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RESUMO

Bancos de dados constrúıdos sobre MapReduce, tais como o Hive e Pig, traduzem suas
consultas para um ou mais programas MapReduce. Tais programas são organizados em
um Grafo Aćıclico Dirigido (GAD) e são executados seguindo sua ordem de dependência
no GAD. O desempenho dos programas MapReduce depende diretamente da otimização
(i.e., sintonia) dos parâmetros de configuração definidos no código-fonte. Sistemas como
Hive e Pig traduzem consultas para programas sem otimizar estes parâmetros. Existem
soluções que buscam a melhor configuração para programas MapReduce, entretanto, tais
soluções precisam coletar informação de suporte durante a execução ou simulação das
consultas para realizar a predição de melhor configuração. Coletar informação de suporte
pode adicionar uma sobrecarga no processo de otimização do programa, mesmo quando
o tamanho do dado de entrada é muito grande, ou quando usando apenas uma fração.
Nossa hipótese é que pode-se evitar a coleta de informação de suporte por agrupar con-
sultas que tenham a mesma assinatura de código para, então, otimizar seus parâmetros
com uma mesma configuração. Nesta dissertação nós apresentamos uma abordagem de
auto-sintonia para sistemas de data warehouse constrúıdos sobre MapReduce. Nossa abor-
dagem analisa em tempo de execução as consultas, extraindo as assinaturas de código (i.e.,
operadores de consulta como GroupBy e Select) e agrupando as consultas que exibem as
mesmas assinaturas de código. Ao agrupar os programas MapReduce, nossa solução aplica
uma configuração única para cada assinatura de código, baseando-se nas regras-de-ouro.
Durante os experimentos nós observamos a existência de um limite no qual a otimização
realizada com as regras-de-ouro, ou mesmo com a nossa abordagem, não é eficaz para
consultas abaixo deste certo limite. Nós validamos a nossa abordagem por meio de ex-
perimentação executando o TPC-H Benchmark.

Palavras chave: Hadoop; MapReduce; Auto-Sintonia.
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ABSTRACT

In MapReduce, performance of the programs directly depends on tuning parameters man-
ually set within their source-code by programmers. In the database context, MapReduce
query front-ends, including Hive and Pig, automatically translate MapReduce programs
from SQL-like queries written in HiveQL. However, these front-ends only care about trans-
lating queries and do not care about including tuning parameters. Different solutions seek
for the appropriated setup for MapReduce queries, but they need to collect support infor-
mation after execution or simulation. In the one hand, if there is no tuning of MapReduce
queries, their response time increase due to waste of computer resources. In the other
hand, collecting support information may add a costly overhead whether the size of the
input data grows large, or even when using a fraction of the input data. Our hypothe-
sis is that we can avoid collecting support information by finding queries with the same
code signature and tuning them with similar configuration setup. In this dissertation, we
present a HiveQL self-tuning approach for MapReduce data warehouse systems based on
clustering queries that exhibit the same characteristics in terms of query operators. Our
approach uses dynamic analysis to extract characteristics from running queries to build
similarity clusters. By clustering the queries, our mechanism leverages tuning informa-
tion gathered in advance, such as the rules-of-thumb, to allow on-the-fly adaptation of
queries setup. During our experimentation we observed the existence of a threshold at
which tuning with the rules-of-thumb is not effective. We validated our approach through
experimentation running the TPC-H benchmark.

Key-words: Hadoop; MapReduce; Self-Tuning.



1

CHAPTER 1

INTRODUCTION

The MapReduce programming model [6] presents an alternative to the parallel database

systems to building programs that process large amounts of data across large clusters. The

Apache Hadoop framework [22] is a popular open-source implementation of MapReduce

that serves as the foundation for an ecosystem of data intensive systems, including Hive,

Pig, Mahout, Nutch, HBase. The Apache Hive [4] data warehouse system built on top

of Hadoop comes along with a SQL-like language called HiveQL. To execute a query into

Hadoop, Hive translates a HiveQL query into a Directed Acyclic Graph (DAG) of stages,

where each stage is a complete Hadoop program and comprises of a set of references to

input data and a collection of operators (e.g., TableScan, Join, MapJoin, Select) that

we consider as the code signature. In Hive, the stages of a same query share the same

configuration setup, although they have different signatures that may lead to a different

behavior, such as disk access or network usage.

1.1 Background

Computing resources of MapReduce machine clusters can exhibit heterogeneous charac-

teristics and fluctuating loads. Query front-ends such as Hive [4] and Pig [9] do not care

about tuning setups to squeeze performance from these machines and MapReduce back-

ends do not have self-tuning facilities like the ones from relational database systems for

automatic tuning. Generally, tuning is made by system administrators or developers who

may not grasp those load fluctuations or are novice to the MapReduce data processing

model. While, there are tuning systems that help Hadoop administrators and develop-

ers in searching for the best setup values, setup tuning is yet done manually within the

source-code of the programs. Once the task of applying the best setup values is delegated

to the programmer, even with help of tuning-systems, misconfiguration may happen and



2

lead to poor performance. In addition, it is impossible to set a multi-configured query

manually considering the high number of variables, such as the variation on the size of

the intermediate tables generated by Hive during query execution.

1.2 Objective

Both Hadoop and Hive provide together more than four hundred configuration knobs

that can be tuned to boost performance. Tuning these knobs is a hard task due to the

number of variables involved that may vary from cluster workload and input data size to

algorithms for compression and degree of parallelism. We identified two main problems

concerning Hadoop/Hive tuning: (1) choosing the best setup to boost performance and

(2) finding similar stages in order to apply acquainted setup. Different solutions [26,

18, 19, 14], including CPU workload pattern matching, and workload profiling may be

used to addresses both problems. However, they need to collect support information from

execution or simulation of the programs in order to seek for the appropriated setup. In the

one hand, if there is no tuning of HiveQL queries (and stages), their response time increase

due to waste of computer resources. In the other hand, collecting support information

may add a costly overhead whether the size of the input data grows large, or even when

using a fraction of the input data. Our objective is to provide a self-tuning system for

HiveQL queries that avoids the collection of support information and tune the queries

transparently to the Hadoop administrator or developer.

1.3 Challenges

The support information collected from the query execution gives an insight about its

resource consumption pattern. The tuning systems that use heuristics, knowledge base

or cost-based approaches along with the support information to seek for the best tuning

need to execute or simulate the queries in order collect such information and generate the

appropriated tuning. The support information remains as the guidance to search for the

appropriated tuning. The challenge of tuning queries without collecting such information
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remains on the lack of the guidance provided by the support information. One problem

of tuning systems based on support information is that they may add a costly overhead

for tuning Ad-Hoc queries, which are processed only once. Tuning Ad-hoc queries based

on support information implies that these queries must be executed twice just for tuning.

