

 

n  

t  

i  

r  

p  

t  

w  

u  

s  

f  

t  

t  

o  

t  
 = 

d 1 
d 2 
d 3 
d 4 
d 5 

d 1 d 2 d 3 d 4 d 5 ⎛ 

⎜ ⎜ ⎝ 

0 . 0 1 . 5 1 . 3 1 . 2 1 . 0 

1 . 5 0 . 0 0 . 7 0 . 9 1 . 2 

1 . 3 0 . 7 0 . 0 1 . 1 1 . 7 

1 . 2 0 . 9 1 . 1 0 . 0 1 . 4 

1 . 0 1 . 2 1 . 7 1 . 4 0 . 0 

⎞ 

⎟ ⎟ ⎠ 

(10) 

 = 

d 1 
d 2 
d 3 
d 4 
d 5 

d 1 d 2 d 3 d 4 d 5 ⎛ 

⎜ ⎜ ⎝ 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 0 0 

1 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

(11) 

Building a graph from the adjacency matrix is straightforward.

rom matrix A two independent graphs are build as presented in

ig. 2 . The first one ( Fig. 2 (a)) indicates that classifiers d 1 and d 5 
hould belong to the same graph since they have a low combined

iversity. In other words, d 1 and d 5 should not belong to the same

nsemble. The same happens in the second graph ( Fig. 2 (b)). In

his case, the diversity between the pairs of classifiers d 2 and d 4 
nd d 2 and d 3 is low. 

The problem now consists in building the candidate ensemble

rom these graphs, i.e., putting together those classifiers with a

igh degree of diversity. From the graph perspective, this means

hat adjacent vertices should not be in the same ensemble. To per-

orm this operation, we have employed a graph coloring algorithm

ased on greedy search so that adjacent vertices have different col-

rs. Fig. 3 shows the graphs depicted in Fig. 2 after the coloring

rocess. 

The candidate ensembles are created by grouping the vertices

classifiers) with the same color. This is done for all possible color

onfigurations. Therefore, for the graphs presented in Fig. 3 (a) and

b) the candidate ensembles would be { d 1 , d 3 , d 4 }, { d 2 , d 5 } and { d 3 ,

 4 , d 5 }, { d 2 , d 3 }, respectively. 

Each candidate ensemble is evaluated using the second valida-

ion set V . The candidate ensemble with the best performance
2 
smallest error on the set) will be used as the output ensemble

or this individual. 

Once one of the termination conditions of the genetic algorithm

s satisfied, usually reaching the maximum number of generations,

he fittest individual within the final population is selected. The

andidate ensemble that resulted in that individual’s fitness is then

hosen to be the resulting ensemble D 

′ of the pruning process. 

The proposed technique does not impose any restrictions on the

ethod used for combining the classifiers on the ensemble. Re-

triction can be placed depending on the type of classifier used

s base classifier. Plurality voting is chosen for having good results

nd being easy to understand and use. 

. Experiments 

In order show how DivP performs, we have carried out experi-

ents on 21 classification problems from the UCI Machine Learn-

ng Repository [23] . These databases, described in Table 2 , contain

ifferent types of problems with different number of instances, at-

ributes, and classes. 

The pool of classifiers was created using Bagging and the Per-

eptron was the unstable classifier used in our experiments. In our

xperiments, the size of the pool assumes five different values,

 = { 50 , 100 , 150 , 200 , 250 } . In this case, the goal is to assess the

mpacts of the pruning methods on pools of different sizes. 

Experiments were run using k -fold cross validation with k = 6

ivided as: three folds for training, two for validation, and one for

est. 

Majority vote was the fusion rule employed because (i) it does

ot assume prior knowledge about the classifiers, (ii) it is a non-

rainable rule, (iii) it can be used with any classifier since it

s a hard level combination rule – soft level combination rules

equire classifiers probabilities estimation. Besides, the literature

runing methods we have selected to assess the performance of

he proposed method also used majority vote. In spite of that,

e also evaluated other combination rules, such as: average, prod-

ct, median, minimum, and maximum. However, majority vote was

lightly better when compared with these combination rules. So,

or the sake of clarity, we decided to report only the results of

he proposed approach with majority vote. In order to speed up

he convergence of the genetic algorithm the first two individuals

f the population are initialized with the single best classifier of

he pool and the ensemble composed of all classifiers of the pool,
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Table 3 

Accuracy of the ensembles for different pool sizes (50, 100, 150, 200, and 250) on the test set. ∨ , ˜ x , and ∧ are the performances of the best, median, and worst classifier 

observing the whole pool. 

