
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Combining different biometric traits with one-class classification

C. Bergamini a, L.S. Oliveira b,�, A.L. Koerich a, R. Sabourin c

a Pontifical Catholic University of Parana (PUCPR), R. Imaculada Conceic- ão, 1155, Curitiba, PR 80215-901, Brazil
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a b s t r a c t

It has been demonstrated in the literature that the combining of different biometric

traits is a powerful tool to overcome the limitations imposed by a single biometric

system. The fusion of different systems can be approached in different ways. In this

work, we consider the pattern classification approach, where the scores of the various

systems are used as features to feed the classifiers. More specifically, we are interested

in one-class classifiers, and we show that one-class classification could be considered as

an alternative to biometric fusion, especially when the data are highly unbalanced or

when data from only a single class are available. The results reported for one-class

classification on two different databases compares with the standard two-class SVM and

surpasses all the conventional classifier combination rules tested.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

With to the impressive progress in information
technology, the search is on for more robust and reliable
authentication methods for a wide variety of applications.
Biometrics has emerged as potentially providing a solu-
tion to deal with this kind of problem, because biometric
data cannot be easily stolen or shared. Consequently, they
have been used successfully in a wide variety of applica-
tions.

However, biometric systems are far from perfect
[12,13]. For example, in the case of fingerprint verification,
it is known that a small fraction of the population may be
unsuited for the automatic identification because of
genetic factors, or aging, or for occupational reasons. Face
recognition imposes several restrictions on how the facial
images are obtained, quite often requiring a fixed back-
ground and controlled illumination. Signature recognition

requires contact with the writing instrument and effort on
the part of the user. In summary, every biometric system
has its limitations.

To overcome the constraints imposed by a single
biometric system, several researchers have investigated
the use of multiple sensors to capture different biometric
traits. This field of research is known as multimodal
biometrics [2,8,20]. The fusion of the various traits can be
achieved at the feature extraction, matching score, or
decision level. Fusion at matching score level has the
advantage of using as much information as possible from
each biometric modality, while at the same time enabling
the integration of off-the-shelf biometric systems [22].
It is worth noting that a normalization step is
generally necessary before combining scores from differ-
ent matchers.

There are three types of multimodal biometric system.
The first type is known as transformation-based. Here the
matching scores are normalized (transformed) to place
them on a comparable scale. There are several ways to
implement the fusion of different matchers, such as sum,
product, max, mean, weighted sum, etc. Besides choosing
the best fusion strategy, the use of weights to indicate the
importance of the matching scores provided by each
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biometric trait should also be considered [9]. The second
type of fusion is called density-based, and it relies on the
estimation of the joint densities of the matching scores,
and the fusion is carried out by statistical tests, such as the
likelihood ratio test [15]. This type of fusion scheme
achieves good performance if the densities can be well
learned, given that a large number of representative training
matching scores are available. The third strategy is classifier
based. With this strategy the scores produced by each
biometric system are considered as features to feed a
classifier. In such a case, each input pattern should be
labeled as either genuine or an impostor. A review of the
literature reveals several works using classification strate-
gies such as neural networks, k-NN, quadratic classifiers, and
support vector machines (SVM) [29,19,6,11,5].

To the best of our knowledge, where the pattern
classification approach to multimodal biometrics is used,
the classification problem is considered as a two-class
problem. The limitation of this strategy is that very often
the amount of data available for training is not sufficient
and not representative enough to guarantee good para-
meter estimation and generalization capabilities [4]. In
some cases, only the patterns from one class (genuine or
impostor) are available or the data are seriously unba-
lanced. In other cases, only samples of the target class can
be used to build a model. The boundary between the two
classes has to be estimated from the data of only one class
(genuine or impostor). In other words, the task consists of
defining a boundary around the target class, such that it
accepts as many of the target samples as possible, while
minimizing the chance of accepting outliers. This is
known in the literature as one-class classification.