1.4 Contribution

In this dissertation, we present a HiveQL Self-Tuning system called AutoConf, which

address the second tuning problem. Our hypothesis is that we can avoid collecting support

information by clustering stages with the same code signature and tuning them with the

same configuration setup. Our approach uses dynamic analysis to extract characteristics

from running stages and build similarity clusters. By clustering the stages, our system

leverages tuning information gathered in advance, such as the rules-of-thumb, to allow

on-the-fly adaptation of the stages. We validated our approach through experimentation

running the TPC-H benchmark. During our experimentation we observed the existence of

a threshold at which tuning with the rules-of-thumb is not effective, even using our system.

The remainder of this dissertation is organized as follows. We introduce the MapReduce

programming model and an overview on Hive query execution flow in Section 2. We

present the related work in Section 3. We describe our solution in Section 4. The analysis

and corresponding results are presented in Section 5. Finally, we conclude the dissertation

and present future work in Section 6.
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CHAPTER 2

MAPREDUCE

In this dissertation we focus on the Hadoop implementation once the various implemen-

tations differs in architectural details. We briefly describe the MapReduce programming

model in Section 2.1. The components of the Hadoop framework, are presented in Section

2.2. Finally, we give an overview of Hive query execution flow in Section 2.3.

2.1 Programming Model

The MapReduce programming model is based on the Functional programming paradigm,

which decomposes the solution in a set of functions. The MapReduce provides predefined

functions such as Map, Partition, Comparison, Reduce and Combiner to perform com-

putation over a given data bulk. Most of the MapReduce computation is based on Map

and Reduce functions, which are two main high-order functions that perform computation

based on key and value pairs.

The Map and Reduce functions are divided into several subphases. The Map function is

divided into Reading, Map Processing, Spilling, and Merging subphases, and the Reduce

function is divided into Shuffling, Sorting, Reduce Processing, and Writing subphases.

The Map function maps the input data into a list of key and value pairs. These pairs are

grouped and processed by the Reduce functions, where a Reduce function may process a

unique key or a list of keys. The result is a list grouped by keys and their corresponding

values (see Equations 2.1, 2.2).

Map(key1, value1)→ list(key2, value2) (2.1)

Reduce(key2, list(value2))→ (key2, list(value3)) (2.2)
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To illustrate the MapReduce model, we use the WordCount example bundled with the

official distribution of Hadoop. The WordCount calculates the occurrence of each word in

a given text, similar to the wc command of Unix systems. Suppose we have one terabyte

of pure text as input data and we want to count the occurrences of each word in the given

text. Thus, the first step is to load the input data into Hadoop.

The master node coordinates the WordCount execution, and as it receives the input

data, chop the input data into several pieces called splits. While the master node generates

the splits, it keeps sending these splits to the slave nodes of the cluster, which are respon-

sible to store the splits locally with a default size of 64 megabytes each. Administrators

and developers may tune this size to higher values depending on the application and the

overall input size. The load process finishes after the slave nodes have received their own

splits.

In a second step, the WordCount is submitted to the master node for execution, which,

in turn, reads the Map and Reduce functions and sends them to the slave nodes. The

master node indicates to the slaves that the processing can start. Then, the slave nodes

start to perform the Map and Reduce functions over their splits. This process takes the

computation to the data, instead of take the data to the computation.

The Code 2.1 is the Map function from the WordCount example bundled along with

the official Hadoop distribution. The key argument is the document name (i.e., the input

data shared across the slave nodes) and the value is the content of each split. In order

to count the occurrences of each word in the given input data, the Map function emits a

pair with the word w and the value 1 for each word in the text value. Each slave node

execute its own Map function. Each Map instance being executed produces a list of pairs

called intermediate-pairs (e.g., {{cat, 1}, {rat, 1}, {the, 1}}).

1 map(String key, String value)
2 // key: Document name
3 // value: Document contents
4 for each word w in value:
5 EmitIntermediate(w, ’1’);

Code 2.1: Map function excerpt from the WordCount [6].
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The Reduce presented in Code 2.2 is the Reduce function from the same WordCount

example. After the processing of the Map function by the slave nodes, the Reduce function

starts to process the intermediate-pairs. But, before the Reduce starts, the intermediate-

pairs with the same key are grouped by a function called Partitioner, which is responsible

to determine which Reducer instance will process a determined key. The Partitioner

function is executed in the Shuffle phase. Usually the programmers do not modify the

default Partitioner function.

1 reduce(String key, Iterator values)
2 // key: a word
3 // values: a list of counts
4 for each v in values:
5 results += ParseInt(v);
6 Emit(AsString(result));

Code 2.2: Reduce function excerpt from the WordCount [6].

Each Reduce fetches the assigned intermediate-pairs from the Partitioner via Hyper

Text Markup Language (HTTP) into memory. The Reduce periodically merges these

intermediate-pairs to disk. In the case of compression for the intermediate-pairs is turned

on, each set of intermediate-pairs that cames from the Partitioner is decompressed into

memory.

Each variable value in the intermediate-pairs has the value 1. The intermediate-

pairs with the same key are processed by the same Reduce instance, which receives the

intermediate-pairs and sums up the values. The Figure 2.1 shows the data flow during

the WordCount processing.

Finally, the result of each Reduce is a pair with the key and the sum of the value value

({key, sum(values)}). The sum(values) corresponds to the occurrences of each word in

the given text. The output pairs from all the reduce instances (i.e., or a list of pairs

from one reduce instance in case there are more than one key in the same Reduce) are

merged to compound the final result. Many other kinds of computation such as graph

and machine learning algorithms are handled by the MapReduce model. The prerequisite

to use MapReduce is to rewrite the algorithms to use the model of key and value pairs

imposed by the Map and Reduce functions.
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Figure 2.1: The WordCount Data Flow Example.
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2.2 Architecture

The Hadoop framework is an open-source implementation of the MapReduce program-

ming model, designed to process large amounts of data over clusters of commodity ma-

chines. It is also designed to scale up from single servers to thousands of machines, where

each machine offers local storage and computation.

When administrators or developers use Hadoop to develop distributed software they

neither care about deployment across the cluster nor treat the common problems related

to distributed applications such as: synchronization, reconciliation, concurrence, fault

tolerance and scalability. Instead of caring about these common problems, the admin-

istrator or developer configure how the framework must act with the Hadoop program,

e.g., the number of replicas in HDFS, the number of map and reduce instances per slave

node, buffer sizes and scheduling algorithms. When these configurations are not set by

the administrator or developer, the Hadoop framework assigns default values.

For tuning purposes, configuration parameters are called tuning knobs, while their

assigned values are called setup values. After the Map and Reduce functions have been

wrote by the developer and the tuning knobs were set up, the Hadoop program is executed

by the framework. In Hadoop, a program in execution is called job.

Figure 2.2 illustrate the Hadoop architecture. The Hadoop framework consists of a

distributed file system, described in Section 2.2.2, and the processing engine, described in

Section 2.2.1.

2.2.1 The Processing Engine

The Hadoop framework accepts simultaneous job submissions, from different users, orga-

nizing all jobs into a queue. The JobTracker is the coordinator of the Hadoop processing

engine and is executed in the master node. The JobTracker divide each job into several

instances of Map and Reduce functions, which are called tasks.

