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Multiple Classifier Systems (MCSs) have been widely used in the area of pattern recognition due to the
difficult task that is to find a single classifier that has a good performance on a great variety of problems.
Studies have shown that MCSs generate a large quantity of classifiers and that those classifiers have
redundancy between each other. Various methods proposed to decrease the number of classifiers without
worsening the performance of the ensemble succeeded when using diversity to drive the pruning process.
In this work we propose a pruning method that combines different pairwise diversity matrices through a
genetic algorithm. The combined diversity matrix is then used to group similar classifiers, i.e., those with
low diversity, that should not belong to the same ensemble. In order to generate candidate ensembles,
we transform the combined diversity matrix into one or more graphs and then apply a graph coloring
method. The proposed method was assessed on 21 datasets from the UCI Machine Learning Repository
and its results were compared with five state-of-the-art techniques in ensemble pruning. Results have
shown that the proposed pruning method obtains smaller ensembles than the state-of-the-art techniques
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while improving the recognition rates.
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1. Introduction

Ensemble methods began gathering attention of the pattern
recognition community after Wolpert's no free lunch theorem [1]
stated that given enough problems and two classifiers, the number
of problems in which a classifier outperforms the other is roughly
equal. This means that searching for a single classifier model that
had good performance at a wide array of problems is unproductive.
Multiple classifier systems, another name for ensembles of classi-
fiers, avoid the problem stated by Wolpert by combining the out-
put of various classifiers. The combination softens the differences
between problems in which the classifiers of the ensemble have
different performances. Besides this softening effect ensembles use
weaker classifiers which are easier to train.

The main problem with ensemble methods, such as Bagging or
AdaBoost, is that the final ensemble has a large number of classi-
fiers. In the late 1990s it had been shown that some of the clas-
sifiers in the ensemble could be removed without impairing the
ensembles ability to generalize [2,3]. These findings led to more
research being done on the area of ensemble pruning since search-
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ing exhaustively for the best subset of an ensemble can become
intractable for relatively small ensemble sizes.

The seminal work in this field was published by Margineantu
and Dietterich [3] where the authors compared five different prun-
ing algorithms on ten datasets and concluded that in most of the
experiments the ensemble of decision trees produced by AdaBoost
could be pruned substantially with no considerable impacts of the
performance. Tamon and Xiang [4] proposed an improvement to
one of the methods described by Margineantu and Dietterich [3],
the Kappa pruning, and also addressed the boosting pruning prob-
lem from a theoretical perspective.

Zhou et al. [5] introduced the GASEN (Genetic Algorithm based
Selective ENsemble) method, which selects the classifiers to con-
stitute an ensemble according to some evolved weights that could
characterize the fitness of including the classifiers in the ensem-
ble. In their empirical study they used neural networks as classi-
fiers, genetic algorithms, and 20 different datasets. They show that
the pruned ensemble generated by the GASEN method was able to
outperform the popular ensemble approaches such as Bagging and
Boosting. Other examples of methods using global search to prune
the ensembles can be found in [6,7].

A different approach, based on a greed local search, was pro-
posed by Martinez-Mufioz and Suarez [8,9], Martinez-Mufioz et al.
[10]. In these works they explored the idea that the order in
which classifiers are aggregated in ensemble methods can be an
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important tool to prune ensembles. Their algorithm is based on
ordering the predictors in the ensemble according to a number of
rules that exploit the complementariness of the individual classi-
fiers. Experiments on several UCI repository datasets show that or-
dered ensembles produced a generalization error lower than the
full ensembles created by Bagging.

An issue not to be neglected when building ensembles of clas-
sifiers is the diversity, which is the underpinning to successful
deployment of classifiers ensemble. Empirical results have shown
that there exists positive correlation between performance of the
ensemble and diversity among the base classifiers [11,12]. On the
other hand, the usefulness of diversity measures to build ensem-
bles of classifiers is questioned by some authors. Kuncheva and
Whitaker [13] performed a considerable amount of experiments
but could not find a definitive connection between the diversity
measures and the improvement of the ensemble accuracy. In other
words, designing diverse classifiers is important but the problem
of measuring this diversity and so using it effectively for building
better ensembles is still an open problem. Ko et al. [14] investi-
gated 10 diversity measures into a pairwise fusion matrix transfor-
mation to combine classifiers and concluded that the use of diver-
sity might slightly improve the methods for classifier combination
in some problems, but the effect is not significant. Tang et al. [15]
evaluated six different measures of diversity and concluded that
none of them is suitable for the task of building ensemble of clas-
sifiers. According to the authors, if one exploits diversity measures
as criteria to select the base classifiers, then the diversity measure
is required to be precise, since the choice of diversity measure will
directly influence the final ensemble and subsequently the classifi-
cation result.