In this paper, we discuss combining different biometric
matchers to improve the accuracy, efficiency, robustness,
and fault tolerance of biometric systems. Our focus is to
demonstrate that one-class classification can be consid-
ered as an alternative to combining different systems
when only data from one class are available for training.
We have carried out several experiments to better assess
the results. First, we apply conventional combination rules
such as sum, product, mean, etc. Then we use a pattern
classification approach with the standard two-class SVM
to combine the biometric systems.

The last part of the experiments is devoted to the
pattern classification approach using a one-class SVM. We
demonstrate that one-class classification can perform very
well for biometric fusion when only data from one class
(e.g. impostor) are available for training or the datasets are
unbalanced. Two different databases, freely available for
research purposes, were considered in our experiments.
The first one is the biometric scores set, release 1 (NIST
BSSR1) database [16] and the second is the MCYT scores
database [17]. The results reported in this paper compare
to the conventional two-class SVMs and surpass all the
combination rules reported in the literature.

The remainder of this paper is organized as follows.
Section 2 describes the databases used. Section 3 briefly
reviews the one-class methods and describes the basics of
the one-class SVM. Section 4 reports all the experiments
that were carried out. Our conclusions are presented in
the last section.

2. Databases

As mentioned previously, two databases were consid-
ered in this work. The first is the NIST biometric scores set,
release 1 [16], which contains face and fingerprint
matching scores. The database was built with the face
and fingerprint data of 517 subjects. Two face matchers (C
and G), and one fingerprint matcher (V) were used to
produce the scores. Therefore, it contains four 517� 517
similarity matrices: right index fingerprints scored by
matcher V (R), left index fingerprints scored by matcher V
(L), frontal face images scored by matcher C (C), and
frontal face images scored by matcher G (G). Each
similarity matrix contains 517 genuine scores and
266,772 ð517� 516Þ impostor scores. This database is
depicted in Fig. 1.

The receiver operating characteristics (ROC) curves
depicted in Fig. 2a show the baseline performance for the
BSSR1 data. To better compare the results of the four
matchers and make further combinations possible, a
comparison criterion should be defined. One of the criteria
most often used when considering the ROC is the area
under the curve (AUC). The bigger the AUC, the better the
system. In a perfect system, AUC ¼ 1:0. In the context of
the BSSR1 Set 1, the best performance is achieved by
system C (face with matcher C), for which AUC ¼ 0:989, as
against 0.982, 0.981, and 0.962 from G, R, and L,
respectively.

Another way to compare systems using the ROC is to
define an FAR (e.g. 10�4), and verify which system
provides the best genuine acceptance rate (GAR). This is
a common request of biometric systems, since they
usually require very low FARs. In this case, it is easy to
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Fig. 1. Structure of the BSSR1 Set 1. Diagonal elements represent genuine

(true mates) and the off-diagonal elements represent the impostor (true

non-mates).
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observe from Fig. 2a that system R (right fingerprint)
outperforms all the others by producing a GAR of 0.85 for
the FAR fixed at 10�4. As we can see, even the system with
the lower AUC (system L) performs better than C and G
using this criterion.

The second database used in this work is the MCYT
scores database [17,4], which contains a dataset of
bimodal matching scores (fingerprint and signature). The
database was built with the fingerprint (N and Q) and
signature (S) data of 75 subjects from the MCYT database,

together with scalar fingerprint quality measures labeled
by a human expert. Therefore, for each subject, it contains
seven genuine scores and 10 impostor scores. Thus, each
file contains 525 ð75� 7Þ genuine scores and 750 ð75�
10Þ impostor scores, for a total of 1275 scores. Fig. 3
depicts the performance of all the biometric systems in
the MCYT database. The best performance is achieved by
system S (signature), which has an AUC ¼ 0:989, as
against 0.979 and 0.628 from N and Q, respectively.
Although this work deals with the normal MCYT database

ARTICLE IN PRESS

Fig. 2. Baseline performance for BSSR1 data on two different scales.
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(all high-quality images), this database also contains two
other databases with 95% and 90% high-quality images
from the normal database, respectively.