Dataset 50 100 150 200 250 

DivP ∨ ˜ x ∧ DivP ∨ ˜ x ∧ DivP ∨ ˜ x ∧ DivP ∨ ˜ x ∧ DivP ∨ ˜ x ∧ 

Wine 95.0 98.3 93.3 84.8 93.9 98.3 92.7 82.0 97.2 99.4 94.3 84.2 97.2 99.4 94.9 82.0 94.4 100.0 94.9 82.6 

Parkinsons 84.6 90.2 80.2 66.2 82.1 90.8 80.5 63.6 84.6 91.8 79.5 61.1 80.5 92.3 80.5 55.9 83.0 91.3 80.0 60.5 

Ecoli 74.9 80.9 72.9 62.2 76.9 79.6 72.8 59.8 78.3 83.9 74.4 54.3 77.2 80.5 72.8 53.9 74.6 80.6 72.2 49.1 

Ionosphere 88.9 94.3 88.1 81.8 89.7 94.9 88.0 80.1 88.6 94.6 88.1 80.4 88.9 95.2 88.6 81.2 89.8 94.0 88.0 79.8 

Musk 75.0 83.4 73.9 60.5 76.9 84.2 75.5 57.8 79.2 85.5 74.5 56.1 78.8 85.9 75.8 56.7 78.0 85.9 76.3 59.0 

Balance-scale 88.8 91.4 87.7 76.3 88.5 92.3 87.7 73.0 90.1 92.5 87.4 71.9 89.3 93.6 87.5 71.2 87.7 93.0 87.5 72.8 

Transfusion 75.8 79.3 70.7 48.4 76.8 78.5 70.1 47.7 77.1 78.9 70.3 47.5 75.9 79.8 70.1 45.6 76.6 79.3 70.6 48.1 

Pima 74.6 77.5 70.0 52.2 74.7 77.6 69.9 57.4 74.1 78.3 69.4 53.4 74.2 79.6 70.2 51.6 75.5 78.8 69.8 51.8 

CMC 49.6 51.5 45.6 36.7 49.8 52.6 45.2 32.5 49.0 53.0 45.5 31.0 51.5 53.0 45.0 31.9 50.0 53.4 44.9 32.1 

Wineq-red 56.0 54.4 44.7 32.8 55.9 55.6 44.6 32.5 57.2 56.9 45.8 32.2 55.4 55.9 45.6 32.3 57.7 55.6 45.0 31.4 

Segment 91.0 92.0 86.0 69.2 91.3 91.6 86.7 67.3 91.3 91.8 86.3 68.1 90.5 92.1 85.9 62.0 91.5 92.2 86.2 60.6 

Spambase 92.1 92.0 87.7 82.0 92.0 92.5 87.9 81.1 92.7 92.5 88.2 81.5 92.1 92.3 88.0 80.4 92.2 92.4 87.9 80.2 

Wineq-white 49.9 48.6 40.9 24.7 50.4 48.5 39.6 22.9 50.2 49.1 39.6 22.4 51.2 48.8 39.6 22.4 50.9 49.8 39.5 22.7 

Waveform 84.6 84.6 77.3 67.3 84.6 85.3 76.5 66.9 85.2 85.2 77.0 67.2 84.6 85.0 77.3 65.9 85.6 85.5 77.0 65.7 

Phoneme 76.5 76.0 69.4 58.5 75.2 76.9 70.0 54.3 76.7 76.6 69.6 56.2 77.4 76.7 69.2 56.5 76.9 77.3 69.8 49.8 

Wall-following 67.3 65.0 56.6 43.1 66.9 64.9 56.6 40.9 66.5 65.4 56.6 40.2 66.5 65.3 56.8 38.8 65.9 65.3 56.8 39.4 

Page-blocks 95.6 95.6 92.3 87.9 95.5 95.7 93.0 88.1 95.4 95.9 92.9 81.6 96.0 96.2 92.7 85.6 95.7 95.8 92.2 84.2 

Satimage 66.3 63.4 54.4 36.2 66.3 63.8 54.5 35.6 66.9 64.3 54.5 34.1 67.2 64.2 54.5 35.1 66.7 64.8 54.5 33.7 