As one may notice, understanding how diversity can be used to
build ensembles remains an open problem. In spite of that, the lit-
erature shows us several cases where the diversity has been suc-
cessfully applied to build ensembles of classifiers. Tsymbal et al.
[16] point out the importance of the diversity measures during the
search problem for ensemble feature selection. Oliveira et al. [17]
show that diversity is quite useful to build ensembles of classi-
fiers through feature selection since it helps preventing overfitting
during the search. Li et al. [18] presented a theoretical study on
the effect of diversity in voting. They concluded that by enforc-
ing large diversity, the hypothesis space complexity of voting can
be reduced, and then better generalization performance can be ex-
pected. These findings were used to build a method called DREP
(Diversity Regularized Ensemble Pruning) which explicitly exploit
diversity regularization. Experimental results show that with the
help of diversity regularization, DREP is able to achieve signifi-
cantly better generalization performance with smaller ensemble
size than the compared methods.

Motivated by the success of Li et al. [18] and also by the find-
ings of Kuncheva [19], which suggests that a single measure of di-
versity might not be accurate enough to capture all the relevant
diversities in the ensemble, in this study we argue that the combi-
nation of several diversity measures can be an useful tool to prune
an ensemble of classifiers. To support this idea, we propose an
ensemble pruning method where the undermining concept is the
combination of different pairwise diversity matrices. The weights
of this combination are provided by a genetic algorithm. From the
combined diversity matrix we are able to group similar classifiers,
i.e., those with low diversity, that should not belong to the same
ensemble. In order to generate the candidate ensembles, we trans-
form the combined diversity matrix into one or more graphs and
then apply a graph coloring method. The fitness of the genetic al-
gorithm is provided by the ensemble that minimizes the error on
a validation set.

Through a set of comprehensive experiments on 21 datasets of
the UCI repository we show that the proposed method is able to

Table 1
Contingency table for two classifiers d; and d;.
di=+ di=—
dj=+ a c
dj=- b d

considerably reduce the original size of the ensemble while im-
proving the recognition rates. The results reached by our method
compare favorably to other published methods.

The rest of this article is organized as follows: Section 2 reviews
the diversity measures used in this work; Section 3 describes the
proposed method for pruning a pool of classifiers; Section 4 re-
views the methodology and experiments run to validate the pro-
posed method; Section 5 lists the conclusions that can be taken
from the experiments.

2. Diversity measures

There is not a widely accepted definition of diversity be-
tween classifiers. For that reason there are many definitions used
throughout the literature. In the proposed method five pairwise di-
versity measures are combined to reach a broader definition of di-
versity. This section describes these five measures and how to cal-
culate them.

The diversity measures are calculated using a contingency ta-
ble [20] that summarizes the behavior of two classifiers d; and d;
across a dataset. Table 1 shows an example of a contingency table.
The values on the table have the following meaning: a is the num-
ber of examples in the dataset correctly classified by both d; and
d;; b is the number of examples correctly classified by d; and in-
correctly classified by d;; ¢ is the number of examples incorrectly
classified by d; and correctly classified by d;; and d is the number
of examples incorrectly classified by both classifiers.

Disagreement is the proportion of examples differently classi-
fied by d; and d;. Its value is calculated by Eq. (1), where m =
a+b+c+d. Its value ranges from 0 to 1, with higher values in-
dicating more diversity.

. b+c
disij = — (1)

The Q-statistic is defined by Eq. (2). Q; ranges from —1 to 1,
where 0 means the two classifiers are independent, 1 both classi-
fiers make similar predictions, and —1 the classifiers make differ-
ent predictions.

ad — bc
Q’Aj:ad+bc

The Correlation Coefficient of two classifiers is calculated by
Eq. (3) and the meaning of its value is similar to that of the Q-
statistic.

