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59; fax: þ55 44 30115035.

ail addresses: yandre@din.uem.br (Y.M.G. Cos

ira@inf.ufpr.br (L.S. Oliveira),

ppgia.pucpr.br (A.L. Koerich),

@inescporto.pt (F. Gouyon), martins@utfpr.ed
a b s t r a c t

In this paper we present an approach to music genre classification which converts an

audio signal into spectrograms and extracts texture features from these time-frequency

images which are then used for modeling music genres in a classification system.

The texture features are based on Local Binary Pattern, a structural texture operator that

has been successful in recent image classification research. Experiments are performed

with two well-known datasets: the Latin Music Database (LMD), and the ISMIR 2004

dataset. The proposed approach takes into account some different zoning mechanisms

to perform local feature extraction. Results obtained with and without local feature

extraction are compared. We compare the performance of texture features with that

of commonly used audio content based features (i.e. from the MARSYAS framework),

and show that texture features always outperforms the audio content based features.

We also compare our results with results from the literature. On the LMD, the

performance of our approach reaches about 82.33%, above the best result obtained in

the MIREX 2010 competition on that dataset. On the ISMIR 2004 database, the best

result obtained is about 80.65%, i.e. below the best result on that dataset found in the

literature.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid expansion of the Internet, a huge
amount of data from different sources has become avail-
able online. Studies indicate that in 2007 the amount of
digital data scattered around the world consumed about
281 exabytes. In 2011, the amount of digital information
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produced in the year should be equal nearly 1800 exa-
bytes, or 10 times that produced in 2006 [1].

Among all the different sources of information, music
certainly is the one that can benefit from this impressive
growing since it can be shared by users with different
background and education, easily crossing cultural and
language barriers [2]. In general, indexing and retrieving
music is based on meta information tags such as ID3 tags.
This metadata includes information such as song title,
artist, album, year, musical genre, etc. [3]. Among all these
descriptors, musical genre is probably the most obvious
descriptor which comes to mind, and it is probably the
most widely used to organize and manage large digital
music databases [4].

Taking into account previous works, we can find
different reasons which motivate research on automatic
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Fig. 1. Spectrogram examples. (a) Classical and (b) Electronic.
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music genre classification. McKay and Fujinaga [5]
pointed out that individuals differ on how they classify
a given recording, but they can also differ in terms of the
pool of genre labels from which they choose. On the other
hand, Gjerdingen and Perrot [6] claimed that people are
consistent in their genre categorization, even when these
categorizations are wrong, or for very short segments.
Pachet and Cazaly [7] showed that some traditional music
taxonomies, like taxonomy of music industry, and inter-
net taxonomy, are very inconsistent. Finally, Pampalk [8]
says that genre classification-based evaluations can be
used as proxy for listening tests of music similarity.

According to Lidy et al. [9] there are different
approaches to describe the contents of a given piece of
music. The most commonly used is the content-based
approach which extracts representative features from the
digital audio signal. Other approaches such as semantic
analysis and community metadata have proved to per-
form well for traditional Western music, however, their
use for other kinds of music is compromised because both
community meta-data and lyrics-based approaches are
dependent of natural language processing (NLP) tools,
which are typically more developed for English than other
languages.

In the case of the content-based approach, one of the
earlier works was introduced by Tzanetakis and Cook [10]
where they represented a music piece using timbral
texture, beat-related, and pitch-related features. The
employed feature set has become of public use, as part
of the MARSYAS framework (Music Analysis, Retrieval and
SYnthesis for Audio Signals), and it has been widely used
for music genre recognition [3,9,11]. Other characteristics
such as Inter-Onset Interval Histogram Coefficients,
Rhythm Patterns and its derivatives Statistical Spectrum
Descriptors, and Rhythm Histograms have been proposed
in the literature recently [12–14].

In spite of all efforts done during the last years,
automatic music genre classification still remains an open
problem. McKay and Fujinaga [5] pointed out some
problematic aspects of genre and refer to some experi-
ments where human beings were not able to classify
correctly more than 76% of the music pieces [15]. In spite
of the fact that more experimental evidence is needed,
these experiments give some insights about the upper
bounds on software performance. McKay and Fujinaga
also suggest that different approaches should be proposed
to achieve further improvements.

In light of this, in this paper we propose an alternative
approach for music genre classification which converts
the audio signal into a spectrogram [16] (short-time
Fourier representation) and then extract features from
this visual representation. The rationale behind this is
that treating the time-frequency representation as a
texture image we can extract features which are expected
to be suitable to build a robust music genre classification
system even if there is not a straight relation between the
musical dimension and the extracted features. Further-
more, these image-based features may capture different
information from the approaches that work directly
with the audio signal. Fig. 1 illustrates two examples of
spectrograms taken from music pieces of different genres.
Fig. 1(a) shows a spectrogram taken from a classical music
piece. In this case there is a very clear presence of almost
horizontal lines, related to harmonic structures, while in
Fig. 1(b) one can observe the intensive beats, typical of
electronic music, depicted as clear vertical lines. The
features used in this work are provided by Local Binary
Pattern (LBP), a structural texture operator presented by
Ojala et al. [17].

By analyzing the spectrogram images, we have noticed
that the textures are not uniform, so we decided to
consider a local feature extraction beyond the global
feature extraction. Furthermore, our previous results
[18] have shown that using Gray Level Co-occurrence
Matrix (GLCM) descriptors, local feature extraction can
help to improve outcomes in music genre classification
using spectrograms. With this in mind, we have studied
different zoning techniques to obtain local information of
the given pattern beyond the global feature extraction.
We also demonstrate through experimentation that cer-
tain zones of the spectrogram perform better than others.

The use of spectrograms in music genre classification
has already been proposed in other works [18–20].
However, some important issues remain overlooked.
Thus, some innovations are presented here, such as: the
use of LBP structural approach in order to get texture
descriptors from the spectrogram; zoning mechanism
taking into account human perception in setting up
frequency bands; creation of one individual classifier for
each created zone, combining their outputs in order to get
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the final decision; and comparison of results with and
without zoning mechanism with a structural texture
descriptor.

