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a b s t r a c t 

Histopathological images are the gold standard for breast cancer diagnosis. During examination several 

dozens of them are acquired for a single patient. Conventional, image-based classification systems make 

the assumption that all the patient’s images have the same label as the patient, which is rarely veri- 

fied in practice since labeling the data is expensive. We propose a weakly supervised learning framework 

and investigate the relevance of Multiple Instance Learning (MIL) for computer-aided diagnosis of breast 

cancer patients, based on the analysis of histopathological images. Multiple instance learning consists in 

organizing instances (images) into bags (patients), without the need to label all the instances. We com- 

pare several state-of-the-art MIL methods including the pioneering ones (APR, Diverse Density, MI-SVM, 

citation-kNN), and more recent ones such as a non parametric method and a deep learning based ap- 

proach (MIL-CNN). The experiments are conducted on the public BreaKHis dataset which contains about 

80 0 0 microscopic biopsy images of benign and malignant breast tumors, originating from 82 patients. 

Among the MIL methods the non-parametric approach has the best overall results, and in some cases 

allows to obtain classification rates never reached by conventional (single instance) classification frame- 

works. The comparison between MIL and single instance classification reveals the relevance of the MIL 

paradigm for the task at hand. In particular, the MIL allows to obtain comparable or better results than 

conventional (single instance) classification without the need to label all the images. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Supervised learning is a subfield of machine learning where a

redictive function is inferred from a set of labeled training ex-

mples, in order to map each input instance to its output label.

n a conventional setting, the training dataset consists of instances

quipped with their corresponding label. While instances are rel-

tively easy to obtain, the expensive data-labeling process with

uman-based ground-truth descriptions remains the major bottle-

eck to have large-scale datasets. This issue gives rise to a novel

aradigm in machine learning, with the so-called weakly super-

ised learning, namely when having a partially-labeled training

ataset ( Zhou, 2017 ). 

Multiple Instance Learning (MIL) provides an elegant frame-

ork to deal with weakly supervised learning. In comparison with
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trong ( i.e. , fully-labeled) supervised learning where every train-

ng instance is assigned a discrete or real-valued label, the ratio-

ale of MIL paradigm is that instances are naturally grouped in la-

eled bags, without the need that all the instances of each bag

ave individual labels ( Fig 1 ). In the binary classification case, a

ag is labeled positive if it has at least one positive instance; on

he other hand, a bag is labeled negative if all its instances are

egative ( Foulds & Frank, 2010 ). With such training data grouped

n labeled bags, MIL algorithms seek to classify either unseen bags

 i.e., bag-level classification) or unseen instances ( i.e., instance-level

lassification). 

Whereas MIL has many applications in medical imaging,

s shown in a recent review ( Quellec, Cazuguel, Cochener, &

amard, 2017 ), there is a growing interest for the usage of MIL

or histopathological image classification ( Jia, Huang, Chang, &

u, 2017a; Mercan et al., 2018; Xu et al., 2014 ), in particular.

istopathological images are microscopic images of the tissue for

isease examination, which prevail as the gold standard for can-

er diagnosis ( Rubin, Strayer, Rubin, & McDonald, 2008 ). Estab-

https://doi.org/10.1016/j.eswa.2018.09.049
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Fig. 1. Multiple instance learning vs single instance classification. In this figure, an instance is an image, and the bag is the patient. One can also consider the case where 

an instance is a patch, the bag is the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

t  

W  

s  

b  

&

 

S  

l  

M  

S  

e  

p

2

 

p  

b  

a  

o  

h  

m  

a  

i  

e  

s  

w  

g  

p  

a

 

m  

c  

(  

i  

v  
lishing a diagnosis with histopathological images remains a non

trivial task. The expert has to identify specific patterns (size, ge-

ometry, texture). However the analysis is a highly, time consuming

specialized task, dependent on the experience of the pathologists

and influenced by factors such as fatigue and decrease of atten-

tion. As pointed out by ( Gurcan et al., 2009 ) there is a pressing

need for computer-assisted diagnosis (CAD) to relieve the workload

on pathologists, by for example filtering obviously benign areas, so

that the experts can focus on the more difficult-to-diagnose cases. 