(2)

_ ad — bc
J@+b)(a+c)(c+d)(b+d)

The Kappa-statistic is widely used in statistics and was used
to analyze the diversity between classifiers for the first time by
Margineantu and Dietterich [3]. «p (Eq. (4)) is equal to 1 if the
classifiers completely agree, 0 if they randomly agree, and less than
0 is a rare case that happens when they agree less than what is
expected by chance.

Pij (3)

_0,- 0,
=70, “@
where

@1 — M’ (5)
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Fig. 1. Outline of the proposed method (DivP).

(a+b)y(a+c)+ (c+d)(b+d)
m2

0; = (6)

The Double-fault measure [21] is the proportion of examples
misclassified by both classifiers and its value is calculated using
Eq. (7).

(7)

Sl

DF;j =

3. Proposed method

In this section we introduce the proposed method, which com-
bines diversity measures for ensemble pruning. We call it DivP. It
is composed of two main modules: computation of the diversity
matrices based on the initial pool of classifiers and the pruning
method that is performed inside a genetic algorithm. Fig. 1 depicts
all the modules of the proposed method, which are described in
the following sections.

3.1. Initial pool of classifiers

In this work the initial pool of classifiers D of size L was cre-
ated using Bagging [22]. To take advantage of this method, the base
classifier must be unstable, i.e., minor changes in the training set
can lead to major changes in the classifier output. The unstable
classifier used in our experiments was the Perceptron with thresh-
old activation function.

3.2. Diversity measures

The five pairwise diversity measures reviewed in Section 2 were
considered in this work: Disagreement (M), Q-Statistics (M), Cor-
relation Coefficient (M3), Kappa-statistic (My), and Double-fault
measure (Ms). Here it is worth mentioning that the method is not
limited to these five measures. They were selected because, to the
best of our knowledge, they are the most commonly pairwise di-
versity measures used in the literature.

The output of this module consists in five L x L matrices. The
diversity values for each pair of classifiers are calculated using the
validation set V;. The weights used to combine these matrices are
found by the genetic algorithm as discussed below.

3.3. Genetic algorithm

The pruning mechanism is based on a genetic algorithm with
real representation, crossover intermediate function, adaptive feasi-
ble mutation, stochastic uniform selection, and elitism which is im-
plemented using a generational procedure. The following parame-
ter settings were employed: population size: 22, number of gener-
ations: 600, and probability of crossover: 0.8. All these parameters
were defined empirically.

The chromosome encodes six real values, five weights
(w1, ...,ws) to combine the diversity matrices and the threshold
T used to compute the adjacency matrix. The fitness function con-
sists in finding the candidate ensemble that minimizes the error
rate on the validation set V,. In the end, the fittest individual rep-
resents the pruned ensemble that minimizes the error rate on an
independent validation set.

3.3.1. Computing the fitness

In this section we explain in details how do compute the fit-
ness function based on the pairwise diversity matrices. The first
step is to calculate the combined diversity matrix (H) considering
the weights produced by the genetic algorithm. This is done by
Eq. (8).

5
H=>" oM, (8)
i=1

Thereafter we create the adjacency matrix, which is defined ac-
cording to Eq. (9). This rule specifies that if the combined diversity
between classifiers d; and d; is smaller than the threshold T there
will be an edge between the vertices i and j.

_ 1 lfH,J<T
Aij - {0 iinyj >T ®)

Egs. (10) and (11) show examples of H and A matrices, respec-
tively. These matrices were computed using a pool of five classi-
fiers; in this example, the threshold T = 1.1. So, applying the ma-
trix H to Eq. (9) we obtain the matrix A showed in (11). Notice
that the main diagonal is set to zero to avoid linking a vertice to
itself.
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Fig. 2. Two graphs created from the adjacency matrix A grouping classifiers with
low diversity among them.

Fig. 3. Two possible color configurations for the graphs depicted in Fig. 2.
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Building a graph from the adjacency matrix is straightforward.
From matrix A two independent graphs are build as presented in
Fig. 2. The first one (Fig. 2(a)) indicates that classifiers d; and ds
should belong to the same graph since they have a low combined
diversity. In other words, d; and ds should not belong to the same
ensemble. The same happens in the second graph (Fig. 2(b)). In
this case, the diversity between the pairs of classifiers d, and d4
and d, and d3 is low.