Pen-digits 90.6 89.7 87.0 73.0 90.7 90.6 87.4 73.5 90.8 90.2 87.2 69.6 90.8 90.7 87.3 72.1 90.9 90.5 87.2 68.7 

Magic04 75.4 72.1 69.9 67.9 75.6 72.7 70.1 67.9 75.7 72.2 70.3 67.9 75.6 73.0 70.1 67.4 75.7 72.5 70.0 67.6 

Shuttle 97.0 96.9 86.1 46.4 97.1 96.9 86.6 33.0 97.0 96.9 86.2 24.8 97.2 97.0 86.3 30.3 97.2 96.9 86.4 23.9 

Average 78.5 79.9 73.1 59.9 78.6 80.2 73.1 58.0 79.2 80.7 73.2 56.5 79.0 80.8 73.3 56.1 78.9 80.8 73.2 55.4 

Table 4 

Accuracy of the ensembles for different pool sizes (50, 100, 150, 200, and 250) on the test set. Best results per database are in bold. B: Bagging; DivP: Pruned ensemble 

using majority vote; # : Number of classifiers after pruning. 

Dataset 50 100 150 200 250 

B DivP # B DivP # B DivP # B DivP # B DivP # 

Wine 94.9 95.0 1 95.0 93.8 1 96.0 97.2 1 96.6 97.2 1 96.1 94.4 1 

Parkinsons 82.5 84.6 1 83.1 82.1 1 82.6 84.6 1 84.1 80.5 1 84.1 83.0 1 

Ecoli 76.4 74.9 5 78.7 76.9 4 79.4 78.3 2 77.3 77.2 3 78.5 74.6 2 

Ionosphere 91.2 88.9 1 89.2 89.7 1 88.3 88.6 2 89.7 88.9 2 89.2 89.7 1 

Musk 77.3 75.0 3 80.6 76.9 3 78.6 79.2 2 79.8 78.8 3 80.7 78.0 1 

Balance-scale 87.5 88.8 1 88.2 88.5 2 87.4 90.1 1 87.2 89.3 1 88.2 87.7 2 

Transfusion 75.3 75.8 3 74.9 76.7 5 74.9 77.1 3 75.1 75.9 3 75.1 76.6 3 

Pima 74.4 74.6 3 75.1 74.7 3 74.1 74.1 3 72.3 74.2 3 75.1 75.5 3 

CMC 50.2 49.6 4 50.4 49.8 5 50.5 48.9 5 51.6 51.5 6 50.0 50.0 4 

Wineq-red 57.3 56.0 5 55.4 55.9 6 56.3 57.2 6 58.6 55.4 6 56.8 57.7 9 

Segment 91.5 91.0 4 91.2 91.3 5 91.2 91.3 4 91.1 90.5 6 91.6 91.5 12 

Spambase 92.0 92.1 7 92.3 92.0 4 92.3 92.7 7 92.5 92.1 7 92.3 92.2 6 

Wineq-white 48.3 49.9 4 48.7 50.3 4 48.6 50.2 2 48.6 51.2 4 48.6 50.9 4 

Waveform 83.7 84.6 3 83.5 84.6 3 85.2 85.2 3 84.5 84.6 6 85.1 85.6 3 

Phoneme 71.7 76.5 5 72.4 75.2 3 72.1 76.7 2 72.0 77.4 3 72.2 76.9 3 

Wall-following 65.2 67.3 7 66.2 66.9 9 65.7 66.5 10 66.2 66.5 5 66.6 65.9 9 

Page-blocks 94.5 95.6 3 95.3 95.5 4 95.0 95.4 3 95.2 96.0 2 94.4 95.7 3 

Satimage 64.2 66.2 5 64.4 66.3 6 64.2 66.9 4 64.5 67.1 6 64.3 66.7 4 

Pen-digits 90.1 90.6 8 90.6 90.7 6 90.6 90.8 10 90.5 90.8 7 90.4 90.9 5 

Magic04 71.7 75.4 2 72.0 75.6 3 71.8 75.7 2 72.0 75.6 2 71.8 75.7 3 

Shuttle 91.2 97.0 2 91.2 97.1 3 91.5 97.0 5 91.4 97.2 2 91.6 97.2 3 

Average 3.7 3.9 3.7 3.8 3.9 

Win/Tie/Loss 15/0/6 14/0/7 17/2/2 13/0/8 12/1/8 
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respectively. The algorithm stops if there is no improvement in the

fitness function for 15 consecutive generations or when it reaches

the maximum number of generations, which is set to 600. In our

experiments the average number of iterations was 25. 