The diagnosis is established by the pathologist at the patient

scale, from reviewing several images. Another decision can also

be taken at the scale of the image: the experts can attribute a

label to an image by identifying patterns in particular areas in

the images. However fine-grain annotation would be too costly to

perform; thus datasets are labeled at the patient or image scale,

but not at the pixel or region scale. As these data are weakly la-

beled by essence, the MIL paradigm should be better suited than

single instance classification. To verify this hypothesis, we pro-

vide in our paper results obtained on a significant, recently es-

tablished, publicly available dataset of breast cancer images, called

BreakHis ( Spanhol, Oliveira, Petitjean, & Heutte, 2016b ), which con-

tains about 80 0 0 microscopic biopsy images of benign and malig-

nant breast tumors, originating from 82 patients. 

We thus propose to investigate the use of MIL on this large

dataset of histopathological images, with the aim of image clas-

sification and patient, as a first contribution. We have chosen a

representative sample of major MIL methods: the seminal Axis-

Parallel Rectangle algorithm (APR) ( Dietterich, Lathrop, & Lozano-

Prez, 1997 ), and algorithms based on diversity density (DD) ( Maron

& Lozano-Pérez, 1998; Zhang & Goldman, 2001 ), k -NN (Citation-

kNN) ( Wang & Zucker, 20 0 0 ) and Support Vector Machines (SVM)

( Andrews, Tsochantaridis, & Hofmann, 2002 ), as well as a recently-

proposed non-parametric algorithm ( Venkatesan, Chandakkar, & Li,

2015 ) and a deep learning approach revisiting Convolutional Neu-

ral Networks (CNN) for MIL (MILCNN) ( Sun, Han, Liu, & Khodayari-

Rostamabad, 2016 ). The second contribution is to show that MIL

compares favorably to single instance classification, which is the

i

nly framework implemented on this data until now. Of course in

his case we suppose that instances inherit labels from the bags.

e examine whether it is preferable to cast this problem into a

ingle instance one, or if MIL does indeed bring an added value,

oth at the image and patient levels ( Alpaydin, Cheplygina, Loog,

 Tax, 2015 ). 

The remainder of this paper is organized as follows.

ection 2 motivates the use of the MIL paradigm for histopatho-

ogical image and patient diagnosis. Section 3 presents the

IL assumption and provides a brief survey of MIL methods.

ection 4 describes the BreaKHis dataset and the conducted

xperiments with the obtained results. Section 5 concludes the

aper. 

. The MIL paradigm for histopathological image analysis 

While the multiple instance paradigm arose in many domains

rior to the 1990’s, MIL was first described explicitly and studied

y ( Dietterich et al., 1997 ). The original motivation in MIL was drug

ctivity prediction, where experts provide activity labels to bags

f molecules, labeling each individual molecule being costly and

ard to set up. MIL is central in many applications in various do-

ains, such as in bioinformatics, text processing, computer vision

nd image processing, to name a few ( Herrera et al., 2016 ). Indeed,

n many applications, ground truth labeling is expensive in gen-

ral and instances can be often grouped in bags, each bag having a

et of partially-labeled instances. An example is facial recognition,

here several images of the same person taken from different an-

les can be considered as instances in a bag (the bag being the

erson) ( Herrera et al., 2016 ). Note that only the MIL paradigm can

pprehend this type of situations. 

Of particular interest is image-based pathology classification for

edical decision making, since it is relatively easy and part of the

linical protocol to take many images of some organs or tissues

physiology) under study; on the other hand, labeling each image

s a time-consuming process dominated by human effort. The rele-

ance of MIL for this type of weakly labeled data, as announced in

ntroduction, is twofold. 
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The first possibility is to divide each image into subimages or

atches and to consider the image as a bag, while patches are the

nstances. As histopathological images have a high resolution, lo-

al methods are appealing to process and identify malignant ar-

as. In the field of natural scene images, this approach is related

o region-based image categorization, where each instance encodes

olor, textural or spatial features related to that specific region

 Herrera et al., 2016 ). In our binary setting, the image would be

abeled “positive” (pathological) if it has at least one malignant

atch; conversely, an image would be labeled benign if it does not

ave any portion labeled malignant. This multiple instance formal-

sm is natural, since only a subset of the patches is labeled by the

xperts, making it possible that entire images might be healthy

hereas the patient is diagnosed with a tumor. This is not the case

n the conventional strategy used so far, in a single instance classi-

cation setting with instances inheriting the label of their image. 

The second possibility explores the patient scale. Each patient

an thus be described with several dozens of images. Conventional,

mage-based classification systems classify images independently

nd merge decisions at the patient level; they make the assump-

ion that all the patient’s images have the same label as the pa-

ient, which is rarely verified in practice. With MIL, the patient is

onsidered as a bag, with the instances being its associated images

r subimages. This makes full sense as the diagnosis ( i.e., the label)

s established only at the patient level. Furthermore, a patient di-

gnosed with a malignant tumor can still have some of his images

escribed as tumor-free, i.e., healthy, as just said; and a healthy pa-

ient has inevitably all of his images healthy. These facts match the

IL assumption. 