The problem now consists in building the candidate ensemble
from these graphs, i.e., putting together those classifiers with a
high degree of diversity. From the graph perspective, this means
that adjacent vertices should not be in the same ensemble. To per-
form this operation, we have employed a graph coloring algorithm
based on greedy search so that adjacent vertices have different col-
ors. Fig. 3 shows the graphs depicted in Fig. 2 after the coloring
process.

The candidate ensembles are created by grouping the vertices
(classifiers) with the same color. This is done for all possible color
configurations. Therefore, for the graphs presented in Fig. 3(a) and
(b) the candidate ensembles would be {d;, ds, d4}, {d2, ds} and {d3,
dg, ds}, {d,, d3}, respectively.

Each candidate ensemble is evaluated using the second valida-
tion set V,. The candidate ensemble with the best performance

Table 2
Datasets used in this work sorted by the number of instances.
Dataset # Instances  # Attributes  # Classes
Wine 178 13 3
Parkinsons 195 22 2
Ecoli 336 7 8
lonosphere 351 34 2
Musk 476 166 2
Balance-scale 625 4 3
Transfusion 748 4 2
Pima 768 8 2
CMC 1473 9 3
Wineq-red 1599 1 6
Segment 2310 19 7
Spambase 4601 57 2
Wineq-white 4898 1 7
Waveform 5000 21 3
Phoneme 5404 5 2
Wall-following 5456 24 4
Page-blocks 5473 10 5
Satimage 6435 36 6
Pen-digits 10992 16 10
Magic04 19020 10 2
Shuttle 58000 9 7

(smallest error on the set) will be used as the output ensemble
for this individual.

Once one of the termination conditions of the genetic algorithm
is satisfied, usually reaching the maximum number of generations,
the fittest individual within the final population is selected. The
candidate ensemble that resulted in that individual’s fitness is then
chosen to be the resulting ensemble D’ of the pruning process.

The proposed technique does not impose any restrictions on the
method used for combining the classifiers on the ensemble. Re-
striction can be placed depending on the type of classifier used
as base classifier. Plurality voting is chosen for having good results
and being easy to understand and use.

4. Experiments

In order show how DivP performs, we have carried out experi-
ments on 21 classification problems from the UCI Machine Learn-
ing Repository [23]. These databases, described in Table 2, contain
different types of problems with different number of instances, at-
tributes, and classes.

The pool of classifiers was created using Bagging and the Per-
ceptron was the unstable classifier used in our experiments. In our
experiments, the size of the pool assumes five different values,
L = {50, 100, 150, 200, 250}. In this case, the goal is to assess the
impacts of the pruning methods on pools of different sizes.

Experiments were run using k-fold cross validation with k=6
divided as: three folds for training, two for validation, and one for
test.

Majority vote was the fusion rule employed because (i) it does
not assume prior knowledge about the classifiers, (ii) it is a non-
trainable rule, (iii) it can be used with any classifier since it
is a hard level combination rule - soft level combination rules
require classifiers probabilities estimation. Besides, the literature
pruning methods we have selected to assess the performance of
the proposed method also used majority vote. In spite of that,
we also evaluated other combination rules, such as: average, prod-
uct, median, minimum, and maximum. However, majority vote was
slightly better when compared with these combination rules. So,
for the sake of clarity, we decided to report only the results of
the proposed approach with majority vote. In order to speed up
the convergence of the genetic algorithm the first two individuals
of the population are initialized with the single best classifier of
the pool and the ensemble composed of all classifiers of the pool,
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Table 3
Accuracy of the ensembles for different pool sizes (50, 100, 150, 200, and 250) on the test set. v, X, and A are the performances of the best, median, and worst classifier
observing the whole pool.