Table 3 shows the results of the proposed approach (DivP)

against the results extracted from the whole initial pool of clas-

sifiers. The columns labeled with ∨ and ∧ show the accuracies of

the best and the worst classifier in the pool on the test set, re-

spectively; and, the columns labeled with ˜ x show the median ac-

curacy of the classifiers in the pool on the test set. DivP attains

a classification accuracy that is always better than the average

classifier. 
The results of the proposed pruning method on the test set for

ll the databases are reported in Table 4 . It compares the perfor-

ance of the original ensemble (B) and the proposed pruned en-

emble (DivP). The average number of classifiers after pruning the

nsemble is also available. 

Table 4 also shows the win-tie-loss count where

win”/“tie”/“loss” means the number of times the pruned en-

emble scores better/neutral/inferior than the original ensemble.

he number of “wins” is greater than “tie” and “loss”, but it is

orth remarking that the proposed method has a more homo-

eneous performance (i.e., more wins) on bigger databases. This

an be explained by the fact that bigger databases allow bigger
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Table 5 

Evaluation of the proposal with and without the combination of diversity measures. 

Original method (DivP), Disagreement ( M 1 ), Q-Statistics ( M 2 ), Correlation Coefficient 

( M 3 ), Kappa-statistic ( M 4 ), and Double-fault ( M 5 ). 

Dataset Di v P M 1 M 2 M 3 M 4 M 5 

Wine 97.2 94.9 96.0 94.9 95.5 94.3 

Parkinsons 84.6 72.4 74.4 72.4 72.4 81.6 

Ecoli 78.3 75.8 77.6 77.0 77.6 77.6 

Ionosphere 88.6 90.0 89.8 89.5 90.1 88.6 

Musk 79.2 67.4 70.4 70.2 70.2 78.6 

Balance-scale 90.1 85.9 86.7 87.8 88.2 87.2 

Transfusion 77.1 54.7 54.3 53.5 53.9 73.8 

Pima 74.1 67.6 67.6 67.1 67.1 72.0 

CMC 48.9 40.9 40.9 40.5 40.5 47.3 

Wineq-red 57.2 46.3 46.2 46.5 46.5 47.8 

Segment 91.3 77.9 86.8 87.8 85.4 90.3 

Spambase 92.7 87.3 86.8 86.0 85.9 92.5 

Wineq-white 50.2 40.4 40.3 40.5 40.5 46.1 

Waveform 85.2 69.8 71.1 70.8 70.8 84.0 

Phoneme 76.7 65.1 65.8 65.1 65.1 72.3 

Wall-following 66.5 44.8 45.4 44.8 44.8 63.1 

Page-blocks 95.4 92.5 93.9 94.0 94.0 93.7 

Satimage 66.9 49.7 53.2 53.8 53.9 57.9 

Pen-digits 90.8 84.7 86.3 85.6 84.7 89.6 

Magic04 75.7 68.6 68.6 68.6 68.6 71.2 

Shuttle 97.0 57.9 58.5 63.2 63.2 91.3 

Average 79.2 68.3 69.5 69.5 69.5 76.2 
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alidation sets, which are always useful for the optimization

rocess. 

Besides the good performance, it is important to highlight the

apacity of the proposed method in pruning ensemble indepen-

ent of its original size. From Table 4 we can see that the en-

embles were considerably reduced to less than 10 classifiers. The

verage size of the pruned ensemble is four classifiers for all the

xperiments. One may observe that sometimes the pruned ensem-

le produced by the proposed method contains only one classifier.

his means that the method was not able to outperform the single

est on the validation set, hence, the pruned ensemble contains

nly the single best or one classifier that achieved the same per-

ormance of the single best. In these cases, the single best and the

runed ensemble reach the same performance on the validation

et, but they may be different on the test set. 
able 6 

ecognition rates (%) and size (#) of the pruned ensembles achieved by comparative met