Through a set of comprehensive experiments on the
Latin Music Database [21] and on the ISMIR 2004 database
[22], we demonstrate that in most cases the proposed
approach compares favorably to the traditional approaches
reported in the literature. The results obtained with LMD in
this work can be directly compared with those obtained by
Lopes et al. [23] and Costa et al. [18], since all of them used
artist filter restriction and folds with exactly the same
music pieces to perform the classifier training and testing.
The overall recognition rate improvement was about
22.66% when comparing with [23], and about 15.13% when
comparing with the best result obtained in [18]. Taking
into account the best results obtained with LMD in Music
Information Retrieval Evaluation eXchange (MIREX) 2009
and MIREX 2010 [24] competitions, the improvement was
about 7.67% and 2.47%, respectively. Concerning ISMIR
2004 database, obtained results are comparable to results
described in the literature. In addition, these results can
corroborate the versatility of the proposed approach.

The remaining of this paper is organized as follows:
Section 2 describes the music databases used in the
experiments. Section 3 presents the LBP texture operator
used to extract features in this work. Section 4 introduces
the methodology used for classification while Section 5
reports all the experiments that have been carried out on
music genre classification. Finally the last section presents
the conclusions of this work as well as opens up some
perspectives for future work.

2. Music databases

The LMD and the ISMIR 2004 database are among the
most used music database for researching in Music
Information Retrieval. These two databases were chosen
because, taking into account the signal segmentation
strategy described in Section 3, these are among those
databases that could be used.

2.1. Latin Music Database

The Latin Music Database (LMD) contains 3227 full-
length music samples in MP3 format originated from
music pieces of 501 artists [21]. The database is uniformly
distributed along 10 music genres: Axé, Bachata, Bolero,
Forró, Gaúcha, Merengue, Pagode, Salsa, Sertaneja, and
Tango. One of the main characteristics of the LMD is the
fact of bringing together many genres with a significant
similarity among themselves with regard to instrumenta-
tion, rhythmic structure, and harmonic content. This
happens because many genres present in the database
are from the same country or countries with strong
similarities regarding cultural aspects. Hence, the attempt
to discriminate these genres automatically is particularly
challenging.

In this database, music genre assignment was manu-
ally made by a group of human experts, based on the
human perception on how each music is danced. The
genre labeling was performed by two professional
teachers with over ten years of experience in teaching
ballroom Latin and Brazilian dances. The project team did
a second verification in order to avoid mistakes.

In our experiments we have used 900 music pieces
from the LMD, which are split into 3 folds of equal size (30
music pieces per class). The splitting is done using an
artist filter [25], which places the music pieces of an
specific artist exclusively in one, and only one, fold of the
dataset. The use of the artist filter does not allow us to
employ the whole dataset since the distribution of music
pieces per artist is far from uniform. Furthermore, in our
particular implementation of the artist filter we added the
constraint of the same number of artists per fold. In order
to compare the results obtained with other, the folds
splitting taken was exactly the same used by Lopes et al.
[23] and by Costa et al. [18]. It is worth of mention that
the artist filter makes the classification task much more
difficult. This database and experimental protocol has
been used in the audio genre classification competition
organized by the MIREX [24].

2.2. ISMIR 2004

The ISMIR 2004 database [22] was created by the
Music Technology Group to support some tasks in Music
Information Retrieval (MIR). This database became very
popular in the MIR research community. It is composed of
music pieces assigned to six different genres: classical,
electronic, jazz/blues, metal/punk, rock/pop, and world.
The distribution of music pieces per genre is not uniform,
and the training and test sets are predefined. Thus, it is
not possible to use artist filter with this dataset. Both
training and test sets are originally composed of 729
music pieces, resulting in a total of 1458 music pieces in
the dataset throughout.

Taking into account the signal segmentation strategy
used in the experiments described here, it was not
possible to use all the musics of this dataset. Instead of
729 music pieces originally assigned to the training set, it
was possible to use only 711 pieces. Regarding to test set,
instead of 729 music pieces, 713 were used.

3. Feature extraction

Since our approach is based on the visual representa-
tion of the audio signal, the first step of the feature
extraction process consists in converting the audio signal
to a spectrogram. In the LMD, the spectrograms were
created using audio files with the following technical
features: bit rate of 352 kbps, audio sample size of 16 bits,
one channel, and audio sample rate of 22.05 kHz. In the
ISMIR 2004 database, the audio files used had the follow-
ing technical features: bit rate of 706 kbps, audio sample
size of 16 bits, one channel, and audio sample rate of
44.1 kHz. In both cases, Discrete Fourier Transform was
computed with a window size of 1024 samples using the
Hanning window function which has good all-round
frequency-resolution and dynamic-range properties.

In this work we have used the idea of time decom-
position presented by Costa et al. [26] in which an
audio signal S is decomposed into n different sub-signals.
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Each sub-signal is simply a projection of S on the interval
½p,q� of samples, or Spq ¼/sp, . . . ,sqS. In the generic case,
one may extract K (overlapping or non-overlapping)
sub-signals and obtain a sequence of spectrograms
U1,U2, . . . ,UK . We have used the strategy proposed by Silla
et al. [21] which considers three 10-s segments from the
beginning (Ubeg), middle (Umid), and end (Uend) parts of the
original music. This process is depicted in Fig. 2.

After generating the spectrograms, the next step con-
sists in extracting the features from the images. As stated
before, the proposed approach considers the spectrogram
as a texture and it uses the LBP operator to get features.
Among the several structural techniques of texture repre-
sentation, the LBP has been recently one of the most
successful. Presented by Ojala et al. [17], LBP is a model
that describes the texture taking into account for each
pixel C, P neighbors equally spaced at a distance of R, as
shown in Fig. 3.

An histogram h of LBPs found in the image is defined
by the texture intensity differences of C and its P neigh-
bors. As stated by Mäenpää and Pietikäinen [27], much of
the information about the textural characteristics is pre-
served in the joint difference distribution (T) which is
Fig. 2. Creating spectrograms using time decomposition.

Fig. 3. The LBP operator. A pixel C, dark circle in the middle, and its P

neighbors, lighter circles.
defined in Eq. (1)

T � ðg0�gC , . . . ,gP�1�gCÞ ð1Þ

where gC is the gray level intensity of pixel C (the central
pixel), and g0 to gP�1 corresponds to the gray level
intensities of the P neighbors. When the neighbors do
not correspond to an image pixel integer value, its value is
obtained by interpolation. An important characteristic of
this descriptor is its invariance to changes in the value of
the central pixels, when comparing with its neighbors.