Dataset 50 100 150 200 250
DivP v X A DivP v X A DivP v b4 A DivP v X A DivP v X A
Wine 950 983 933 848 939 983 927 820 972 994 943 842 972 994 949 82.0 944 1000 949 826
Parkinsons 846 902 802 662 821 908 805 636 846 918 795 611 805 923 805 559 830 913 80.0 60.5
Ecoli 749 809 729 622 769 796 728 598 783 839 744 543 772 805 728 539 746 80.6 722 491
lonosphere 889 943 831 818 897 949 8380 801 886 946 881 804 889 952 886 812 898 940 88.0 79.8
Musk 750 834 739 605 769 842 755 578 792 855 745 561 788 859 758 56.7 78.0 859 76.3  59.0
Balance-scale 888 914 877 763 885 923 877 730 901 925 874 719 893 936 875 712 877 930 875 728
Transfusion 758 793 707 484 768 785 701 477 771 789 703 475 759 798 701 456 766 793 70.6 481
Pima 746 775 700 522 747 776 699 574 741 783 694 534 742 796 702 516 755 78.8 69.8 518
cMC 496 515 456 367 498 526 452 325 490 530 455 310 515 530 450 319 500 534 449 321
Wineq-red 56.0 544 447 328 559 556 446 325 572 569 458 322 554 559 456 323 577 556 450 314
Segment 910 920 860 692 913 916 867 673 913 918 863 681 905 921 859 620 915 922 86.2 60.6
Spambase 921 920 877 820 920 925 879 811 927 925 882 815 921 923 880 804 922 924 879 80.2
Wineq-white 499 486 409 247 504 485 396 229 502 491 396 224 512 488 396 224 509 498 395 227
Waveform 846 846 773 673 846 853 765 669 852 852 770 672 846 850 773 659 856 855 770  65.7
Phoneme 76,5 760 694 585 752 769 700 543 767 766 696 562 774 767 692 565 769 773 69.8 4938
Wall-following 673 650 566 431 669 649 566 409 665 654 566 402 665 653 568 388 659 653 56.8 394
Page-blocks 956 956 923 879 955 957 930 881 954 959 929 816 960 962 927 856 957 958 922 842
Satimage 663 634 544 362 663 638 545 356 669 643 545 341 672 642 545 351 667 648 545 33.7
Pen-digits 906 89.7 870 730 907 906 874 735 90.8 902 872 696 90.8 907 873 721 909 905 872 687
Magic04 754 721 699 679 756 727 701 679 757 722 703 679 756 730 701 674 757 725 70.0 676
Shuttle 970 969 861 464 971 969 866 330 970 969 862 248 972 970 863 303 972 969 864 239
Average 785 799 731 599 786 802 731 580 792 807 732 565 790 808 733 561 789 808 732 554
Table 4

Accuracy of the ensembles for different pool sizes (50, 100, 150, 200, and 250) on the test set. Best results per database are in bold. B: Bagging; DivP: Pruned ensemble
using majority vote; #: Number of classifiers after pruning.

Dataset 50 100 150 200 250

B DivP # B DivP # B DivP # B DivP # B DivP #
Wine 94.9 95.0 1 95.0 93.8 1 96.0 97.2 1 96.6 97.2 1 96.1 944 1
Parkinsons 82.5 84.6 1 831 82.1 1 82.6 84.6 1 841 80.5 1 841 83.0 1
Ecoli 76.4 74.9 5 78.7 76.9 4 794 78.3 2 773 772 3 78.5 74.6 2
lonosphere 91.2 88.9 1 89.2 89.7 1 88.3 88.6 2 89.7 88.9 2 89.2 89.7 1
Musk 773 75.0 3 80.6 76.9 3 78.6 79.2 2 79.8 78.8 3 80.7 78.0 1
Balance-scale 875 88.8 1 88.2 88.5 2 874 90.1 1 872 89.3 1 88.2 87.7 2
Transfusion 753 75.8 3 74.9 76.7 5 74.9 771 3 75.1 75.9 3 751 76.6 3
Pima 744 74.6 3 751 74.7 3 741 741 3 723 74.2 3 75.1 75.5 3
CMC 50.2 49.6 4 504 49.8 5 50.5 48.9 5 51.6 51.5 6 50.0 50.0 4
Wineq-red 573 56.0 5 55.4 55.9 6 56.3 57.2 6 58.6 55.4 6 56.8 57.7 9
Segment 91.5 91.0 4 91.2 91.3 5 91.2 91.3 4 911 90.5 6 91.6 91.5 12
Spambase 92.0 921 7 923 92.0 4 92.3 92.7 7 92.5 921 7 92.3 92.2 6
Wineq-white 483 49.9 4 48.7 50.3 4 48.6 50.2 2 48.6 51.2 4 48.6 50.9 4
Waveform 83.7 84.6 3 83.5 84.6 3 85.2 85.2 3 84.5 84.6 6 85.1 85.6 3
Phoneme 717 76.5 5 72.4 75.2 3 721 76.7 2 72.0 774 3 72.2 76.9 3
Wall-following 65.2 67.3 7 66.2 66.9 9 65.7 66.5 10 66.2 66.5 5 66.6 65.9 9
Page-blocks 94.5 95.6 3 95.3 95.5 4 95.0 95.4 3 95.2 96.0 2 94.4 95.7 3
Satimage 64.2 66.2 5 64.4 66.3 6 64.2 66.9 4 64.5 671 6 64.3 66.7 4
Pen-digits 90.1 90.6 8 90.6 90.7 6 90.6 90.8 10 90.5 90.8 7 90.4 90.9 5
Magic04 71.7 75.4 2 72.0 75.6 3 71.8 75.7 2 72.0 75.6 2 71.8 75.7 3
Shuttle 91.2 97.0 2 912 971 3 915 97.0 5 914 97.2 2 91.6 97.2 3
Average 3.7 3.9 3.7 3.8 39
Win/Tie/Loss 15/0/6 14/0/7 17/2/2 13/0/8 12/1/8