Dataset Bagging DivP # AGOB # DREP 

Wine 96.0 97.2 1 95.5 19 96.6 

Parkinsons 82.6 84.6 1 83.1 26 83.1 

Ecoli 79.4 78.3 2 79.7 28 79.7 

Ionosphere 88.3 88.6 2 88.6 33 88.6 

Musk 78.6 79.2 2 78.4 27 79.0 

Balance-scale 87.4 90.1 1 88.3 23 88.3 

Transfusion 74.9 77.1 3 68.9 21 77.1 

Pima 74.1 74.1 3 74.1 19 75.9 

CMC 50.5 48.9 5 51.0 41 50.4 

Wineq-red 56.3 57.2 6 56.0 41 57.0 

Segment 91.2 91.3 4 91.2 36 91.0 

Spambase 92.3 92.7 7 91.7 37 92.6 

Wineq-white 48.6 50.2 2 50.2 32 49.4 

Waveform 85.2 85.2 3 82.9 30 85.2 

Phoneme 72.1 76.7 2 71.3 27 72.5 

Wall-following 65.7 66.5 10 64.6 40 65.8 

Page-blocks 95.0 95.4 3 95.5 24 95.7 

Satimage 64.2 66.9 4 64.2 36 64.3 

Pen-digits 90.6 90.8 10 90.7 23 91.1 

Magic04 71.8 75.7 2 74.9 2 72.6 

Shuttle 91.5 97.0 5 84.2 15 91.8 

Win/Tie/Loss 0/1/20 10/3/8 1/2/18 2/3/16
.1. Analyzing the diversity measures 

The proposed method takes into account an optimization ap-

roach to search for the best diversity measure weights ω i and the

hreshold T , which are used in Eqs. (8) and ( 9 ). Based on this strat-

gy, one question arises: do we need to combine different diversity

easures? In other words, is only one diversity measure enough to

chieve high accuracy rates? In order to address this question, we

valuated a modified version of the proposed approach in which

ust one diversity measure is used at a time. So, in this modified

ersion, Eq. (8) does not combine the diversity measures and H is

eplaced by one diversity matrix H = M i . 

Since no optimization is used in this modified version of the

roposed approach, we need to define a procedure to set the

hreshold T ( Eq. (9) ). This procedure has three steps: (i) H is equal

o one diversity matrix M i ( H = M i ), (ii) θd i 
is the sum of the diver-

ities values per classifier d i given by θd i 
= 

∑ L 
k =1 ,k � = i H(i, k ) , where

 is the number of classifiers, and (iii) the classifiers d i associated

ith the highest values of θd i 
are selected to compose the final

nsemble. 

To perform these experiments we have selected the pool size

hat produced the best results in the previous experiments ( L =
50 ). In the cases where each diversity measure was assessed in-

ependently, 5% of the classifiers associated with the highest val-

es of θd i 
were selected to compose the final ensemble. Table 5

hows the results of the proposed approach with and without the

ombination of the diversity measures. The combination of five di-

ersity measures obtained the best accuracy rates in all except one

ataset. These results corroborate to our initial hypothesis that the

ombination of diversity measures can be an useful tool to prune

n ensemble of classifier. 

.2. Comparing with the state-of-the-art 

To better assess the proposed method, we have implement the

ollowing state-of-the-art pruning techniques: Aggregation Order- 

ng in Bagging (AGOB) [8] , Pruning in Ordered Bagging Ensemble

POBE) [9] , Genetic Algorithm based Selective ENsemble (GASEN)

5] , Diversity Regularized Ensemble Pruning [18] , and Kappa Prun-

ng [3] . AGOB and POBE methods explore the idea that the order in

hich the classifiers are aggregated in the ensemble is important.
hods. 

# GASEN # Kappa # POBE # 

75 96.0 74 96.1 30 95.5 22 

75 83.1 71 81.1 30 82.1 34 

75 79.4 75 78.2 30 78.5 31 

75 88.1 66 88.9 30 90.0 31 

75 79.6 79 78.8 30 79.8 30 

75 87.2 78 88.2 30 89.6 27 

75 74.7 74 65.0 30 74.7 34 

75 74.5 113 69.7 30 71.2 34 

75 50.5 141 50.4 30 49.6 35 

75 56.5 142 54.5 30 54.5 35 

75 91.3 114 91.4 30 91.1 39 

75 92.4 114 90.4 30 92.1 33 

75 48.6 142 48.7 30 47.0 40 

75 85.1 110 80.0 30 82.6 36 

75 71.3 141 66.8 30 71.9 32 

75 65.8 143 61.5 30 66.4 36 

75 95.0 141 94.8 30 95.0 40 

75 64.3 142 63.5 30 65.1 38 

75 90.6 143 91.2 30 90.9 35 

75 71.7 144 75.5 30 69.8 30 

75 91.5 143 89.4 30 94.8 24 

 0/0/21 2/0/19 2/0/19 
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Table 7 

Results of the Wilcoxon signed-rank test. R + corresponds to the sum of the ranks 

for DivP and R − for the literature methods. Cases where the difference is significant 

are marked with bullet “•”, otherwise are marked with circle “◦”. 