The MCYT database provides only normalized scores
[4]. The fingerprint scores were normalized according to
the following equation:

xfinger ¼ tanhðcfinger � x0fingerÞ (1)

where cfinger is a parameter defined empirically on a
different dataset and x0finger is the raw score produced by
the fingerprint system. The signature scores were normal-
ized according to the following equation:

xsig ¼ expðcsig � x0sigÞ (2)

where csig is a parameter defined empirically on a
different dataset and x0sig is the raw score produced by
the signature verification system. The parameters cfinger

and csig as well as the datasets used to define them are not
reported in the references.

3. One-class classification

The problem with one-class classification lies in
describing a target set of objects and detecting which
new objects resemble objects in this training set. The
problem with one-class classification is that, unlike
conventional binary classification, information is only
available from a single class. The objects in this class are
called target objects, and so all the others are outlier
objects.

Several different terms have been used to refer to one-
class classification, such as outlier detection, novelty
detection, and concept learning [7,25]. These various
terms are usually used to represent the various problems
with one-class classification. The most common of these is
outlier detection, which consists of detecting those
samples that do not resemble the bulk of the dataset in
some way. One-class classification is also indicated for
those problems where one of the classes is sampled very
well, while the other class is seriously undersampled. This

often happens when the measurements on the under-
sampled class might be very expensive or difficult to
obtain.

Several models have been proposed in the literature for
one-class classification. Most can be categorized into one
of the two groups: density approaches and boundary
approaches. As the name implies, a density approach uses
a density method to directly estimate the density of the
target objects [1,18,23]. In the testing procedure, a new
sample is classified as an outlier if its surrounding region
has a probability density below a specified threshold. The
problem here is that sometimes it may be impossible to
estimate the complete density of the data (e.g. small
sample sizes). Boundary approaches have been developed
focusing solely on the boundary of the data in order to
overcome this kind of difficulty. Consequently, with these
approaches, estimation of the complete probability den-
sity can be avoided and it becomes possible to learn from
the data when the exact target density distribution is
unknown. Moreover, it is sufficient that the user indicate
only the boundary of the target class by using examples,
and there is no need to model or sample the complete
distribution [24].

The first attempts on this direction were made by Moya
et al. [14] who trained a neural network with extra
constraints to give closed boundaries. More convincing
results were presented by Scholkopf et al. [21] who
proposed to separate the target samples from the origin
with maximal margin using a hyperplane. There is also the
work of Tax and Duin [25].

3.1. SVM overview

In this section, we briefly describe the standard
support vector machines proposed by Vapnik [27] and
the modifications introduced by Scholkopf et al. [21] to
build the one-class SVM. By providing this background,
we aim to make our treatment of one-class classification
in this paper complete.

The idea behind the SVM is to map the input vectors
into a high-dimensional feature space using the ‘‘kernel
trick’’ and then to construct a linear decision function in
this space so that the dataset becomes separated with a
maximum margin. Let dataset ðx1; y1Þ; . . . ; ðxl; ylÞ; x 2

Rn; y 2 f1;�1g be a training set. The standard SVM should
solve the following primal problem:

min
w;b;x

1

2
wT wþ C

Pl

i¼1

xi

s.t. yiðw
TFðxiÞ þ bÞ � 1� xi

xi � 0; i ¼ 1; . . . ; l

8>>>><
>>>>:

(3)

where F is the kernel function. The solution w and b of
this equation forms the linear decision function. x is
known as a slack variable. The parameter C indicates how
severely errors must be punished. The choice of C may
have a strong effect on the behavior of the classifier for
difficult classification problems, e.g. if the errors are
punished too much, the SVM can overfit the training data.
For computational reasons, instead of solving the problem
of Eq. (3) directly, the SVM solves its dual problem
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Fig. 3. Baseline performance for MCYT database.
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as follows:

min
a

1

2
aT Qa� eTa

s.t. 0 � ai � C; i ¼ 1; . . . ; l

yTa ¼ 0

8>>><
>>>:

(4)

where Qij � yiyjFðxiÞ
TFðxjÞ. Then, the solution of Eq. (4) is

used to compute w and b in Eq. (3). To avoid computing
the dot product in the high-dimensional feature space, the
SVM uses a kernel function. One of the most commonly
used kernels is the RBF (radial basis function) kernel,
Kðx1; x2Þ ¼ e�gðx1�x2Þðx1�x2Þ.