respectively. The algorithm stops if there is no improvement in the
fitness function for 15 consecutive generations or when it reaches
the maximum number of generations, which is set to 600. In our
experiments the average number of iterations was 25.

Table 3 shows the results of the proposed approach (DivP)
against the results extracted from the whole initial pool of clas-
sifiers. The columns labeled with v and A show the accuracies of
the best and the worst classifier in the pool on the test set, re-
spectively; and, the columns labeled with ¥ show the median ac-
curacy of the classifiers in the pool on the test set. DivP attains
a classification accuracy that is always better than the average
classifier.

The results of the proposed pruning method on the test set for
all the databases are reported in Table 4. It compares the perfor-
mance of the original ensemble (B) and the proposed pruned en-
semble (DivP). The average number of classifiers after pruning the
ensemble is also available.

Table 4 also shows the win-tie-loss count where
“win”[“tie”/“loss” means the number of times the pruned en-
semble scores better/neutral/inferior than the original ensemble.
The number of “wins” is greater than “tie” and “loss”, but it is
worth remarking that the proposed method has a more homo-
geneous performance (i.e., more wins) on bigger databases. This
can be explained by the fact that bigger databases allow bigger
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Table 5

Evaluation of the proposal with and without the combination of diversity measures.
Original method (DivP), Disagreement (M), Q-Statistics (M5 ), Correlation Coefficient
(Ms), Kappa-statistic (M), and Double-fault (Ms).

Dataset DivP M, M, Ms; My Ms

Wine 97.2 94.9 96.0 94.9 95.5 94.3
Parkinsons 84.6 724 744 724 724 81.6
Ecoli 78.3 75.8 77.6 77.0 77.6 77.6
Ionosphere 88.6 90.0 89.8 89.5 90.1 88.6
Musk 79.2 67.4 70.4 70.2 70.2 78.6
Balance-scale 90.1 85.9 86.7 87.8 88.2 87.2
Transfusion 771 54.7 54.3 53.5 53.9 73.8
Pima 741 67.6 67.6 67.1 67.1 72.0
CMC 489 40.9 40.9 40.5 40.5 473
Wineq-red 57.2 46.3 46.2 46.5 46.5 47.8
Segment 91.3 779 86.8 87.8 85.4 90.3
Spambase 92.7 87.3 86.8 86.0 85.9 92,5
Wineq-white 50.2 40.4 40.3 40.5 40.5 46.1
Waveform 85.2 69.8 711 70.8 70.8 84.0
Phoneme 76.7 65.1 65.8 65.1 65.1 72.3
Wall-following 66.5 448 454 44.8 448 63.1
Page-blocks 95.4 92.5 93.9 94.0 94.0 93.7
Satimage 66.9 49.7 53.2 53.8 53.9 57.9
Pen-digits 90.8 84.7 86.3 85.6 84.7 89.6
Magic04 75.7 68.6 68.6 68.6 68.6 71.2
Shuttle 97.0 57.9 58.5 63.2 63.2 913
Average 79.2 68.3 69.5 69.5 69.5 76.2

validation sets, which are always useful for the optimization
process.