Considering the resulting sign of the difference between
C and each neighbor, as denoted in Eq. (2), it is defined that:
if the sign is positive the result is 1, otherwise 0 as denoted
in Eq. (3). Thus, it is possible to obtain this invariance of the
intensity value of pixels in gray-scale format

T � ðsðg0�gCÞ, . . . ,sðgP�1�gCÞÞ ð2Þ

where

sðgi�gCÞ ¼
1 if gi�gC Z0

0 if gi�gC o0

(
ð3Þ

where i¼ ½0,P� is the index of the neighbors of C.
With this, the LBP value can be obtained by multi-

plying the binary elements for a binomial coefficient.
Assigning a binomial weight 2P to each sign sðgP�gCÞ,
the differences in a neighborhood are transformed into a
unique LBP code, a value 0rC0r2P . Eq. (4) describe how
this code is obtained

LBPP,RðxC ,yCÞ ¼
XP�1

P ¼ 0

sðgP�gCÞ2
P

ð4Þ

assuming that xC 2 f0, . . . ,N�1g, yC 2 f0, . . . ,M�1g for a
N�M image sample.

Observing the non-uniformity of the vector obtained,
Ojala et al. [17] introduced a concept based on the
transition between 0’s and 1’s in the LBP image. A binary
LBP code is considered uniform if the number of transi-
tions is less than or equal to 2, also considering that the
code is seen as a circular list. That is, the code 00100100 is
not considered uniform, because it contains four transi-
tions. But the code 00100000 is characterized as uniform
because it has only two transitions. Fig. 4 illustrates
this idea.

Therefore, instead of using the whole histogram, which
size is 2P , it is possible to use only the uniform values,
constituting a low-dimensional feature vector, with only
59 features. Ojala et al. [17] stated that, beyond the
Fig. 4. LBP uniform pattern. (a) The two transitions showed identifies

the pattern as uniform. (b) With four transitions, it is not considered a

uniform pattern.



Fig. 5. A zoning mechanism used to extract local information.

Fig. 6. Combination of classifier outputs to obtain a final decision.
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58 possible uniform combinations, all the non-uniform
patterns should be placed into an extra bin of the
histogram. This version of the descriptor was called
‘‘u2’’, a label accompanying the values of the radius R

and the neighborhood size P, making the LBP definition as
follows: LBPlabel

P,R .
Furthermore, we observed during the experiments that

the feature extraction with LBPu2
8;2 is fast and accurate

enough for the proposed application. The R value is
related to the spatial image resolution. Once changing
the R value could turn the feature extraction more
expensive in terms of time-consuming, we performed
some preliminary experiments changing the spectrogram
images resolution in which we could observe that R¼2
with P¼8 would produce a good cost-effective.

At this point we could have a piece of music repre-
sented by three 59-dimensional feature vectors. However,
by analyzing the texture images, we have noticed that the
texture produced by the spectrograms are not uniform.
Furthermore, previous results described in [18] suggest
that spectrogram image zoning, in order to preserve local
feature, could help to achieve good results. Therefore, it is
important to consider a local feature extraction beyond a
global one.

With this in mind, we have used some different zoning
techniques which are a simple but efficient way of
obtaining local information of a given pattern. The idea
consists in dividing the spectrogram into n parts as
depicted in Fig. 5. In this example, for n¼10, each
spectrogram image was linearly divided and would be
represented by ten 59-dimensional feature vectors, sum-
ming up 30 vectors for a music piece.

In the next section we show some details about the
different zoning schemes that have been used and how
the feature vectors are used for training and classification.

4. Methodology used for classification

The classifier used in this work was the Support Vector
Machine (SVM) introduced by Vapnik in [28]. Normal-
ization was performed by linearly scaling each attribute
to the range ½�1,þ1�. Different parameters and kernels for
the SVM were tried out but the best results were achieved
using a Gaussian kernel. Parameters cost and gamma
were tuned using a grid search.
The classification process is done as follows: the three
10-s segments of the music are converted into the
spectrograms (Ubeg , Umid, and Uend). Each of them is
divided into n zones, according to the zoning mechanism
used, and one feature vector is extracted from each zone.
One classifier for each spectrogram zone is created. Then,
the 59-dimensional feature vector extracted from each
zone is sent to a specific classifier which assigns a
prediction to each one of the possible classes. In experi-
ments with the LMD, training and classification are
carried out using a threefold cross-validation procedure:
two folds used for training a N-class SVM classifier, one
fold for testing, three permutations of the training fold
(i.e. 1þ2, 1þ3, 2þ3). In each case, 3n classifiers are
created with 600 and 300 feature vectors for training
and testing, respectively, where n is the number of zones.
On the other hand, in the ISMIR 2004 database, there are
predefined training and test sets. In both cases, three
different zoning schemes are used, beyond the global
feature extraction. For global feature extraction, n is 1.

With this amount of classifiers to deal with the
classification of a single music piece, we used estimation
of probabilities to combine the outputs of such classifiers
and reach a final decision (Fig. 6). In this situation, it is
very useful to have a classifier producing a posterior

probability Pðclass9inputÞ. Here, we are interested in the
estimation of probabilities because different fusion stra-
tegies like Max, Min, Product, and Sum will be tried out.
The following equations, presented by Kittler et al. [29],
describe on how the classifier outputs are combined with
these four decision rules to reach a final decision

Max Rule ðvÞ ¼ arg max
c

k ¼ 1
max

n

i ¼ 1
Pðok9liðvÞÞ ð5Þ

Min Rule ðvÞ ¼ arg max
c

k ¼ 1
min

n

i ¼ 1
Pðok9liðvÞÞ ð6Þ

Product Rule ðvÞ ¼ arg max
c

k ¼ 1

Yn

i ¼ 1

Pðok9liðvÞÞ ð7Þ

Sum Rule ðvÞ ¼ arg max
c

k ¼ 1

Xn

i ¼ 1

Pðok9liðvÞÞ ð8Þ

where v represents the pattern to be classified, n is the
number of classifiers, li represents the output label of the
ith classifier in a problem in which the possible class
labels are O¼o1,o2, . . . ,oc , c is the number of classes,
and Pðok9yiðvÞÞ is the estimation of probability of pattern
v belonging to class ok according to the ith classifier.

The rationale behind the zoning and combining scheme
is that music signals may include similar instruments and
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similar rhythmic patterns which leads to similar areas with
similar intensities in the spectrogram images. By zoning
the images we can extract local information and try to
highlight the specificities of each music genre. In Fig. 7
we can notice that at low frequencies the textures are
quite similar but they start to become different as the
frequency increases. The opposite can happen as well, and
for this reason, the zoning mechanism becomes an inter-
esting alternative. As stated before, in this work we have
investigated three different zoning strategies, which
are based on different scales, beyond the global feature
extraction. The following subsections describe these zoning
strategies.