Comparison R + R − p -value 

DivP vs Bagging 29.43 2.71 0.0010 •
DivP vs AGOB 41.45 3.65 0.0038 •
DivP vs DREP 20.98 5.79 0.0542 ◦
DivP vs GASEN 29.30 3.53 0.0053 •
DivP vs Kappa 61.25 2.22 0.0 0 05 •
DivP vs POBE 33.96 3.12 0.0022 •

Fig. 4. Ensemble size vs average performance. 
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In Kappa Pruning, the final size of the ensemble is a parameter

that must be informed by the user. The GASEN method uses a ge-

netic algorithm to assign weights to the classifiers of the ensemble

and prune those classifiers with a weight below a certain thresh-

old that is set by the user. Finally, DREP starts the pool with just

one classifier (the one in the pool that minimizes the error rate on

the validation set) and grows the ensemble by adding new classi-

fiers taking into account the diversity and the performance of the

ensemble. These ensemble pruning methods have their own stop

criterion and we implemented as described in their papers. 

The recognition rates achieved by all methods using an initial

pool with 150 classifiers are reported in Table 6 . To test the signif-

icance of difference between the recognition rates of the proposed

method and that of Bagging and five other pruning algorithms, we

performed the Wilcoxon signed-rank test at significance level of

5% ( α = 0 . 05 ). The p -values produced in the test are reported in

Table 7 , which shows that the proposed method produces better

results with statistical difference in five out of six cases. The only

case where the difference was not significant was DivP vs DREP,

but even then the ranks are in favor of DivP. These results put out

the superiority of the proposed approach with respect to the liter-

ature ones. 

Besides comparing favorably to the literature in terms of recog-

nition rate, Table 6 also shows that the combination of diver-

sity measures allows the pruning method to generate considerably

small ensembles. This trade-off can also be visualized in Fig. 4 ,

where the best results should be located in the right lower quad-

rant of the plot. 

5. Conclusions 

In this paper we introduced an ensemble pruning method that

combines multiple diversity measures by using a genetic algo-
ithm and a graph coloring algorithm. By comparing the proposed

ethod against Bagging and five other ensemble pruning methods

vailable in the literature, we show its efficiency both in terms of

eneralization and capacity of pruning the original Bagging ensem-

le. 

Regarding the performance, the experiments show that the pro-

osed approach achieves better performance in 10 out of the 21

atasets used in our tests when compared to Bagging and five

ther pruning methods. With respect the size of the pruned en-

embles, our experiments show that in average the final ensem-

le is composed of four classifiers, independently of the number of

lassifiers available in the original pool generated by Bagging. This

s considerably smaller than the other methods available in the

iterature. 

Combining diversity measures also brought advantages to the

roposed method, since there is no widely accepted definition of

iversity between classifiers. The measures often have a different

erspective as to what defines diversity, which is why we believe

hat its combination enhances the pruning results. Researchers in

his area, [13] , found that there is no clear correlation between di-

ersity and performance, but that heuristics such as the one used

ere can enhance the pruning results. 

cknowledgment 

This research has been supported by the following Brazil-

an agencies: CNPq (#446831/2014-0, #151145/2014-8) and FACEPE

APQ-0192-1.03/14). 

eferences 

[1] D.H. Wolpert , The lack of a priori distinctions between learning algorithms,
Neural Comput. 8 (7) (1996) 1341–1390 . 

[2] D. Partridge , W.B. Yates , Engineering multiversion neural-net systems, Neural
Comput. 8 (4) (1996) 869–893 . 

[3] D.D. Margineantu , T.G. Dietterich , Pruning adaptive boosting, in: Proceedings
of the Fourteenth International Conference on Machine Learning, vol. 97, 1997,

pp. 211–218 . 

[4] C. Tamon , J. Xiang , On the boosting pruning problem, in: Proceedings of the
Eleventh European Conference on Machine Learning, 20 0 0, pp. 404–412 . 