In our experiments we will investigate these two settings, and

ompare both of them to their single instance learning equivalent. 

. MIL methods: A brief overview 

Under the standard MIL assumption, positive bags contain at

east one positive instance, while negative bags contain only neg-

tive instances. We denote by L B the label of a bag B , defined

s a set of instances, each one described by its feature vector:

 = { b 1 , b 2 , . . . , b N } . We denote by l k the label of each instance b k .

e can now define the label of a bag, following the standard MIL

ssumption: 

 B = 

{
+1 if ∃ l k : l k = +1 ;
−1 if ∀ l k : l k = −1 . 

(1) 

here are other – more relaxed – assumptions, such as a bag is

abeled positive when it contains a sufficient number of positive

nstances; since they are out of the scope of this paper, we refer

he reader to ( Foulds & Frank, 2010 ) for further reading. 

MIL methods are usually divided into two groups, depending on

ow they exploit the information in the data ( Amores, 2013 ). The

rst group consists of methods that consider the discriminative in-

ormation at the instance level. Learning algorithms do not focus at

he larger scale of a bag, but at the local scale of instances. An ad-

antage of these methods is that they are able to classify instances,

hen needed. However, they require that instances have a pre-

ise label, a requirement not all MIL problems meet. The instance

evel methods include APR, DD, SVM based approaches. The second

roup consists of the methods that consider the discriminative in-

ormation to be at the bag level. These methods are usually more

ccurate, since they can model the distribution of each class and

he relations between classes ( Carbonneau, Cheplygina, Granger, &

agnon, 2016 ). However, they cannot classify single instances, but

nly bags. An example of such methods is Citation-kNN ( Wang &

ucker, 20 0 0 ). For a review on MIL methods, we refer the reader

o ( Amores, 2013; Carbonneau et al., 2016; Herrera et al., 2016 ). 
In the following, we briefly describe the well-established MIL

ethods that have been implemented and applied to the BreaKHis

ataset. 

.1. Axis-parallel hyper rectangle (APR) 

The MIL paradigm was first introduced in the seminal work of

 Dietterich et al., 1997 ), motivated mainly by an application in bio-

hemistry. The goal was to predict whether a molecule will be

inding to a given receptor or not. Each molecule, which can be

onsidered as a bag, can take many different spatial conformations,

amely the instances. The methodology to solve the MIL problem

s to design an hyper rectangle (called axis-parallel hyper rectan-

le (APR)) in the feature space aimed at containing at least one

ositive instance from each positive bag while excluding all the

nstances from negative bags. A molecule is classified as positive

resp. negative) if one (resp. none) of its instances belongs inside

he APR. 

.2. Diverse Density (DD) and its variants 

Diverse density ( Maron & Lozano-Pérez, 1998 ) is closely related

o the idea of the APR. The DD defines a function over the feature

pace, such that it is high at points that are both close to instances

rom positive bags, and far away from instances which are in neg-

tive bags. The DD algorithm attempts to find the local maxima

f this function (called the positive instance targets or prototypes)

y maximizing diverse density (i.e. conditional likelihood) over the

nstance space, using gradient ascent with multiple starting points.

he DD approach has given rise to many variants, the most known

s the Expectation-Maximization method (EM–DD) ( Zhang & Gold-

an, 2001 ). In this variant, the DD measure is maximized itera-

ively with the EM algorithm. 

.3. Citation-KNN 

The Citation-kNN, an adaptation of k-nearest neighbors (k-

N) algorithm, is the first non-parametric approach ( Wang &

ucker, 20 0 0 ). The principle is to first apply the k -NN algorithm

o bags, where the distance between bags is measured with the

inimum Hausdorff distance. The latter is defined as the shortest

istance between any two instances from each bag: 

ist (A, B ) = min 

a i ∈ A 
min 

b j ∈ B 
|| a i − b j || 

or any two bags A and B , where a i and b j are instances from each

ag. This distance is used by a k -NN to classify a new bag, as the

egular k -NN approach. The citation-kNN method adds a final step

hat makes the process more robust: in addition to the neighbors

f the bag to be classified, other bags, called citers , are also consid-

red in the classification rule. 