4.1. Linear zoning

In this zoning scheme, the spectrogram image is
divided into 10 linear zones of equal size. Fig. 8 shows
the division used with the LMD. It is important to mention
that we have tried out different configurations of linear
Fig. 7. Spectrograms of different music genres with

Fig. 8. Linear zoning used to e
zoning. Results showed that after ten zones there is no
improvement in terms of classification rate. The fre-
quency upper limit of the spectrograms generated for
the LMD and the ISMIR 2004 database were not the same
because some music pieces of the LMD, specially of Tango
genre, refer to very old recordings with no relevant
information above 8.5 kHz. Thus, for this database only
information up to 8.5 kHz was considered. On the other
hand, the music pieces from the ISMIR 2004 database
present relevant information for all music pieces from all
genres up to 14 kHz. Thus, this was the frequency upper
limit used for this database.

Table 1 shows the limits of each one of the 10 stated
frequency bands in linear division for the LMD, while
Table 2 shows the limits used with the ISMIR 2004
database. In this case, 10 different classifiers are created
for each spectrogram generated from a segment of a
music piece. Thereby, there are 30 classifiers whose
outputs are combined to get a final decision about the
music genre.
some areas of similarity at low frequencies.

xtract local information.



Table 1
Frequency bands limits, in Hz, for linear zoning with LMD.

1 2 3 4 5 6 7 8 9 10

0–850 850–1700 1700–2550 2550–3400 3400–4250 4250–5100 5100–5950 5950–6800 6800–7650 7650–8500

Table 2
Frequency bands limits, in Hz, for linear zoning with ISMIR 2004.

1 2 3 4 5 6 7 8 9 10

0–1400 1400–2800 2800–4200 4200–5600 5600–7000 7000–8400 8400–9800 9800–11,200 11,200–12,600 12,600–14,000

Fig. 9. Bark scale zoning used to extract local information.

Table 3
Frequency bands limits, in Hz, for Bark scale zoning.

1 2 3 4 5 6 7 8

0–100 100–200 200–300 300–400 400–510 510–630 630–770 770–920

9 10 11 12 13 14 15 16

920–1080 1080–1270 1270–1480 1480–1720 1720–2000 2000–2320 2320–2700 2700–3150

17 18 19 20 21 22 23 24

3150–3700 3700–4400 4400–5300 5300–6400 6400–7700 7700–9500 9500–12,000 12,000–14,000
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4.2. Bark scale zoning

The Bark scale is a subdivision of the audible frequency
range into critical bands [30]. It was created in an attempt
of representing the subdivision of the frequency range
over which the human ear is able to perceive tones and
noises. This scale is not linear, therefore the size of the
frequency bands may be different. Fig. 9 shows this
division superimposed over a spectrogram image gener-
ated from a music piece of the LMD.
Table 3 shows the limits of each of the 24 stated
frequency bands in Bark scale division used in the experi-
ments describe here. Note that for the LMD only 22 zones
are created for each spectrogram, since the upper frequency
limit of these spectrograms was defined as 8.5 kHz. For the
ISMIR 2004 database, 24 zones per spectrogram are created.
Since we have 3 spectrograms for a music piece, there are
66 classifiers for the LMD and 72 classifiers for the ISMIR
2004 database whose outputs are combined to get a final
decision about the music genre.



Fig. 10. Mel scale zoning used to extract local information.

Table 4
Frequency bands limits, in Hz, for Mel scale zoning.

1 2 3 4 5 6 7 8

0–40 40–161 161–200 200–404 404–693 693–867 867–1000 1000–2022

9 10 11 12 13 14 15

2022–3000 3000–3393 3393–4109 4109–5526 5526–6500 6500–7743 7743–14,000

Y.M.G. Costa et al. / Signal Processing 92 (2012) 2723–27372730
4.3. Mel scale zoning

According to Umesh et al. [31], the Mel scale is a
fundamental result of psychoacoustics, relating real fre-
quency to perceived frequency. Like the Bark scale, the
Mel scale attempts to represent the frequency bands
according to the human perception. Fig. 10 shows this
division superimposed over a spectrogram image taken
from a music piece of the LMD. As we can see, this scale is
not linear as well.

Table 4 shows the limits of each one of the 15 stated
frequency bands in Mel scale division. For the LMD, the
frequency upper limit in the 15th band is 8.5 kHz. With
this zoning scheme, 15 different classifiers are created for
each spectrogram generated from a segment of a music
piece. Thereby, there are 45 classifiers whose outputs are
combined to get a final decision about the music genre.

5. Experimental results and discussion

The following subsections present the experiments
carried out with the global feature extraction and with
the three different zoning mechanisms proposed in the
previous section. Additional experiments carried out
using acoustic features are also presented. The experi-
mental results reported on the LMD refers to the average
classification rates and standard deviations considering
the three folds aforementioned.

5.1. Results with global feature extraction

In this subsection we describe the results obtained
without performing a zoning mechanism. Our previous
work have shown that zoning is very important when
used with GLCM features [18]. Therefore, here we want to
investigate if the same holds for LBP features. In this case,
three different classifiers are created, since we are dealing
with three sub-signals taken from the original signal, as
depicted in Fig. 2. Then, the outputs of these classifiers
were combined with those four different combination
rules described in Section 4. Table 5 shows results
obtained with LMD, while results obtained with ISMIR
2004 are shown in Table 6.

The results obtained with the LMD show that LBP
features performed much better than GLCM features
when no zoning strategy is used. In the best case, with
sum combination rule, the performance surpassed the
best result obtained in [18] about 12 percentage points. In
addition, the best result is very close to the best result
obtained in MIREX 2010 competition.

Taking into account that the result presented in this
subsection is the best one achieved in our experiments
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with the ISMIR 2004 dataset, Table 7 shows the confusion
matrix produced with the product rule in order to get a
better understanding about the results achieved so far.
Table 6
Recognition rates with global feature extraction in ISMIR 2004.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Classical 97.06 96.73 97.39 97.39
Electronic 85.84 84.07 89.38 88.50

Jazz/blues 38.46 30.77 38.46 38.46
Metal/punk 44.44 35.56 35.56 37.78

Rock/pop 60.78 63.73 69.61 68.63

World 54.55 68.60 65.29 61.16

Overall 77.42 78.96 80.65 79.80

Table 7
Confusion matrix (%) with global feature extraction in ISMIR 2004.