Each slave node runs the processing engine client called TaskTracker. Each Task-

Tracker is configured with a set of slots to indicate the number of tasks it can accept.
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Figure 2.2: The Hadoop architecture.

The JobTracker coordinates the execution of the delivered tasks, ordering when each task

must be processed and which is the TaskTracker that will process.

Each slave node has its own splits saved locally. The tasks (i.e., the Map and Reduce

functions) received from the JobTracker by the TaskTracker consume the local splits. As

the tasks related to the Map function finishes, the JobTracker orders the TaskTrackers

to perform the tasks related to the Reduce function.

2.2.2 The Distributed File System

The Hadoop framework uses a distributed file system to share data among the nodes. The

Hadoop Distributed File System (HDFS) is an open-source implementation of the Google

File System (GFS) [10], bundled along with the official Hadoop distribution. The HDFS

coordinator is called NameNode. It keeps the directory tree of all files stored in the file

system and tracks the location of each file in the cluster. The NameNode is responsible

to receive the input data, chop it into several splits and store all splits into the HDFS.

Each slave node has the HDFS client called DataNode, which is responsible for storing
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the data into local disks. The DataNode instances talks to each other to replicate data.

Whenever a job have to locate a file, it queries the NameNode for the machine address

that stores the data. After the job has received a machine address it contacts the machine

directly to get the data.

2.3 Hive query execution overview

The Apache Hive [4] (or simply Hive) is a data warehouse system built on top of Hadoop,

which comes along with a SQL-like language called HiveQL. In the Hive data warehouse

system queries are submitted via interfaces such as JDBC (Java Database Connectivity),

ODBC (Open Database Connectivity) or Hive CLI (i.e., Hive command line). As we

illustrate in Figure 2.3, Hive receives a query sentence and send it to the Compiler, which

is the Hive component responsible to translate the query sentence into a logical query

plan. The logical query plan consists a DAG of stages, where each stage is a complete

MapReduce program with a collection of operators and a set of input data. The operators

are minimum processing units inside Hive and implements SQL-like functionalities such

as Join, Select and GroupBy. The input data are tables and intermediate tables existing

in or generated by Hive during the query process.

Figure 2.3: HiveQL query execution flow inside Hive.

After the query sentence translation, the Compiler sends the logical query plan to the

Optimizer, which performs multiple passes rewriting it in order to generate an optimized

query plan. The optimized query plan is sent to the Executor, which submits query stages
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from the optimized query plan to the Hadoop framework. The submission of query stages

follows the topological order from the optimized query plan. While processing a query,

Hive applies the same configuration for all the stages inside the same DAG. However, the

stages within the same DAG may have a distinct collection of operators and a different

dataset, which may lead the stages to different behaviors. Thus, the overall query tuning

depends on a many-to-one configuration.

1 SELECT P BRAND, P TYPE, P SIZE,
2 COUNT(DISTINCT PS SUPPKEY) AS SUPPLIER CNT
3 FROM PARTSUPP, PART
4 WHERE P PARTKEY = PS PARTKEY
5 AND P BRAND <> ’Brand#45’
6 AND P TYPE NOT LIKE ’MEDIUM POLISHED%%’
7 AND P SIZE IN (49,14,23,45,19,3,36,9)
8 AND PS SUPPKEY NOT IN
9 (SELECT S SUPPKEY FROM SUPPLIER

10 WHERE S COMMENT
11 LIKE ’%%Customer%%Complaints%%’)
12 GROUP BY P BRAND, P TYPE, P SIZE
13 ORDER BY SUPPLIER CNT DESC,
14 P BRAND, P TYPE, P SIZE

Code 2.3: TPC-H query 16 [32].

Code 2.3 depicts the standard Query-16 from the TPC-H [32] benchmark that finds

out how many suppliers can supply parts with given attributes. Code 2.4 is the equivalent

query translated to HiveQL. As Hive does not support1 IN, EXISTS or subqueries in the

WHERE clause, the output of subqueries must be saved into temporary tables, resulting

in three HiveQL queries.

Figure 2.4 illustrates the workflow among the three HiveQL queries from Code 2.4,

and details the dependence between the stages. The first node in Figure 2.4 is the HiveQL

Query-1 that refers to first query from Code 2.4, the HiveQL Query-2 refers to the second

query from Code 2.4 and the HiveQL Query-3 refers to the third query from Code 2.4.

Inside each query node we illustrate the stages. In the HiveQL Query-1 we have the

Stage-1, which implements the operators2 TableScan, Filter, Select and FileSink. Also

1Ticket to implement support for correlated subqueries in the WHERE clause
https://issues.apache.org/jira/browse/HIVE-1799.

2The complete list of operators can be found in https://github.com/apache/hive.
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in HiveQL Query-1 we have the Stage-7, which depends on Stage-1 and consists of the

Stage-4, Stage-3 and Stage-5. Also in HiveQL Query-1, the Stage-6 depends on Stage-5.

The Stage-0 depends on Stage-3, Stage-4 and Stage-6. Finally, we have the Stage-2, which

depends on Stage-0 and is the last stage which aggregates the output and save it into the

intermediate table supplier tmp. The other two queries have an analogous behavior.

The stages with the MapReduceLocalWork, MapReduce, Move and Stats-Aggr oper-

ators are executed locally and do not need to be sent to the Hadoop framework for

distributed execution. In this dissertation, we are only tuning the stages that are sent

to Hadoop (e.g., ReduceSink, Extract, Filter). In Figure 2.4 we observe 18 stages for

HiveQL Query 16, but only five are executed as jobs on Hadoop (i.e., HiveQL Query-1,

Stage-1 ; HiveQL Query-2, Stages-3,5 ; and HiveQL Query-3, Stages-1,2 ).
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1 −− HiveQL Query−1
2 INSERT OVERWRITE TABLE supplier tmp
3 SELECT s suppkey
4 FROM supplier
5 WHERE NOT s comment
6 LIKE ’%Customer%Complaints%’;
7

8 −− HiveQL Query−2
9 INSERT OVERWRITE TABLE q16 tmp

10 SELECT p brand, p type, p size, ps suppkey
11 FROM partsupp ps JOIN part p
12 ON p.p partkey = ps.ps partkey
13 AND p.p brand <> ’Brand#45’
14 AND NOT p.p type
15 LIKE ’MEDIUM POLISHED%’
16 JOIN supplier tmp s
17 ON ps.ps suppkey = s.s suppkey;
18

19 −− HiveQL Query−3
20 INSERT OVERWRITE
21 TABLE q16 parts supplier relationship
22 SELECT p brand, p type, p size,
23 COUNT(distinct ps suppkey) AS supplier cnt
24 FROM (SELECT ∗
25 FROM q16 tmp
26 WHERE p size = 49
27 OR p size = 14 OR p size = 23
28 OR p size = 45 OR p size = 19
29 OR p size = 3 OR p size = 36
30 OR p size = 9 ) q16 all
31 GROUP by p brand, p type, p size
32 ORDER by supplier cnt DESC,
33 p brand, p type, p size;