Like the traditional SVM, the one-class algorithm maps
the input data into a high-dimensional feature space (via a
kernel) and iteratively finds the maximal margin hyper-
plane that best separates the training data from the origin.
It can be viewed as a classical two-class SVM where all the
training data lies in the first class, while the origin is taken
as the only member of the second class. It uses a
parameter v 2 f0;1g to control the tradeoff between
training error and model complexity [26].

Given a training set without any class information,
xi 2 Rn; i ¼ 1; . . . ; l, the primal form of the one-class SVM
is as follows:

min
w;x;r

1

2
wT w� rþ 1

vl

Pl

i¼1

xi

s.t. wTFðxiÞ � r� xi

xi � 0; i ¼ 1; . . . ; l

8>>>><
>>>>:

(5)

The solution w and r of Eq. (5) form the linear decision
function. The dual problem of the one-class SVM is as
follows:

min
a

1

2
aT Qa

s.t. 0 � ai �
1

vl
; i ¼ 1; . . . ; l

eTa ¼ 1

8>>>><
>>>>:

(6)

where Qij ¼ Kðxi; xjÞ � FðxiÞ
TFðxjÞ. Then, the solution a of

Eq. (6) is used to compute w and r in Eq. (5).
Fig. 4 presents a simple example of the one-class SVM

to illustrate how the data can be separated from the
outliers. Considering the context of the biometric fusion,

Fig. 4a shows the distribution of the impostors (the
support is indicated by the circle that encloses the data)
and a small group of genuine data (in this case, the
outliers) in the input space. An outlier is any data instance
that lies outside the support of the training data. After
using a suitable kernel to project the data onto the feature
space, the data distribution is shown in Fig. 4b. The
hyperplane w separates the training data from the origin
by a maximal margin r=kwk. Data mapped to the same
side of the origin will be given a negative one-class SVM
value ðf oco0Þ, whereas those mapped to the side of the
training data will have positive values.

In this work, we have used the RBF kernel. However,
unlike the traditional two-class formulation, there are no
explicit penalties for false positives. Consequently, larger
values of g in the RBF kernel are required to achieve tight
approximations for the performance region. What we can
observe is that the SVM tends to degenerate into Parzen
window estimators as larger values for g are used.

4. Experiments

As stated elsewhere, the main objective in combining
several matchers is to improve the reliability of the
system. In the ROC context, this means improving the
AUC, or, more specifically, improving the GAR for a given
FAR. In this work, we adopted the GAR as the metric for
the fixed FAR. The thresholds used for BSSR1 and MCYT
were 10�4 and 10�1, respectively. The same threshold
could not be applied when taking into account the nature
of the data, as depicted in Figs. 2 and 3.

In this section, we present three different sets of
experiments. As stated in the Introduction, biometric
fusion can be approached as a classifier combination
problem or as a pattern classification problem. First, we
report all the experiments carried out based on the
classifier combination approach. Then, the remaining
experiments are related to the pattern classification
strategy. First we apply the classical two-class SVM and
then the proposed one-class SVM. The objective of all
these experiments is to provide a good basis for
comparison.

ARTICLE IN PRESS

Fig. 4. (a) Distribution of the training data and some outliers and (b) the projection of the data onto a feature space after using a suitable kernel.
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4.1. Classifier combination

Typically, matcher scores vary from one system to
another in scale, distribution, and meaning. Consequently,
matcher scores for each modality must first be normalized
to the same interval. In our experiments using BSSR1, we
use three well-known normalization methods, namely, Z-
Score, Min–Max, and Column-Norm [10,22]. For our
experiments using MCYT, we did not apply any normal-
ization technique because the data were already normal-
ized.

After normalization, we tested the following fusion
rules: sum, weighted sum, product, max, min, and mean.

ARTICLE IN PRESS

Fig. 5. ROC of the weighted sum rule: (a) BSSR1 and (b) MCYT.

Table 1
Biometric fusion using different classifier combination rules.