Genre (0) (1) (2) (3) (4) (5)

(0) Classical 97.39 0.33 0.00 0.00 0.33 1.96

(1) Electronic 0.88 89.38 0.00 1.77 3.54 4.42

(2) Jazz/blues 15.38 7.69 38.46 0.00 3.85 34.62

(3) Metal/punk 0.00 11.11 0.00 35.56 46.67 6.67

(4) Rock/pop 2.94 12.75 0.00 0.98 69.61 13.73

(5) World 20.66 8.26 0.00 0.00 5.79 65.29

Table 8
Recognition rates (%) obtained for each zone created with linear zoning.

Frequency band id.a LMD

Beginning segment Middle segment End se

10 48.56 56.56 49.89

9 56.44 57.67 52.22

8 55.89 55.33 51.89

7 56.33 59.00 53.78

6 55.44 61.00 59.33

5 53.56 55.89 53.44

4 54.22 53.89 56.33

3 56.00 51.67 52.22

2 52.89 56.67 54.44

1 54.00 61.67 64.78

a According to Tables 1 and 2.

Table 5
Average recognition rates with global feature extraction in LMD.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Axé 72.22 71.11 75.56 76.67
Bachata 93.33 91.11 92.22 92.22

Bolero 78.89 81.11 83.33 81.11

Forró 77.78 63.33 66.67 73.33

Gaúcha 57.78 64.44 64.44 64.44
Merengue 93.33 90.00 93.33 94.44
Pagode 66.67 76.67 75.56 73.33

Salsa 83.33 82.22 83.33 85.56
Sertaneja 54.44 60.00 62.22 58.89

Tango 90.00 91.11 90.00 90.00

Overall 76.7870.38 77.1171.71 78.6770.67 79.0071.00
Although the best overall recognition rate obtained
with the ISMIR 2004 dataset is slightly better than that
obtained in the LMD, one can note that the variation in
the recognition rates among the classes is very high for
the ISMIR 2004 dataset. It is important to recall that the
number of music pieces per genre in the ISMIR 2004
dataset is far from uniform.

5.2. Results with linear zoning

Table 8 shows the recognition rates obtained indivi-
dually for each one of the 30 zones created with the linear
zoning described in Section 4.1.

After training one classifier for each zone, their outputs
are combined with max, min, product, and sum rules. The
results in terms of recognition rates obtained on the LMD
are shown in Table 9, while the results obtained in the
ISMIR 2004 database are shown in Table 10.

In terms of recognition rate, the linear zoning scheme
did not provide better results than those obtained with
global feature extraction. However, in order to verify the
potential of the created pool of classifiers in future work,
using dynamic classifier selection, we decided to check
the upper limit between the created classifiers. The
possible upper limit of classification accuracy is defined
as the ratio of samples which are classified correctly by at
least one classifier in a pool for all samples. In the LMD,
ISMIR 2004

gment Beginning segment Middle segment End segment

64.10 69.99 59.75

62.27 71.11 63.39

63.11 71.39 63.25

66.62 70.97 64.10

63.53 73.35 63.53

66.76 73.49 63.11

68.72 70.83 66.62

70.55 70.97 67.04

68.02 71.67 67.04

70.55 72.79 68.16

Table 9
Average recognition rates (%) combining all zones of linear zoning with

different rules in LMD.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Axé 70.00 67.78 76.67 80.00
Bachata 96.67 87.78 92.22 94.44

Bolero 75.56 75.56 87.78 87.78
Forró 72.22 54.44 75.56 76.67
Gaúcha 43.33 66.67 57.78 54.44

Merengue 94.44 87.78 93.33 93.33

Pagode 33.33 56.67 60.00 54.44

Salsa 84.44 83.33 86.67 85.56

Sertaneja 50.00 61.11 57.78 56.67

Tango 95.56 84.44 90.00 92.22

Overall 71.5671.26 72.5672.67 77.7870.38 77.5671.17
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the overall upper limit rate is equal to 98.67%, while in the
ISMIR 2004 database this rate is equal to 98.46%, which
indicates that even if the linear zoning did not provide
better results than the global approach, there is a room for
improvement if more sophisticated combination rules are
employed. Using a dynamic classifier selection technique,
one can select a specific ensemble of classifiers taking into
account porperties of the specific feature vector to be
classified, more details can be found in [32].
Table 12
Average recognition rates (%) in LMD with Bark scale zoning using
5.3. Results with Bark scale zoning

With Bark scale zoning, 66 classifiers were created for
the LMD and 72 classifiers were created for the ISMIR
2004 database (as described in Section 4.2). Table 11
shows the recognition rates obtained individually for each
created zone.
Table 10
Recognition rates (%) combining all zones of linear zoning with different

rules in ISMIR 2004.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Classical 99.67 97.71 98.69 99.02

Electronic 80.53 72.57 89.38 88.50

Jazz/blues 30.77 30.77 38.46 34.62

Metal/punk 35.56 17.78 20.00 26.67

Rock/pop 52.94 62.75 70.59 70.59
World 27.27 66.94 53.72 46.28

Overall 71.11 76.02 78.40 77.42

Table 11
Recognition rates (%) obtained for each zone with Bark scale zoning.

Frequency band id.a LMD

Beginning segment Middle segment End se

24 – – –

23 – – –

22 47.67 55.56 48.44

21 56.00 62.00 53.33

20 57.44 59.39 54.44

19 56.67 61.00 57.67

18 52.67 57.78 53.56

17 53.67 50.89 49.00

16 50.89 50.89 49.44

15 51.44 48.11 49.56

14 45.33 46.78 46.56

13 47.00 45.22 45.22

12 44.00 45.33 44.11

11 43.33 42.78 40.67

10 45.22 42.11 42.78

9 42.22 40.67 38.56

8 41.67 37.67 44.00

7 37.11 39.22 41.22

6 36.67 35.56 35.22

5 36.44 38.67 35.56

4 36.78 39.00 37.22

3 36.67 44.22 42.44

2 45.33 51.00 50.67

1 41.78 50.33 49.22

a According to Table 3.
After training one classifier for each zone, their outputs
were combined with the combination rules described in
Section 4. The results obtained on the LMD and on the
ISMIR 2004 database are presented, respectively, in
Tables 12 and 13.