Code 2.4: TPC-H 16 query translated to HiveQL [29].
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Figure 2.4: This figure illustrates the stage workflow produced by Hive after the trans-
lation of the TPC-H query 16 written in HiveQL to the Direct Acyclic Graph of stages.
Full lines represent the dependency among the stages. Dashed lines represent the read
and write operations over tables.
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CHAPTER 3

RELATED WORK

The Hadoop framework and Hive provide together more than four hundred tuning knobs

that can be used to boost performance. However, setting the appropriated setup is chal-

lenging due to the number of variables involved that vary from cluster workload and

input data size to algorithms for compression and degree of parallelism. Furthermore,

some Hadoop applications consists of chained jobs such as the PageRank, Indexing, Bayes

Classification and Hive queries. Each job into a chain may have a completely different be-

havior from any other job in the same chain and should receive a specific tuning. Indeed,

Yang et Al. [34] exposed the correlation among tuning knobs, such as the io.sort.factor

(i.e., the number of streams to merge at once while sorting files), which influences on the

maximum.reduce.tasks (i.e., the maximum concurrent reduce tasks per TaskTracker).

Taking into account this scenario, once the task of applying the best setup is delegated

to the developer, misconfiguration may happen and lead to poor performance. The related

work consists of the four main tuning approaches that aim to discover the best setup

values. In Section 3.1 we present the Rule-based tuning systems. In Section 3.2 we

present the systems based on Simulation. In Section 3.3 we present the tuning systems

based on Log Analysis. In Section 3.4 we present the tuning systems based on Profiling.

Finally, we briefly discuss about the presented tuning systems in Section 3.5.

3.1 Rule-based

Vaidya [30] is a sub-project of Hadoop, which main goal is to diagnose the performance

of Hadoop jobs. It is a rule based performance diagnostic tool that performs a “post-

mortem” analysis of each job execution. Vaidya collects and parses statistics about the

executions from log and configuration files. Then, Vaidya executes predefined rules against

these statistics to diagnose performance problems. The Vaidya system generates a report
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to the administrator or developers based on the results from the execution of the rules.

Another attempt to achieve better performance by applying better setup are the rules-

of-thumb, which have been proposed by the Hadoop community based on administrators

and developers experience. The rules-of-thumbs such as Intel [16], AMD [3] and Cloudera

[20] tips are presented in Table 3.2. In Table 3.1 we show the tuning knobs exposed by

Yang et. Al. [34] as the group of knobs that has more influence on performance. The

main problem of the rules-of-thumb is that they are not intended to be precise or reliable

for every job once they are based on administrators and developers experiences.

3.2 Simulation

Simulating Hadoop jobs under determined conditions (e.g., cluster workload, scheduling

algorithms, hardware and different input data) allows varying and choosing the best setups

accordingly. However, simulation requires an accurate system, which may not address

events that only happens in real clusters. There are efforts to build simulation systems to

predict optimal setup including WaxElephant [25], MRPerf [33, 5], SimMapReduce [28]

and HSim [12, 21].

The WaxElephant [25] has four main features: (1) loading Hadoop workloads derived

from logs, and replaying the jobs from these workloads; (2) synthesizing workloads and

executing them based on their statistical characteristics, (3) identifying the best setup,

and (4) analyzing the scalability of the cluster.

The MRPerf [33, 5] is a simulation approach designed to explore the impact of MapRe-

duce setups, which captures the various settings of MapReduce clusters such as tuning

parameters and application design in order to answer questions, such as: does a given

setup yield a desired I/O throughput? MRPerf is based on Network Simulator 2 [23]

(NS-2) and DiskSim [11].

The SimMapReduce [28] is based on GridSim [24] and SimJava [7]. It is designed for

resource management and performance evaluation. The HSim [12, 21] models the Hadoop

knobs that can affect node’s behavior and uses these models to tune the performance of

a Hadoop cluster.
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Tuning Knob Default Value Description

dfs.replication 2 The number of block replication.
dfs.block.size 64 mb The block size for new files.
io.sort.mb 100 mb The total amount of buffer mem-

ory while sorting files.
mapred.child.java.opts 200 Java options for the task tracker

child processes.
io.sort.record.percent 0.05 The percentage of io.sort.mb ded-

icated to track record boundaries.
io.sort.spill.percent 0.80 The soft limit in either the buffer

or record collection buffers.
io.sort.factor 10 The number of streams to merge

at once while sorting files.
mapred.compress.map.output false If the outputs of the maps should

be compressed before being sent
across the network.

io.file.buffer.size 4096 The size of buffer for use in se-
quence files.

maximum.map.tasks 2 The maximum concurrent map
tasks per TaskTracker.

maximum.reduce.tasks 2 The maximum concurrent reduce
tasks per TaskTracker.

mapred.reduce.parallel.copies 5 The number of parallel transfers
run by reduce during the shuffle
phase.

mapred.job.shuffle.input.buffer.percent 0.70 The percentage of memory to
be allocated from the maximum
heap size to storing map outputs
during the shuffle.

mapred.job.shuffle.merge.percent 0.66 The percentage of total memory
allocated to store in-memory map
outputs.

mapred.job.reduce.input.buffer.percent 0.0 The percentage of memory rela-
tive to the maximum heap size to
retain map outputs when shuffle
is concluded.

mapred.output.compress false Compress the job output.
mapred.output.compression.type record Compress the map output at level

of record or block.
mapred.map.output.compression.codec DefaultCodec Coded used to compress map out-

put.

Table 3.1: List of Hadoop tuning knobs with their default values.

These simulation approaches focus on the simulation of cluster’s environment, enabling

the replacement of internal structures for development of new modules and/or testing.
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Tuning Knob Rule-of-thumb

io.sort.mb (metadata size of 16 bytes * (block size in bytes /
average record size)) + block size in mb (e.g., for
a block of 128mb, ((16∗ (128∗ (220)/100))/(220))+
128)

io.sort.factor Ensure that is large enough to allow full use of
buffer (i.e., io.sort.mb) space.

io.sort.record.percent 16 / (16 * (average record size, i.e., divide
map output bytes by map output records), e.g.,
16/(16*100))

io.sort.spill.percent Threshold at which io.sort.mb buffer starts to be
spilled to the disc. Large values avoid extra disc
operations.

io.file.buffer.size The size of this buffer should probably be a multi-
ple of hardware page size (i.e., 4096 on Intel x86),
and it determines how much data is buffered dur-
ing read and write operations.

mapred.job.reduce.input.buffer.percent Retain map outputs before sending them to the
final reduce function of the reduce phase.

mapred.job.shuffle.input.buffer.percent Increasing this buffer avoid spills to disc at copying
map’s output.

mapred.job.shuffle.merge.percent Threshold at which
mapred.job.reduce.input.buffer.percent starts
to be spilled to the disc. Large values avoid extra
disc operations.

mapred.reduce.parallel.copies Large values for large input data may enhance the
copy of intermediate data. But large values in-
crease CPU usage.

mapred.output.compress true
mapred.output.compression.type Record
mapred.output.compression.codec Best compression related to the input data (e.g.,

SnappyCodec).
mapred.compress.map.output true
mapred.map.output.compression.codec Best compression related to the input data (e.g.,

SnappyCodec).