[5] Z.-H. Zhou , J. Wu , W. Tang , Ensembling neural networks: Many could be better
than all, Artif. Intell. 137 (1) (2002) 239–263 . 

[6] R. Caruana , A.N. Mizil , G. Crew , A. Ksikes , Ensemble selection from libraries of
models, in: Proceedings of the Twenty-first International Conference on Ma-

chine Learning, 2004, p. 18 . 

[7] G. Giacinto , F. Roli , G. Fumera , Design of effective multiple classifier systems by
clustering classifiers, in: Proceedings of the Fifteenth International Conference

on Pattern Recognition, 20 0 0, pp. 160–163 . 
[8] G. Martínez-Muñoz , A. Suárez , Aggregation ordering in bagging, in: Proceed-

ings of the IASTED International Conference on Artificial Intelligence and Ap-
plications, 2004, pp. 258–263 . 

[9] G. Martínez-Muñoz , A. Suárez , Pruning in ordered bagging ensembles, in: Pro-

ceedings of the Twenty-third International Conference on Machine learning,
2006, pp. 609–616 . 

[10] G. Martínez-Muñoz , D. Hernández-Lobato , A. Suárez , An analysis of ensemble
pruning techniques based on ordered aggregation, IEEE Trans. Pattern Anal.

Mach. Intell. 31 (2) (2009) 245–259 . 
[11] T. Dietterich , An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization., Mach.

Learn. 40 (2) (20 0 0) 139–157 . 
[12] L. Kuncheva , C. Whitaker , C. Shipp , R. Duin , Limits on the majority vote accu-

racy in classifier fusion, Pattern Anal. Appl. 6 (1) (2003) 22–31 . 
[13] L.I. Kuncheva , C.J. Whitaker , Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy, Mach. Learn. 51 (2) (2003) 181–
207 . 

[14] A . Ko , A .S. Britto-Jr , R. Sabourin , L.S. Oliveira , Pairwise fusion matrix for com-
bining classifiers, Pattern Recognit. 40 (8) (2007) 2198–2210 . 

[15] E.K. Tang , P. Suganthan , X. Yao , An analysis of diversity measures, Mach. Learn.

65 (1) (2006) 247–271 . 
[16] A. Tsymbal , M. Pechenizkiy , P. Cunningham , Diversity in search strategies for

ensemble feature selection, Inf. Fusion 6 (1) (2006) 83–98 . 
[17] L.S. Oliveira , M. Morita , R. Sabourin , Feature selection for ensembles applied to

handwriting recognition, Int. J. Doc. Anal. Recognit. 8 (4) (2006) 262–279 . 

http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0001
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0001
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0009
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0009
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0009
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0011
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0011
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0017
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0017
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0017
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0017


G.D.C. Cavalcanti et al. / Pattern Recognition Letters 74 (2016) 38–45 45 

 

 

[  

 

[
[  

 

[18] N. Li , Y. Yu , Z.-H. Zhou , Diversity regularized ensemble pruning, in: Machine
Learning and Knowledge Discovery in Databases, Springer, 2012, pp. 330–345 . 

[19] L.I. Kuncheva , Combining Pattern Classifiers: Methods and Algorithms, Wiley,
2004 . 

20] Z.-H. Zhou , Ensemble Methods: Foundations and Algorithms, Chapman & Hall,
2012 . 
[21] G. Giacinto , F. Roli , Design of effective neural network ensembles for image
classification purposes, Image Vis. Comput. 19 (9) (2001) 699–707 . 

22] L. Breiman , Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140 . 
23] M. Lichman, UCI machine learning repository, [ http://archive.ics.uci.edu/ml ].

Irvine, CA: University of California, School of Information and Computer Sci-
ence, 2013. 

http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0019
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0019
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0020
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0020
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0022
http://refhub.elsevier.com/S0167-8655(16)00052-0/sbref0022
http://archive.ics.uci.edu/ml

	Combining diversity measures for ensemble pruning
	1 Introduction
	2 Diversity measures
	3 Proposed method
	3.1 Initial pool of classifiers
	3.2 Diversity measures
	3.3 Genetic algorithm
	3.3.1 Computing the fitness


	4 Experiments
	4.1 Analyzing the diversity measures
	4.2 Comparing with the state-of-the-art

	5 Conclusions
	 Acknowledgment
	 References