In general, Bark scale zoning did not present good
results when faced with global feature extraction, both on
the LMD and on the ISMIR 2004 database. Aiming to
foresee the potential of using dynamic classifier selection
in future works, we decided to check the upper limit
between the classifiers created with Bark scale zoning.
Using Bark scale zoning, the upper limit rates on the LMD
and on the ISMIR 2004 database presented the best
performance among all the zoning schemes experimen-
ted, probably favored by the larger number of classifiers.
ISMIR 2004

gment Beginning segment Middle segment End segment

62.83 70.69 61.29

65.08 71.53 64.80

63.96 71.53 63.96

67.18 72.93 62.97

66.06 70.97 61.85

67.60 69.28 62.13

64.66 67.74 64.52

66.48 68.16 59.33

68.02 65.92 61.85

63.53 68.44 61.15

61.43 66.90 59.19

63.53 66.62 59.05

61.01 64.10 59.19

64.66 64.52 56.10

61.57 62.41 54.56

59.89 62.13 57.92

59.89 60.31 56.24

57.78 58.06 54.84

55.96 58.49 54.70

56.66 56.80 56.38

57.08 58.77 55.12

57.78 62.27 54.98

61.99 61.43 57.64

62.41 64.66 61.71

different rules.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Axé 64.44 56.67 95.56 82.22

Bachata 92.22 80.00 81.11 94.44
Bolero 68.89 65.56 64.44 91.11
Forró 60.00 51.11 32.22 75.56
Gaúcha 24.44 67.78 21.11 50.00

Merengue 96.67 87.78 77.78 95.56

Pagode 35.56 56.67 10.00 57.78
Salsa 77.78 78.89 57.78 85.56
Sertaneja 50.00 51.11 34.44 60.00
Tango 94.44 81.11 82.22 87.78

Overall 66.4471.07 67.6771.00 55.6771.73 78.0071.33



Table 13
Recognition rates (%) combining all zones of Bark scale zoning with

different rules in ISMIR 2004.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Classical 100.00 96.08 99.67 99.35

Electronic 68.14 60.18 76.99 88.50
Jazz/blues 15.38 3.85 0.00 7.69

Metal/punk 51.11 0.00 6.67 11.11

Rock/pop 41.18 63.73 57.84 64.71
World 7.44 67.77 30.58 22.31

Overall 64.66 71.53 68.86 70.69

Table 14
Upper limit recognition rates (%) between the

classifiers created with Bark scale zoning in LMD.

Genre Upper limit

Axé 100.00

Bachata 100.00

Bolero 100.00

Forró 100.00

Gaúcha 98.89

Merengue 100.00

Pagode 100.00

Salsa 100.00

Sertaneja 100.00

Tango 100.00

Overall 99.89

Table 15
Upper limit recognition rates (%) between the

classifiers created with Bark scale zoning in

ISMIR 2004.

Genre Upper limit

Classical 100.00

Electronic 100.00

Jazz/blues 84.62

Metal/punk 100.00

Rock/pop 99.02

World 100.00

Overall 99.30
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Some details about these rates are shown in Tables 14
and 15, respectively.

5.4. Results with Mel scale zoning

In this case, 15 zones were created, as described in
Section 4.3. Table 16 shows the recognition rates obtained
individually for each zone.

The results obtained on the LMD and on the ISMIR
2004 database proceeding the fusion of the classifiers
outputs with the four rules aforementioned are shown in
Tables 17 and 18, respectively.

The zoning based in Mel scale provided the best overall
performance in the LMD. The recognition rate improve-
ment is about 3.33% when facing the best result with that
obtained with global feature extraction, which is the
second best obtained result. One can note that,
considering the standard deviations taken from results
obtained individually in each fold, the recognition rate
obtained with Mel scale is quite promising, even implying
in a greater number of classifiers than the global and
linear zoning approaches.

In order to take a better idea about the classifier with
best performance on the LMD, Table 19 shows the confu-
sion matrix. We can observe that the music genres
Gaúcha and Sertaneja present the worst recognition rates.
Beyond being originally from the same country (Brazil),
on can notice that in most of the cases such genres are
confused with another Brazilian genre (Axé). As afore-
mentioned, commonly genres from the same country
present high similarity among themselves, what can
explain such confusions.

The upper limit found between the classifiers created
with Mel scale zoning for the LMD is equal to 99.78% in
the LMD and 99.16% in the ISMIR 2004 database. These
rates are very close to the best ones, obtained with Bark
scale zoning.

5.5. Results with acoustic features

In order to compare the performance of the features
presented here with some well-known acoustic features,
we performed over the same datasets used in this work
some experiments with the following features: Spectral
Centroid, Roll-Off, Flux, Zero Crossing, and 13 Mel-Fre-
quency Cepstral Coeficients (MFCCs). The features were
extracted with the framework MARSYAS, more details
about these features can be found in [10]. The obtained
results are shown in Table 20.

One can observe that these features presented a sig-
nificantly worse result on the LMD. Tables 21 and 22
show the confusion matrices generated in the classifica-
tion with acoustic features on the LMD and on the ISMIR
2004 database, respectively. These matrices can help to
take a good comprehension about the complementarity
between the classifiers constructed with acoustic and
visual features. The difference between the performance
of the acoustic features in the LMD and the ISMIR 2004
datasets can be explained by the fact that the distribution
of music pieces per genre in ISMIR 2004 is far from
uniform. In this dataset, the genre which presented the
best individual performance (classical) has much more
music pieces than the others.

5.6. Discussion

Table 23 presents the best results obtained in this
work considering all the zoning schemes proposed in this
work. Furthermore, the experimental results with the
acoustic features are also include here.

The Friedman test with the post hoc Shaffer’s static
procedure was employed to evaluate if there are statisti-
cally significant differences between the results origi-
nated from the different zoning schemes with LBP as
well as the acoustic features. Since only the LMD was split
into folds, we only performed the test on this database.
For this purpose, we took the best result, in terms of
fusion rule, obtained for each experimented zoning



Table 17
Average recognition rates (%) in LMD using Mel scale zoning with

different rules.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Axé 65.56 64.44 83.33 84.44
Bachata 95.56 86.67 93.33 95.56
Bolero 75.56 65.56 91.11 92.22
Forró 73.33 58.89 82.22 83.33
Gaúcha 34.44 71.11 67.78 55.56

Merengue 95.56 87.78 95.56 95.56
Pagode 45.56 60.00 71.11 65.56

Salsa 84.44 80.00 84.44 84.44
Sertaneja 56.67 51.11 67.78 63.33

Tango 96.67 86.67 86.67 91.11

Overall 72.3373.33 71.2272.34 82.3371.45 81.1171.35

Table 18
Recognition rates (%) using Mel scale zoning with different rules in

ISMIR 2004.