Table 3.2: Rules-of-thumbs.

However, these systems are not specific designed to search for the best tuning parameters.

3.3 Log Analysis

The Hadoop execution logs several information that can be used for performance predic-

tion, including how many maps and reduce tasks have been executed, the number of bytes
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produced per each processing phase and the time spent in each phase. Tuning systems,

including PerfXPlain [17], Mochi [27], MR-Scope [15], Theia [8] and Rumen [31] base their

tuning approaches on log file analysis. The main problem of log file analysis it that the

developer must wait the complete execution of the job to known the best setup.

The PerfXPlain [17] tuning system introduces the PXQL language, which allows users

to formulate queries about the performance of MapReduce jobs and tasks. It consists

of a pair of jobs and three predicates. The first two predicates describe the observed

behavior of the jobs with their description provided by the user. The third predicate is

the expected behavior and its description provided by the user.

Given the two jobs (J1, J2), and the predicates (p1, p2, p3), where the predicate p1(J1, J2) =

true, and p2(J1, J2) = true, but p3(J1, J2) = false. The following the PXQL syntax pre-

sented in Code 3.1 performs the PXQL, and a possible result is the p2 predicate to be

of the form OBSERVED duration compare = SIMILAR and the p3 to be of the form

EXPECTED duration compare = GREATTHAN. It means that the J1 and J2 had a

similar execution time, but the user expected J1 (i.e., duration compare) to be slower

than J2 (i.e., duration compare). The key idea of PerfXPlain is to identify the reasons

why the jobs J1 and J2 performed as observed rather than performing as expected.

1 FOR J1, J2 WHERE J1.JobID = ? and J2.JOBID = ? DESPITE p1 OBSERVED p2 EXPECTED p3

Code 3.1: PXQL Example [17].

Mochi [27] is a visual log file analysis tool for debugging performance of Hadoop jobs.

It constructs visualizations about the cluster from log entries collected from each cluster

node during jobs executions. These visualizations consists of space (i.e., nodes), time

(i.e., duration, times, execution sequences) and volume (i.e., size of data processed). The

visualizations are correlated across the nodes to build a unique causal representation, i.e.,

a graph with vertices’s representing processing stages and data items, and edges repre-

senting durations and volumes. Figure 3.3 represents the path of a single job execution

from the graph. Finding jobs with similar path of execution enables administrators and

developers to share tuning. Also, visualizing the performance of the Hadoop jobs enables

administrators and developers to adjust tuning manually. However, this tuning is applied
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to the whole job execution.

Figure 3.1: Path of a single job execution from the graph [27]

MR-Scope [15] is a tracing system, which provides a visualization of on-going jobs and

a visualization of the distribution of the file system blocks and its replicas. The main

goal of MR-Scope is digging Hadoop to trace the sub-phases of every job, showing (1) the

output size in order to achieve better policies for data distribution, and (2) the time spent

per each job. The authors point out that observing these two points are important to

take a snapshot of the cluster’s performance in order to adopt any optimization method.

The Rumen [31] system is a sub-project of Hadoop designed to extract and analyze log

file entries from past Hadoop jobs. It is a built-in tool in Hadoop that performs log parsing

and analysis at job level. Once the Hadoop logs are often insufficient for simulation and

benchmarking, Rumen uses job information, such as job execution time and job failures

to produce condensed logs in JSON format. Rumen generates log information that can

be used for debug, performance diagnoses, or to feed simulator and benchmark systems

such as GridMix [1] and Mumak [2].

3.4 Profiling

The profiling approach consists of collecting concise information from jobs executions

to create job profiles, which are used along with search heuristics, knowledge bases or

cost-based approaches to search for the best setup. The tuning systems based on the

profiling approach, includes Starfish [14], AROMA [19], Adaptive Framework [18] and

CPU Pattern Matching [26]. These systems are based on mechanisms to collect support

information gathered during job execution.

The support information represents a set of resource consumption characteristics, such

as: CPU, network and disk consumption as well as statistics from the Map and Reduce
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phases and sub phases. Table 3.3 shows the support information collected by each

profiling-based tuning system.

Tuning System Support information

Starfish Statistical information about Map and Reduce
phases and sub phases.

Adaptive Framework Resources usage; environment and Hadoop con-
figuration.

CPU Pattern Matching CPU usage pattern.

AROMA CPU, network and disk usage pattern.

Table 3.3: The support information collected by the profiling-based tuning systems.

Starfish collects support information from an user-defined fraction of the Map and

Reduce tasks. After the creation of the profile, Starfish uses the Random Recursive Search

(RSS) algorithm along with the support information to sift through the possible setup

space in order to find the best setup. The RSS uses a cost model defined by Herodotou

et Al. [13], called What-if engine, to determine whether the setup is better or not.

The Adaptive Framework, AROMA and CPU Pattern Matching systems are analo-

gous, varying in the type of support information used to construct the profile and in the

cost model. Table 3.4 shows the methods and tools used by each tuning system to collect

support information. Table 3.5 presents the algorithms used by each tuning system to

search for the best setup values through the possible setup space.

Tuning System Method or tool used to collect support informa-
tion.

Starfish Dynamic instrumentation (BTrace)

Adaptive Framework Sun Grid Engine (SGE)

CPU Pattern Matching SysStat tool

AROMA Hadoop logs and dstat tool

Table 3.4: The method or tools used by the profiling-based tuning systems to collect
support information.

The AROMA tuning system groups jobs into clusters enabling the usage of different

performance model per cluster. It learns only one performance model once a new cluster

is identified. One problem of the AROMA is that it needs to keep a staging cluster to

collect the support information. Moreover, it runs the new jobs in the staging cluster

with a fraction of the input data (i.e., 10% of the total input data size), which may lead
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Tuning System Algorithms used to search for best setup values.

Starfish Recursive Random Search

Adaptive Framework Utility Function

CPU Pattern Matching Dynamic Time Warping

AROMA Support Vector Machine

Table 3.5: The methods used by the profiling-based tuning systems to search for the best
setup values.

to different resource consumption patterns.

A job profile represents the resource consumption pattern, based on the quantity and

quality of support information collected. Construct job profiles with enough information

increases the overhead of the overall tuning process. As example, Starfish adds a minimum

overhead of less than 5% of the overall execution time to profile 10% of the tasks. But

Starfish takes 50% of the overall execution time to profile 100% of the tasks. Table 3.6

shows the methods used by each tuning system to enable comparison among jobs in order

to retrieve the best setup values from past profiles.

Tuning Approach How does it compare jobs?

Starfish Using job profiles

Adaptive Framework Searching through a knowledge base

CPU Pattern Matching Calculating Correlation Coefficient among CPU
patterns

AROMA Clustering jobs with k-medoid with LCSS

Table 3.6: Method used to compare jobs in order to reuse or search for the best setup
values.