Besides the good performance, it is important to highlight the
capacity of the proposed method in pruning ensemble indepen-
dent of its original size. From Table 4 we can see that the en-
sembles were considerably reduced to less than 10 classifiers. The
average size of the pruned ensemble is four classifiers for all the
experiments. One may observe that sometimes the pruned ensem-
ble produced by the proposed method contains only one classifier.
This means that the method was not able to outperform the single
best on the validation set, hence, the pruned ensemble contains
only the single best or one classifier that achieved the same per-
formance of the single best. In these cases, the single best and the
pruned ensemble reach the same performance on the validation
set, but they may be different on the test set.
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4.1. Analyzing the diversity measures

The proposed method takes into account an optimization ap-
proach to search for the best diversity measure weights w; and the
threshold T, which are used in Egs. (8) and ( 9). Based on this strat-
egy, one question arises: do we need to combine different diversity
measures? In other words, is only one diversity measure enough to
achieve high accuracy rates? In order to address this question, we
evaluated a modified version of the proposed approach in which
just one diversity measure is used at a time. So, in this modified
version, Eq. (8) does not combine the diversity measures and H is
replaced by one diversity matrix H = M;.

Since no optimization is used in this modified version of the
proposed approach, we need to define a procedure to set the
threshold T (Eq. (9)). This procedure has three steps: (i) H is equal
to one diversity matrix M; (H = M;), (ii) le_ is the sum of the diver-
sities values per classifier d; given by 9(1,- = Zi:],k;ﬁiH(i’ k), where
L is the number of classifiers, and (iii) the classifiers d; associated
with the highest values of Qdi are selected to compose the final
ensemble.

To perform these experiments we have selected the pool size
that produced the best results in the previous experiments (L =
150). In the cases where each diversity measure was assessed in-
dependently, 5% of the classifiers associated with the highest val-
ues of ¢y were selected to compose the final ensemble. Table 5
shows the results of the proposed approach with and without the
combination of the diversity measures. The combination of five di-
versity measures obtained the best accuracy rates in all except one
dataset. These results corroborate to our initial hypothesis that the
combination of diversity measures can be an useful tool to prune
an ensemble of classifier.

4.2. Comparing with the state-of-the-art

To better assess the proposed method, we have implement the
following state-of-the-art pruning techniques: Aggregation Order-
ing in Bagging (AGOB) [8], Pruning in Ordered Bagging Ensemble
(POBE) [9], Genetic Algorithm based Selective ENsemble (GASEN)
[5], Diversity Regularized Ensemble Pruning [18], and Kappa Prun-
ing [3]. AGOB and POBE methods explore the idea that the order in
which the classifiers are aggregated in the ensemble is important.

Table 6
Recognition rates (%) and size (#) of the pruned ensembles achieved by comparative methods.

Dataset Bagging DivP # AGOB # DREP # GASEN # Kappa # POBE #

Wine 96.0 97.2 1 95.5 19 96.6 75 96.0 74 96.1 30 95.5 22
Parkinsons 82.6 84.6 1 83.1 26 83.1 75 83.1 71 811 30 82.1 34
Ecoli 79.4 78.3 2 79.7 28 79.7 75 79.4 75 78.2 30 78.5 31
lonosphere 88.3 88.6 2 88.6 33 88.6 75 88.1 66 88.9 30 90.0 31
Musk 78.6 79.2 2 78.4 27 79.0 75 79.6 79 78.8 30 79.8 30
Balance-scale 874 90.1 1 88.3 23 88.3 75 87.2 78 88.2 30 89.6 27
Transfusion 749 771 3 68.9 21 771 75 74.7 74 65.0 30 74.7 34
Pima 741 74.1 3 741 19 75.9 75 745 113 69.7 30 71.2 34
CcMC 50.5 489 5 51.0 41 50.4 75 50.5 141 50.4 30 49.6 35
Wineq-red 56.3 57.2 6 56.0 41 57.0 75 56.5 142 54.5 30 54.5 35
Segment 912 91.3 4 91.2 36 91.0 75 91.3 114 914 30 911 39
Spambase 92.3 92.7 7 91.7 37 92.6 75 924 114 90.4 30 92.1 33
Wineg-white 48.6 50.2 2 50.2 32 49.4 75 48.6 142 48.7 30 47.0 40
Waveform 85.2 85.2 3 829 30 85.2 75 85.1 110 80.0 30 82.6 36
Phoneme 721 76.7 2 713 27 72.5 75 713 141 66.8 30 719 32
Wall-following 65.7 66.5 10 64.6 40 65.8 75 65.8 143 615 30 66.4 36
Page-blocks 95.0 954 3 95.5 24 95.7 75 95.0 141 94.8 30 95.0 40
Satimage 64.2 66.9 4 64.2 36 64.3 75 64.3 142 63.5 30 65.1 38
Pen-digits 90.6 90.8 10 90.7 23 911 75 90.6 143 91.2 30 90.9 35
Magic04 71.8 75.7 2 74.9 2 72.6 75 71.7 144 75.5 30 69.8 30
Shuttle 915 97.0 5 84.2 15 91.8 75 915 143 89.4 30 94.8 24
Win/Tie/Loss 0/1/20 10/3/8 1/2/18 2/3/16 0/0/21 2/0/19 2/0/19
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Table 7