Genre Max rule Min rule Product rule Sum rule

Rec. rate (%) Rec. rate (%) Rec. rate (%) Rec. rate (%)

Classical 99.67 97.71 99.35 99.67
Electronic 73.45 67.26 88.50 92.04
Jazz/blues 23.08 23.08 19.23 19.23

Metal/punk 33.33 17.78 11.11 13.33

Rock/pop 49.02 65.69 68.63 64.71

World 73.55 17.33 46.28 33.88

Overall 67.32 76.44 76.74 73.91

Table 16
Recognition rates (%) obtained for each zone with Mel scale zoning.

Frequency band id.a LMD ISMIR 2004

Beginning segment Middle segment End segment Beginning segment Middle segment End segment

15 48.89 54.00 49.00 68.86 73.63 66.06

14 55.11 59.67 55.00 68.16 72.37 62.41

13 56.89 57.11 52.33 67.74 73.21 64.10

12 58.44 63.22 61.00 71.11 70.13 62.97

11 55.11 51.67 51.22 68.30 68.58 63.81

10 51.44 48.11 50.67 64.52 67.46 57.78

9 57.44 55.22 55.11 67.88 70.83 65.08

8 54.00 58.56 57.44 68.30 68.44 65.36

7 42.56 38.22 41.00 59.89 61.15 56.94

6 39.67 42.11 43.78 59.47 61.15 56.80

5 45.11 51.00 49.56 59.75 63.81 59.61

4 44.44 48.44 47.11 60.17 65.22 60.03

3 36.78 41.11 41.33 58.63 62.97 57.08

2 48.00 57.89 56.78 60.31 65.92 62.55

1 35.78 43.44 39.56 59.47 64.38 59.89

a According to Table 4.
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scheme. The multiple comparison statistical test has show
that the p value of the statistical test was lower than the
corrected critical value only between the Mel scale zoning
and the acoustic features, showing a statistically signifi-
cant difference between these approaches at 95% con-
fidence level. Furthermore, the statistical tests have
shown that there is no statistically significant difference
between the results obtained from the different zoning
schemes.

Regarding to recognition rates, the use of zoning
scheme in order to preserve local feature extraction did
not perform as expected in most of cases. The only case in
which the zoning scheme performed better than the
global one occurred when Mel scale division was used
in the experiments with the LMD. In this case, even
considering the standard deviation between the three
folds used in classification, the Mel scale zoning remains
with the best result. Taking into account previous results
in [18], it was expected that zoning would provide better
results. However, obtained results suggest that the tex-
ture features captured by LBP from spectrogram images
taken from music pieces of the same genre change less
from zone to zone than when GLCM is used.

Also related to zoning scheme, it is worthy of mention
that the upper limits provided by the pool of classifiers
produced in all the zoning schemes experimented here
are very promising. It would be very interesting to per-
form future works taking into account the use of some
dynamic classifier/ensemble selection over these pool of
classifiers.

Some results of the experiments described in this work
are very promising when compared with the state of the
art. Table 24 shows the best result obtained here with the
LMD and the best results reported recently on the
literature with this database. In order to proceed a fair
comparison, it was chosen some works in which the LMD
was used with artist filter. In some cases [23,18] the
results refer to experiments developed with exactly the
same folds, composed of the same music pieces. In 2010,
Lopes et al. [23] presented an approach based on an
instance selection method, where a music piece was
represented by 646 instances. The instances consist of
feature vectors representing short-term, low-level char-
acteristics of music audio signal. The classifier used was
an SVM and the final decision was done through majority
voting. In 2011, Costa et al. [18] presented a classification
scheme similar to the one presented in this work, based



Table 19
Confusion matrix (%) of the best case considering the Mel scale zoning in LMD.

Genre (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) Axé 83.33 0.00 1.11 0.00 0.00 0.00 6.67 3.33 5.56 0.00

(1) Bachata 2.22 93.33 2.22 1.11 0.00 0.00 0.00 1.11 0.00 0.00

(2) Bolero 1.11 0.00 91.11 1.11 0.00 0.00 0.00 1.11 4.44 1.11

(3) Forró 2.22 1.11 4.44 82.22 6.67 0.00 0.00 2.22 1.11 0.00

(4) Gaúcha 14.44 0.00 6.67 6.67 67.78 0.00 0.00 0.00 4.44 0.00

(5) Merengue 0.00 3.33 1.11 0.00 0.00 95.56 0.00 0.00 0.00 0.00

(6) Pagode 6.67 0.00 11.11 0.00 1.11 0.00 71.11 3.33 6.67 0.00

(7) Salsa 7.78 0.00 4.44 0.00 3.33 0.00 0.00 84.44 0.00 0.00

(8) Sertaneja 11.11 1.11 8.89 1.11 7.78 0.00 2.22 0.00 67.78 0.00

(9) Tango 1.11 0.00 11.11 1.11 0.00 0.00 0.00 0.00 0.00 86.67

Table 20
Recognition rates (%) obtained with acoustic features.

LMD Rec. rate ISMIR 2004 Rec. rate

Axé 57.78 Classical 95.42

Bachata 85.56 Electronic 76.11

Bolero 63.33 Jazz/blues 50.00

Forró 38.89 Metal/punk 51.11

Gaúcha 51.11 Rock/pop 59.80

Merengue 78.89 World 46.28

Pagode 46.67

Salsa 57.78

Sertaneja 42.22

Tango 87.78

Overall 61.0071.53 Overall 74.47

Table 21
Confusion matrix (%) obtained in LMD using acoustic features.

Genre (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) Axé 57.78 2.22 2.22 4.44 6.67 1.11 4.44 7.78 12.22 1.11

(1) Bachata 0.00 85.56 2.22 2.22 1.11 2.22 1.11 5.56 0.00 0.00

(2) Bolero 0.00 3.33 63.33 4.44 5.56 0.00 8.89 3.33 7.78 3.33

(3) Forró 0.00 5.56 11.11 38.89 17.78 2.22 4.44 10.00 8.89 1.11

(4) Gaúcha 8.89 3.33 6.67 10.00 51.11 4.44 1.11 5.56 7.78 1.11

(5) Merengue 1.11 3.33 0.00 2.22 4.44 78.89 1.11 8.89 0.00 0.00

(6) Pagode 5.56 1.11 12.22 10.00 10.11 1.11 46.67 3.33 10.00 0.00

(7) Salsa 11.11 2.22 1.11 7.78 7.78 7.78 3.33 57.78 1.11 0.00

(8) Sertaneja 17.78 0.00 8.89 6.67 4.44 0.00 18.89 1.11 42.22 0.00

(9) Tango 0.00 0.00 5.56 1.11 2.22 0.00 1.11 0.00 2.22 87.78

Table 22
Confusion matrix (%) obtained in ISMIR 2004 using acoustic features.