Strategy BSSR1 MCYT

Normalization

Min–Max Z-Score Col-Norm

Sum 0.971 0.969 0.930 0.998

Weighted sum 0.994 0.974 0.953 0.999
Product 0.916 0.742 0.765 0.991

Mean 0.974 0.965 0.789 0.998

Min 0.914 0.866 0.914 0.997

Max 0.852 0.742 0.742 0.989

GAR for FAR fixed at 10�4 and 10�1 for BSSR1 and MCYT, respectively.

C. Bergamini et al. / Signal Processing 89 (2009) 2117–21272122
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Table 1 compares all these combination rules using the
normalization strategies as outlined above.

From Table 1, we see that the Min–Max normalization
method usually leads to the best performance. The same
findings have been reported by Snelick et al. [22]. We can
also observe that the weighted sum is the best combina-
tion rule for both databases. Some justification for this
behavior can be found in the work of Jain and Ross [9] and
of Fierrez et al. [4]. They argue, and show through
experimentation, that the performance of biometric
systems can be further improved by learning user-specific
parameters. In such a case, the parameters would be the

weights used by each matcher, which indicate the
importance of matching scores provided by each bio-
metric trait. One drawback of this approach compared to
other combination rules is the need to find the best
weights through some kind of search.

In our experiments we have used an exhaustive search
to define the best weights for the weighted sum approach.
The best weights were 0.3C, 0.4G, 0.2R, 0.1L, and 0.4N,
0.0Q, 0.6S, for BSSR1 and MCYT, respectively. In the case of
BSSR1, this emphasizes that all the matchers are im-
portant for producing a more reliable combination. In the
case of MCYT, on the other hand, Q is much weaker, as we
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Fig. 6. Performance of the standard two-class SVM: (a) BSSR1 and (b) MCYT.
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can observe from Fig. 3, and therefore was not selected for
the pool. Fig. 5a shows the ROC for the weighted sum rule
using Min–Max normalization, while Fig. 5b depicts the
ROC for MCYT using the same combination rule.

4.2. Two-class SVM

So far, we have seen that most of the combination rules
can yield interesting improvements. In this section we
report the experiments carried out using the standard
two-class SVM. We demonstrate that the results
achieved by the weighted sum rule can be further
improved. Moreover, the results reported here will help
us to better assess the results produced by the one-class
SVM.

Since this is a pattern classification approach, the
database should be divided into three parts: training,
validation, and testing. For BSSR1, we used 217 genuine
and 240,000 impostors for testing, and 300 genuine and
20,000 impostors for training and validation. For MCYT,
we used 225 genuine and 450 impostors for testing, and
300 genuine and 300 impostors for training and valida-
tion. For validation, we used a k-fold cross-validation ðk ¼
10Þ because of the small number of genuine samples. The
kernel used in these experiments was the RBF and the
parameters C and g were determined through a grid
search.

We have evaluated the impact of increasing the
number of both the genuine and the impostor samples.
For the genuine samples, the size of the database ranges
from 100 to 300, while for the impostor samples, it ranges
from 100 to 20,000 (in the case of BSSR1). We have

noticed that increasing the number of genuine samples
improves performance slightly, but the greatest improve-
ment was achieved when the number of impostors was
increased. The experiments revealed, however, that after
10,000 impostors there was no further improvement in
the results. Fig. 6 shows the performance of the standard
two-class SVM and compares it to the weighted sum as
well.

Our findings corroborate with other results reported in
the literature for different biometric databases. For
example, Fierrez-Aguilar et al. [5] successfully used an
SVM to compute a multimodal combined score using face,
fingerprint, and on-line signature biometrics. Jiang and Su
[11] demonstrate that the fusion using SVM surpassed
methods such as Fisher linear discriminant analysis and
the weighted sum method.

With regard to the importance of the matchers, we
have noticed the same behavior here as with the weighted
sum approach. We performed exhaustive feature selection
(feasible because we have only four features) and the best
results were produced when the four matchers were
available.

4.3. One-class SVM

For the experiments regarding one-class classification,
the BSSR1 database was divided into 20,000 impostors for
training, 2000 impostors for validation, and 517 genuine
plus 240,000 impostors for testing. The MCYT database
was divided into 400 impostors for training, 350 im-
postors for validation, and 525 genuine plus 250 im-
postors for testing.