Results of the Wilcoxon signed-rank test. Rt corresponds to the sum of the ranks
for DivP and R~ for the literature methods. Cases where the difference is significant
are marked with bullet “e”, otherwise are marked with circle “o”.

Comparison R* R p-value
DivP vs Bagging 29.43 2.71 0.0010 e
DivP vs AGOB 41.45 3.65 0.0038 o
DivP vs DREP 20.98 5.79 0.0542 o
DivP vs GASEN 29.30 3.53 0.0053 e
DivP vs Kappa 61.25 222 0.0005 e
DivP vs POBE 33.96 312 0.0022 e

120 v T v T T T T r v

________________ GOASEN
100 | 4

et

DREP

Average number of classifiers

] J 1
75 75.5 76 76.5 77 775 78 785 79 79.5 80
Average recognition rate (%)

Fig. 4. Ensemble size vs average performance.

In Kappa Pruning, the final size of the ensemble is a parameter
that must be informed by the user. The GASEN method uses a ge-
netic algorithm to assign weights to the classifiers of the ensemble
and prune those classifiers with a weight below a certain thresh-
old that is set by the user. Finally, DREP starts the pool with just
one classifier (the one in the pool that minimizes the error rate on
the validation set) and grows the ensemble by adding new classi-
fiers taking into account the diversity and the performance of the
ensemble. These ensemble pruning methods have their own stop
criterion and we implemented as described in their papers.

The recognition rates achieved by all methods using an initial
pool with 150 classifiers are reported in Table 6. To test the signif-
icance of difference between the recognition rates of the proposed
method and that of Bagging and five other pruning algorithms, we
performed the Wilcoxon signed-rank test at significance level of
5% (o = 0.05). The p-values produced in the test are reported in
Table 7, which shows that the proposed method produces better
results with statistical difference in five out of six cases. The only
case where the difference was not significant was DivP vs DREP,
but even then the ranks are in favor of DivP. These results put out
the superiority of the proposed approach with respect to the liter-
ature ones.

Besides comparing favorably to the literature in terms of recog-
nition rate, Table 6 also shows that the combination of diver-
sity measures allows the pruning method to generate considerably
small ensembles. This trade-off can also be visualized in Fig. 4,
where the best results should be located in the right lower quad-
rant of the plot.

5. Conclusions

In this paper we introduced an ensemble pruning method that
combines multiple diversity measures by using a genetic algo-

rithm and a graph coloring algorithm. By comparing the proposed
method against Bagging and five other ensemble pruning methods
available in the literature, we show its efficiency both in terms of
generalization and capacity of pruning the original Bagging ensem-
ble.

Regarding the performance, the experiments show that the pro-
posed approach achieves better performance in 10 out of the 21
datasets used in our tests when compared to Bagging and five
other pruning methods. With respect the size of the pruned en-
sembles, our experiments show that in average the final ensem-
ble is composed of four classifiers, independently of the number of
classifiers available in the original pool generated by Bagging. This
is considerably smaller than the other methods available in the
literature.

Combining diversity measures also brought advantages to the
proposed method, since there is no widely accepted definition of
diversity between classifiers. The measures often have a different
perspective as to what defines diversity, which is why we believe
that its combination enhances the pruning results. Researchers in
this area, [13], found that there is no clear correlation between di-
versity and performance, but that heuristics such as the one used
here can enhance the pruning results.
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