Genre (0) (1) (2) (3) (4) (5)

(0) Classical 95.42 0.33 0.00 0.00 0.00 4.25

(1) Electronic 4.42 76.11 0.00 0.88 4.42 14.16

(2) Jazz/blues 7.69 3.85 50.00 0.00 7.69 30.77

(3) Metal/punk 0.00 6.67 0.00 51.11 42.22 0.00

(4) Rock/pop 5.88 8.82 0.98 11.76 59.80 12.75

(5) World 33.06 14.88 0.00 0.83 4.96 46.28

Table 23
Best results obtained in this work for each experimented zoning scheme.

Zoning/features Recognition rate

in LMD

Recognition rate in

ISMIR 2004

LBP with global feature

extraction

79.0071.00 80.65

LBP with linear zoning 77.7870.38 78.40

LBP with Bark scale

zoning

78.0071.33 71.53

LBP with Mel scale

zoning

82.3371.45 76.74

Acoustic features 61.0071.53 74.47
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on feature extracted from spectrograms, but using a
different texture descriptor. The descriptor used was the
well known GLCM, a statistical approach to describe
texture content. Furthermore, only the linear zoning
mechanism was used and only one classifier for all zones
was created, with the final decision done through major-
ity voting. In 2009, Cao and Li won MIREX Audio Genre
Classification (Latin set) using basic acoustic features (e.g.
MFCC) and the modeling framework of GSV-SVM [33].



Table 24
Best results obtained with LMD in this work and in the state of the art.

Genre Mel scale

zoning

Acoustic

features

GLCM feature

extraction [18]

Instance

selection [23]

GLCM þ inst.

selection [18]

MIREX 2009

winner [33]

MIREX 2010

winner [34]

Axé 83.33 57.78 73.33 61.11 76.67 53.04 69.32

Bachata 93.33 85.56 82.22 91.11 87.78 97.12 95.84

Bolero 91.11 63.33 64.44 72.22 83.33 82.22 91.11
Forró 82.22 38.89 65.56 17.76 52.22 82.75 83.38
Gaúcha 67.78 51.11 35.56 44.00 48.78 76.92 72.11

Merengue 95.56 78.89 80.00 78.78 87.78 94.29 94.60

Pagode 71.11 46.67 46.67 61.11 61.11 52.94 79.41
Salsa 84.44 57.78 42.22 40.00 50.00 90.35 93.56
Sertaneja 67.78 42.22 17.78 41.11 34.44 19.94 36.13

Tango 86.67 87.78 93.33 88.89 90.00 84.31 83.08

Overall 82.33 61.00 60.11 59.67 67.20 74.66 79.86

Table 25
Best result obtained in this work and other existing approaches for the

ISMIR 2004.

Work Recognition rate

LBP with global feature extraction 80.65

Acoustic features 74.47

Marques et al. [35] 79.80

Lidy et al. [36] 81.40

Wu et al. [20] 86.10

Seyerlehner et al. [34] 88.27
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In 2010, Seyerlehner et al. won the MIREX Audio Genre
Classification (Latin) using a set of block-level features,
more details can be found in [34].

Note that the overall recognition rate obtained in this
work is higher than that obtained in other works. In
addition, the standard deviation found between the classes
is smaller with the classifier presented in this work.

The best result obtained on the ISMIR 2004 database
(global feature extraction) and other results with this
dataset presented in the literature are shown in Table 25.
In order to make this table, it was selected some works in
which the standard splitting of training and test sets was
used. There are several works described in the literature
aiming music genre classification using the ISMIR 2004
database. As not all of them show the recognition rates
per genre, we could not show the detailed rates here.

The obtained results on the ISMIR 2004 database
shows that the features presented here can perform well
in different databases. Despite of performing better on the
LMD, the classifier presented an acceptable performance
on the ISMIR 2004 database, indicating its versatility.

6. Conclusion

In this paper we have presented an alternative
approach for music genre classification which is based
on texture images. Such visual representations are created
by converting the audio signal representation into spec-
trograms images which can be divided into zones then
that features can be extracted locally. We have demon-
strated that, with LBP, there is a slight difference in terms
of recognition rate when different zoning mechanisms are
used and when a global feature extraction is performed,
contrary to expectations generated by a previous work,
that used GLCM.

Two different databases were used in the experiments:
LMD, and ISMIR 2004. The best overall result in LMD was
obtained with a zoning mechanism done according to the
Mel scale, a scale that relates real frequency to perceived
frequency. This result is not surprising since a representa-
tion of the short-term power spectrum of a sound, based
on a linear cosine transform of a log power spectrum on a
non-linear Mel scale of frequency is commonly used as
features in speech recognition systems, speaker recogni-
tion and in music information retrieval applications such
as genre classification and audio similarity measures.
Furthermore, one can note that with Mel scale zoning,
the recognition rate obtained is 3.33 percentage point
greater than those obtained without local feature extrac-
tion. One can say that without the use of zoning mechan-
ism, the overall system complexity decreases, since a
smaller number of classifiers is created. On the other
hand, upper limit rates obtained with classifiers produced
with zoning schemes are very promising which opens up
interesting perspectives for future working on selection of
classifiers.

The artist filter restriction was considered in all the
experiments conducted on LMD. For ISMIR 2004 it was
not possible, since the training and test sets are prede-
fined in the original database splitting. There is no report
in the literature about results with LMD, taking into
account the artist filter restriction, better than those
obtained in this work.

Regarding to ISMIR 2004, the obtained results are close
to many others described in the literature. In general, it
was possible to conclude that the features experimented
here presents an interesting versatility in which concerns
to different databases, specially when faced with some
common acoustic features.

Although we did not carry out a rigorous analysis to
find out if the LBP features used in this work capture
different information from the features currently
employed in the audio signal based approaches, there is
some evidence that this can be true, since the distribution
of the errors when comparing the confusion matrices are
different. However, this particular aspect of the possible
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complementarity of the image-based and audio signal-
based features will be the subject of future work.

Our future work will also focus on the evaluation of
other texture features, weighted zoning strategies, analysis
of recognition rates versus multi classifier systems complex-
ity, and experiments combining the different schemes
presented here. There was not only one classifier providing
best results for all the genres, it suggests that there is
complementarity between them. With this in mind, we
intend to explore the dynamic selection of classifiers.
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