ARTICLE IN PRESS

Fig. 7. Different boundaries built by different v parameters.
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As for the two-class classification, the kernel we used
was the RBF, where the following two parameters have to
be adjusted: the maximum fraction of training error, v,
and the kernel parameter, g. According to Scholkopf et al.
[21], when the offset of the hyperplane for the origin is
greater than zero, then the parameter v can be set to the
highest allowable fraction of misclassification of the target
class. In our case, we have allowed a 1% of error on the
training set, i.e. v ¼ 0:01.

The impact of assigning different values to v is shown
in Fig. 7. In this experiment, we used two matchers (L and
R) as features and two different values for v: 0.01 and

0.001. Using v ¼ 0:01, we get a more specialized boundary,
while v ¼ 0:001 produces a more generic boundary.

In order to tune the kernel parameter, the number of
support vectors can be minimized by dividing the total
number of support vectors by the number of training
examples. This gives a leave-one-out bound on the test
error of the training data [3]. Another alternative is to
maximize the margin of separation from the origin,
(r=kwk from Fig. 4), which is equivalent to minimizing
the radius of the smallest sphere enclosing the data [25].
In any case, the most common way to find the kernel
parameter is through a validation set. Because of the
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Fig. 8. Performance of the one-class SVM: (a) BSSR1 and (b) MCYT.
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nature of the problem, a validation set rarely exists, which
makes the task of parameter tuning more difficult.

Taking into account that we have access to few data
from the genuine class, we could have used them to build
a validation set to tune the parameters. But, to better
simulate the difficulties of the one-class classification, we
only used samples of impostors in our validation set.

As in the previous simulations with the standard two-
class SVM, we also assessed the impact of the size of the
database. In the case of BSSR1, we varied the size of the
database from 100 to 20,000, and noted only a slight
improvement up to 5000. Beyond that we observed no
improvement at all. In other words, the 5000 samples
represent the cluster of impostors quite well. At the same
time, we noted that all 400 samples were quite important
for training in the case of MCYT. Fig. 8 shows the ROC for
the one-class SVM for both databases.

In general, it cannot be expected that the one-class
classifier will perform as well as a two-class classifier,
because training samples from two classes provides more
information to define the decision boundary than sam-
pling only on one side [30]. As stated previously, one-class
classification is very useful when only one data class is
available. As depicted in Fig. 8, one-class classification
yielded the same ROC as the two-class SVM. For BSSR1
database the curves are the same (Fig. 8a) while for MCYT
the curves are slightly different before FAR ¼ 10�2

(Fig. 8b). In terms of recognition rate, the one-class SVM
achieved 99.67% on the test set, as against 99.80% on the
two-class SVM, for the BSSR1 database. For the MCYT,
both models, one-class and two-class, achieved a 99.9%
recognition rate.

As discussed earlier, the one-class classification at-
tempts to describe the target data domain by finding a
hypersphere containing most of the target data (Fig. 7). A
plausible justification for the good performance of the
one-class classification on both databases is that the
impostors are roughly distributed within a single sphe-
rical region. If the target samples were scattered in several
small regions, a spherical boundary to fit the data would
enclose a large empty area, which would enhance the
chances of accepting outliers [28]. In that case, a two-class
SVM would perform much better.

5. Conclusion

In this paper, we have proposed the use of one-class
classification with SVM to combine the scores of four
different biometric systems of the NIST BSSR1 and three
biometric systems of the MCYT. Through a series of
experiments, we have demonstrated that the one-class
SVM surpasses all the combination rules and compares
well with the standard two-class SVM. It is worth noting,
though, that the one-class SVM performs well when
the target data meet certain constraints, such as when
they are roughly distributed within a single spherical
region.

Moreover, this strategy is quite suitable when the data
are highly unbalanced or when only one class is available
for training. In further work, we plan to investigate user-

dependent feature selection to form more compact
clusters. In this case, the volume of the hypersphere could
serve as a criterion during the search. In addition, we plan
to evaluate the one-class strategy on the different
biometric datasets available in the literature.
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