3.5 Discussion

Log Analysis [17, 27, 15, 8, 31], Profiling [14, 19, 18, 26], Simulation [5, 33, 28, 12, 25, 21]

and Rule-based [20, 16, 3, 30] approaches search for the best setup values analyzing

support information collected during the execution or simulation of the jobs, or from log

files.

The Log Analysis approach needs the complete execution of the job to predict best

setups. This approach is optimal to find bottlenecks in the infrastructure and failures on

hardware and software components. However, the best setups found can only be applied
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in further jobs and not in the current ones.

The Rules-of-thumbs [20, 16, 3] (i.e., excluding Vaidya) is the only approach that

performs tuning in advance and do not require support information. However, the Rules-

of-thumbs are not intended to be precise or reliable for every job once they are based on

administrators and developers experiences.

The Profiling approach needs to collect support information during jobs execution,

which add a costly overhead in the whole tuning process. The Simulation approach focus

on the simulation of the environment to enable the replacement of internal structures for

development of new modules and/or testing. The simulation-based tuning systems are

not specific designed for tuning, have several limitations in simulating and add a costly

overhead, once the job must be executed (i.e., simulated) to be tuned.

Figure 3.2 shows the tuning life-cycle followed by the current approaches. As illus-

trated, in the studied approaches the administrator or developer must send the job to

execution and, afterwards, use the best setup found. In our approach, we present a new

tuning life-cycle to avoid the execution or simulation of the jobs and to perform tuning

to be applied in the current job being executed.

Figure 3.2: Tuning life-cycle of the presented Hadoop tuning systems.

In our approach, the user sends the job to be executed by the Hadoop framework with

or without any configuration. The JobTracker receives the job and sends it to our solution,

called AutoConf. The AutoConf extracts the collection of operators from the given job

and search for the corresponding cluster. In case there is a corresponding cluster with

same collection of operators, AutoConf applies tuning in the job. In case there are not a
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corresponding cluster, the job is executed with the configuration set by the administrator

or developer (See detailed description of AutoConf execution in Section 4). Note that in

our approach we do not need to execute the job in the Hadoop cluster to collect support

information. Instead, we use the information provided by the job (i.e., its operators).

Figure 3.3: Tuning life-cycle of our approach.
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CHAPTER 4

HIVEQL SELF-TUNING

Our HiveQL Self-Tuning approach is complementary to the existing Hadoop tuning sys-

tems, once it relies on the decision of which query (or stage) should receive determined

tuning based on the code signature. Our approach relies on many-to-one configuration,

adapting the setup values during query execution for the internal stages of each query, i.e.,

per-stage tuning. We present in Section 4.1 the definition of the set of clusters. We detail

the clustering algorithm in Section 4.2. We present the Intra-Query and Inter-Query

Tuning in Section 4.3. Finally, we present the architecture of our solution 4.4.

4.1 Stage Clusters

Our approach uses dynamic analysis, i.e., extract the collection of operators from the

stages of the query, during query execution in order to identify the code signature of each

stage and to perform a per-stage tuning. We clustered the stages with the same code

signature (i.e., collection of operators) from a common database workload. The resulting

set of clusters of code signatures is defined as the set C, where each cluster ci is of the

form {ϕ, ω}. We define ϕ as a collection of operators used per various stages across the

queries, and ω are the setup values to be applied.

4.2 Clustering Algorithm

Algorithm 1 applies a per-stage tuning for each running query. Given the set of clusters

C, for each given query in the space of possible queries Q, while exists a query qi to be

processed, get the stages {s0, . . . , sn} from qi, extract the collection of operators ϕ =

{Op0, . . . , Opn} from running stage sj. In case there are {ϕ, ω} in C, where operators

match with ϕ, retrieve ω and apply in sj. In case ϕ /∈ C, add ϕ in C. Otherwise,
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ω for the new collection of ϕ is provided by an external tuning system (e.g., Starfish,

rules-of-thumb).

Algorithm 1: HiveQL Tuning

C = { c0, . . . , ck : c is a cluster, where cluster is a list of the form {ϕ, ω}, where

the ϕ are the index of the list and the setup values are the appropriate tuning for

the referent group of ϕ

Q = { q0, . . . , qk : q is a HiveQL query }

query = { s0, . . . , sn : si is a stage}

stage = { op0, . . . , opn : opi is an operator}

while ∃ qi ∈ Q do

for s ∈ qi do

operators ← extract ϕ from sj

if operators ∈ C then

sj ← ω from Cϕ

else

C ← create new cluster base on ϕ

end

end

Table 4.1 presents the 29 clusters created for the database workload provided by

the TPC-H benchmark (details on experiments are further presented in Section 5). For

instance, consider a query qx with the following signature ϕ = {2 MapJoin, 1 Select,

2 TableScan, 1 FileSink}. Since queries with the same signature will be clustered

together, qx will be placed in cluster 26 and will leverage the same ω along with other 3

queries (e.g., ω = {io.sort.mb = 74, io.sort.factor = 7}).

4.3 Intra-Query and Inter-Query Tuning

Each HiveQL query is split into several stages, where each stage has a different collection

of SQL-like operators and a distinct use of computational resources. In this context, tun-

ing means applying a single configuration for each stage, i.e., many-to-one configuration,
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6 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 0 1
7 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 6
8 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1
9 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 6
10 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 2 1 2 0 2
11 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 1
12 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 0 7
13 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 1
14 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2
15 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 10
16 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 2 1 2 0 5
17 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 3 1 3 0 1
18 0 1 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 0 10
19 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 1
20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 4
21 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 4
22 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
23 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 3
24 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 5
25 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1
26 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 6
27 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1
28 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 2
29 2 2 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 2

Table 4.1: The clusters and the occurrence of the operators from each stage of the 22
TPC-H queries executed for Scale Factor of 1, 10 and 50.

instead of applying a unique configuration for the whole query, i.e., one-to-one configu-

ration. We named this tuning approach as Intra-Query Tuning, which enables one query
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to have many configurations.

Figure 4.1 illustrates the network consumption pattern of cluster-2 for the TPC-H

clustering. We observe that the stages in cluster-2 have similar behavior, independent

of the input data size. Due to this pattern, these stages should share the same network

tuning. Another characteristic of our approach is the Inter-Query Tuning, which enables

queries to share acquainted setup values from stages of other queries.
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Figure 4.1: The network consumption from the stages of TPC-H queries from cluster-2.
The X axis label is of the form Scale factor-Query-Stage name.

Table 4.2 shows the stages from the TPC-H Query 16 and the other TPC-H queries,

in which a common signature can be found. The HQL1 refers to the first query from the

HiveQL query 16. The HQL1-Stage1 have been clustered in cluster-14. The HQL2 refers

to the second query from the HiveQL query 16. The HQL2-Stage3 have been clustered

in cluster-1, and the HQL2-Stage5 have been clustered in cluster-21. The HQL3 refers

to the third query from the HiveQL query 16. The HQL3-Stage1 have been clustered in

cluster-18, and the HQL3-Stage2 have been clustered in cluster-7. The number of stages
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may varying accordingly to the input data, i.e., Hive splits one stages in two or more

stages in case the input data size is large.

TPC-H Query 16
TPC-H Query HQL1-Stage1 HQL2-Stage3 HQL2-Stage5 HQL3-Stage1 HQL3-Stage2

q1 0 0 0 1 1
q2 0 0 1 0 0
q4 0 0 0 1 1
q5 0 0 1 0 0
q6 0 0 0 1 0
q8 0 0 1 0 0
q9 0 0 1 0 0
q10 0 1 0 0 0
q12 0 0 0 0 1
q13 0 0 0 0 1
q15 0 0 0 1 0
q16 1 1 1 1 1
q20 0 0 0 3 0
q21 0 0 0 1 0
q22 1 0 0 1 1

Table 4.2: Number of stages with same collection of operators between TPC-H queries
and TPC-H query 16 translated to HiveQL.

4.4 AutoConf: The HiveQL Tuner

In this section, we present the architecture of our approach, called AutoConf, which

is responsible for analyzing and clustering running queries. Figure 4.2 illustrates the

architecture and the interaction of AutoConf with Hadoop and Hive. AutoConf consists

of three modules: (1) Feature Extractor, which is responsible for extracting the code

signatures (i.e., the collection of operators) from each query (2) Clustering, which is the

module responsible for finding similar clusters for signatures, and (3) Tuner, which applies

the appropriated tuning to queries.

The collection of operators are extracted from the query plan that is inside the job ob-

ject sent to Hadoop. The Feature Extractor module, reads the collection of operators and

sums the occurrence of each operator saving these informations into the list of operators.

Next, the Feature Extractor sends the list of operators to the Clustering module.

The Clustering module loads the set of clusters C from the disk (explained in Section

4.1). When the Clustering module receives C, it searches if there is a cluster with same
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code signature. In case there is an equivalent list of operators, the Clustering module

sends the job to the Tuner module, which, in turn, reads the setup values from disk

and apply this setup to the given job. Reading the setup values from disk enables the

modification of the values during execution (i.e., “on-the-fly” adaptation).

Figure 4.2: the AutoConf Architecture inside the Hadoop and Hive ecosystem.
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CHAPTER 5

EXPERIMENTS

Experiments have been conducted to validate our approach. We ran all experiments

on a cluster of 10 machines, where each machine is a x86 64 bits, with 2 processors

Intel R©CoreTM2 Duo CPU E8400 @ 3.00 GHz, 4Gb of memory and a hard disk of 500

Gb, 7200 RPM ATA. Experimental results were obtained by executing TPC-H against

databases generated with DBGen Scale Factor of 1 Gb, 10 Gb and 50 Gb. We execute

the appropriate TCP-H benchmark designed for Hive against three configuration setups,

such as: the standard Hadoop setup, the rules-of-thumb, and the rules-of-thumb applied

in a per-stage basis. We used Java version 1.6, Hadoop version 1.1.2, Hive version 0.11.0

and the TPC-H translated to HiveQL. In Section 5.1 we discuss about how we created

specific tuning for each cluster. In Section 5.2 we demonstrate that some clusters are

straightforward dependent of the input data size. Finally, we present the results and

evaluation in Section 5.3.

5.1 Tuning the Stage Clusters

The objective of this first experimentation is to create the clusters and define ω for each

cluster. During the creation of the clusters we collect CPU, Memory, Network and Disk

information using the SysStat package to determined the consumption pattern of each

cluster. Figure 5.1 illustrates the CPU consumption pattern for cluster-18. Note that the

CPU load average keeps low for stages from queries executed against database with Scale

Factor of 1. However, as the Scale Factor increases, more the CPU load vary. The Figure

4.1 illustrate the network consumption for stages from cluster-2. In this case, independent

of the Scale Factor, the network load average keeps low, but the standard deviation keeps

high, which means that independent of the input size the network vary all the time during

the execution of stages.
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Group-18 of Hive stages.

Group-18 - CPU System
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Figure 5.1: The CPU consumption from the stages of TPC-H queries from cluster-18.
The X axis label is of the form Scale factor-Query-Stage name.

Based on the resource consumption pattern of each cluster, we defined the appropri-

ated ω per-cluster tuning using the rules-of-thumb, i.e., tuning the CPU tuning knobs

for the clusters that use more CPU than any other resource. The support information

collected during the TPC-H execution have been analyzed in order to determined the use

of computational resources per each cluster.

To conduct the analysis we divided the range of the resulting values from the support

information in tertiles in order to label resource consumption pattern of the stages within

the same cluster. In order to generate an optimized configuration for each cluster, we

had to label the clusters accordingly to the resource cosumption pattern. As an example,

in case the CPU consumption from all the stages within the same cluster goes from 0%

to 16% of usage, the tertiles give us three different ranges, i.e., {0 − 5}, {6 − 10} and

{11 − 16}. The clusters where ≈ 90% of the stages use {0 − 5}% of CPU have been

labeled as using little CPU. The clusters where ≈ 90% of the stages use {6 − 10}% of
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CPU have been labeled as moderate use of CPU and the clusters where ≈ 90% of the

stages use {11 − 16}% of the CPU have been labeled as making intensive use of CPU.

The analysis is analogous for network, disk and memory. Table 5.1 shows the values used

to classify the resource consumption patterns for each cluster. Table 5.2 shows the result

of the classification.

Use CPU (%) Memory (Gb) Disk (Mb) Network (Mb)
low 0-5 0-1 0-5 0-5
mid 5-10 1-1.5 5-10 5-10
high >10 >15 >10 >10

Table 5.1: Range of values used to label the support information collection collected from
the execution of the TPC-H queries executed agaist databases generated with DBGen,
using Scale Factor of 1, 10 and 50 Gb.

We present in Table 3.1 the tuning knobs optimized in our experiments. The low, mid,

and high labels were defined in Table 5.1. The compression knobs have been disabled

during experimentation once forcing some stages to use compression and others to not

use compression made some stages to fail.

5.2 Input-dependent tuning

The objective of this second experiment is to identify if the resource consumption patterns

of some clusters change when the input data size grows. We found that the input data

impacts the behavior of some clusters. As we observe in Figure 5.1, the more the input

data grows (i.e., from 1Gb to 50Gb) the more CPU usage increases. In the other hand,

in Figure 4.1 we observe that some computational resources do not change whenever the

input size grows. This dependence of some clusters from the input data size reinforces

the usage of self-tuning systems, once a Hadoop administrator or developer is not able to

re-tune the same query every time the input size grows.

We did not take into account the input data size in our experiments in or order

to change the configuration during execution, applying the same tuning for all stages

clustered in the same cluster independent of their input data size. We applied the same

tuning for all stages in the same cluster, once we want to verify the effectiveness of
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Cluster CPU Memory Disk Network

1 low mid low low
2 low mid low low
3 low mid low low
4 mid low high high
5 low mid low low
6 low mid low low
7 low mid low low
8 low mid low low
9 high low high high
10 mid mid high high
11 low low low low
12 high mid high high
13 high mid high high
14 low low low low
15 high mid high high
16 high low high high
17 high low high high
18 high mid high high
19 high low high high
20 low mid low high
21 low mid low low
22 low mid mid mid
23 low low low low
24 low mid low mid
25 low low low low
26 low low low low
27 low low low low
28 low low low low
29 low low low low

Table 5.2: The classification of the resource consumption patterns for all clusters from
the TPC-H queries executed against databases with Scale Factor of 1, 10 and 50.

applying the rules-of-thumb using the intra-query tuning. Indeed, Yanpei et al. [35], after

analyzing two years of logs from Cloudera and Facebook, discovered that 90% of the jobs

accessed files with few gigabytes. Yanpei [35] also propose the creation of a cache police

for those files.

5.3 Results and Evaluation

In this section the objective is to prove our hypothesis that we can avoid collecting support

information by clustering stages with the same code signature and tuning them with the

same setup. We present the TPC-H queries response time in Figures 5.2, 5.3, 5.4 and 5.5.
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Table 3.1 shows the set of Hadoop tuning knobs used in our experiments. We executed

five times the TPC-H queries against the Scale Factors of 1, 10, 50 and 100 Gb. The time

represents the total execution time of a query, i.e., from its submission up to the return

of the result. The execution time was registered with time package from Unix systems.

The maximum and minimum values were removed from the five resulting times, then, we

calculate the average of the three resulting times from each query.

Figure 5.2 shows the execution time for the TPC-H queries executed against databases

generated with Scale Factor of 1 Gb. Note that there is almost no difference among the

execution times for the queries using the rules-of-thumb and rules-of-thumb in a per-stage

basis. Queries 6, 8, 10, 15, 18-21, had equal execution time. Most of the other queries

differ in less than 3 seconds. This means that our approach had no difference from the

rules-of-thumbs in the Scale Factor of 1. However, the queries 5, 7 and 9 executed with

standard Hadoop setup were slow than the rules-of-thumb and rules-of-thumb in a per-

stage basis.
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Figure 5.2: The average execution time of TPC-H queries against databases generated
with DBGen for Scale Factor of 1.
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Figure 5.3 shows the execution time for the TPC-H queries executed against databases

generated with Scale Factor of 10 Gb. Note that all queries executed with the rules-of-

thumb and rules-of-thumb in a per-stage basis had less than 10 seconds of difference in

the execution time, which, in practice, means that our approach has no enhancement in

queries against databases with less then 10 Gb. However, as we observe in Figure 5.3, the

queries 2-5, 7-10, 12-14 and 16-22 executed with standard Hadoop setup were slower than

the other two approaches, mainly the queries 5, 7, 9 and 21.
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Figure 5.3: The average execution time of TPC-H queries against databases generated
with DBGen for Scale Factor of 10.

Figure 5.4 shows the execution time for the TPC-H queries executed against databases

generated with Scale Factor of 50 Gb. The queries executed with the rules-of-thumbs in a

per-stage basis were decreased in 12 out of the 22 queries compared to the queries executed

with the rules-of-thumb, including queries 2-5, 7-12, 16-18, and 22. In Figures 5.2, 5.3

and 5.4 we observe that as more the input data grows as more the queries executed with

the standard Hadoop setup take to finish.
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Figure 5.4: The average execution time of TPC-H queries against databases generated
with DBGen for Scale Factor of 50.

Figure 5.5 shows the execution time for the TPC-H queries executed against databases

generated with Scale Factor of 100 Gb. In this case, our approach improve 14 out of the

22 TPC-H queries, including queries 1-4, 6, 9-10, 12, 14, 16, and 18-22. Note that our

approach enhanced query 19 in 136 seconds, query 20 in 120 seconds and query 21 389

seconds. Thus, we observed that as more the input data increases as more our approach

enhances the overall query execution time.

5.4 Lessons learned

Throughout the experimentation we have learned two important lessons. First, small

databases do not require much tuning effort for the Hadoop/Hive environment. Perfor-

mance improvement showed small, therefore, using the rules-of-thumb is enough.

Second, results proved that we can tune HiveQL queries based on their code signature.

Moreover, tuning can be extended to the stages of the queries, since they present different
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Figure 5.5: The average execution time of TPC-H queries against databases generated
with DBGen for Scale Factor of 100.

behavior in terms of resource consumption. This observation proves our hypothesis.



39

CHAPTER 6

CONCLUSION AND FUTURE WORK

The MapReduce programing model, and its open-source implementation, the Apache

Hadoop, become in the last decade a de facto standard framework for processing large

amounts of data in large clusters. Hive, Pig and several other data warehouse systems

have been developed on top of Hadoop, taking advantage of the ability of Hadoop to

run along thousands of commodity machines, and becoming an alternative to parallel

database systems.

The interest in open-source mechanisms to process large amounts of data has pushed

enterprises and researchers to spend efforts to optimize Hadoop and Hive systems. Our

contribution is intended to be another brick in this optimization effort. Our contribution

is based on the hypothesis that we can avoid collecting support information, made by the

related work, by clustering query stages with the same code signature and tuning them

with the appropriated configuration.

The support information collected by the related work remains as the guidance to

search for the appropriated tuning. However, one problem of tuning systems based on

support information is that they may add a costly overhead for tuning queries that are

processed only once, such as Ad-hoc queries, once they have to be executed or simulated in

order to collect such information. Our self-tuning system, called AutoConf, is a solution

for tuning Ad-Hoc queries without add overhead, once it uses the information provided

by the queries in advance, clustering them and applying the appropriated tuning before

their execution.

In this dissertation we demonstrated that there are correlations among the stages in-

side different Hive queries by matching their code signature (i.e., collection of operators).

By using the code signatures our approach enables the queries to share and reuse acquit-

tance tuning. We identified 29 clusters (Table 4.1), which are used to optimize queries
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in advance. Also, thought experimentation we noticed that the resource consumption

patterns of some clusters change when the input data size grows. In this dissertation we

did not take into account the variance on the input data size and applied the same tuning

for all stages clustered in the same cluster.

Experimental investigation showed that the more the input data increases the more our

approach decrease the overall query execution time. In addition, we observed (Figures

5.2, 5.3 and 5.4 and 5.5) that tuning query stages in small databases, even using our

approach, is not effective. In our experiment we set a threshold for database sizes with

less than 50 Gb. Future work is required in the following:

• Calculate, during workload execution, the threshold at which tuning is not effective.

• Provide appropriate setup based on the stages behaviors, using the information from

past jobs to improve clustering.

• Provide new clustering techniques taking into account the variance on the input

data size.

• Provide appropriate setup based on the input data (e.g., size, distribution) is another

alternative to compose the clustering algorithm.

• Identify false-positives based on computational resource consumption of stages and/or

cluster. The challenge is to identify false-positives before the execution of the stage.

• Extend our approach to a general model in order to classify not only HiveQL queries,

but any incoming MapReduce job.

• Experiment AutoConf with new workloads to stimulate other operators and to create

new clusters.
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