.4. Mi-SVM and MI-SVM 

Two alternative generalizations of the maximum mar-

in idea used in SVM classification have been proposed by

ndrews et al. (2002) . On one hand, the mi-SVM is based on the

nstance-level paradigm. Since the instance labels are not known,

hey are treated as hidden variables subject to constraints defined

y their bag labels. The mi-SVM method attempts to recover

he instance labels and, at the same time, to find the optimal

iscriminant function. On the other hand, the bag-level paradigm

s adopted by the MI-SVM. Its goal is to maximize the bag margin,

efined between the positive instances of the positive bags, and

he negative instances of the negative bags. In this setting, the bag

s not represented by all its instances, but only by the “extreme”
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Fig. 2. A slide of breast malignant tumor seen in different magnification factors of 

the same image: (a) 40 ×, (b) 100 ×, (c) 200 ×, and (d) 400 × . 

Table 1 

Image distribution by magnification factor and class. 

Magnification Benign Malignant Total 

40 × 625 1370 1995 

100 × 644 1437 2081 

200 × 623 1390 2013 

400 × 588 1232 1820 

Total 2480 5429 7909 

# Patients 24 58 82 
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ones, in the same sense as support vectors in conventional SVM.

Moreover, mi-SVM and MI-SVM inherit also the kernel trick, thus

allowing to use linear, polynomial and RBF kernels. 

3.5. Non-parametric MIL 

This recent technique is designed as a modified version of the

k -NN classifier ( Venkatesan et al., 2015 ). The non-parametric MIL

approach employs a new formulation based on distances to k-

nearest neighbors. The idea is to parse the MIL feature space with

a Parzen window technique, using different sized regions. Con-

versely to the majority vote used in k -NN, the vote contributions

are the kernelized distances in the feature space. Non-parametric

MIL has shown enhanced robustness to labeling noise on various

datasets. 

3.6. MILCNN 

Deep learning networks have been overwhelming machine

learning, pattern recognition and computer vision fields for a few

years. MIL is no exception to this rule ( Hoffman, Wang, Yu, & Dar-

rell, 2016; Jia et al., 2017a; Kraus, Ba, & Frey, 2016; Pathak, Shel-

hamer, Long, & Darrell, 2014; Sun et al., 2016; Wang, Yan, Tang, Bai,

& Liu, 2018; Zhou, Zhao, Yang, Yu, & Xu, 2017 ). In Sun et al. (2016) ,

a Multiple Instance Learning Convolutional Neural Network (MIL-

CNN) is proposed. This framework was initially proposed for the

data augmentation problem: in object detection, labels are not al-

ways preserved when the images are split for data augmentation.

The proposed method considers data augmentation generated im-

ages as a bag, by combining a convolutional neural network (CNN)

with a specific MIL loss function derived with respect to the bag. 

4. Experiments and results 

4.1. Description of the breakhis dataset 

BreaKHis is a publicly available dataset of microscopic biopsy

images of benign and malignant breast tumors ( Spanhol et al.,

2016b ). The images were collected through a clinical study in 2014,

to which all patients referred to the P&D Laboratory (Brazil) with

a clinical indication of breast cancer were invited to participate.

The institutional review board approved the study and all pa-

tients provided their written informed consent. All the data were

anonymized. Samples were generated from the breast tissue biopsy

slides, stained with hematoxylin and eosin (HE). The samples were

collected by surgical open biopsy (SOB), prepared for histological

study and labeled by pathologists of the P&D Lab. The diagnosis

of each case was produced by experienced pathologists and con-

firmed by complementary exams such as immunohistochemistry

analysis. 

Images were acquired in RGB color space, with a resolution of

752 × 582 using magnifying factors of 40 ×, 100 ×, 200 × and 400 ×.

Fig. 2 shows these 4 magnifying factors on a single image. This

image is acquired from a single slide of breast tissue containing a

malignant tumor (breast cancer). The highlighted rectangle (manu-

ally added for illustrative purposes only) is the area of interest se-

lected by the pathologist to be detailed in the next higher magni-

fication. To date, the database is composed of 7909 images divided

into benign and malignant tumors. Table 1 summarizes the image

distribution. For more information about the dataset, we refer to

Spanhol et al. (2016b) . 

4.2. Experimental protocol 

Following the standard labeling convention in use in medi-

cal studies, the label “positive” (resp. “negative”) refers to malig-
ant (resp. benign) images. The BreaKHis dataset has been ran-

omly divided into a training set (70%) and a testing set (30%), fol-

owing the protocol described in Spanhol, Oliveira, Petitjean, and

eutte (2016a) . Patients used to build the training set are not used

or the testing set. We computed the average rate over five trials.

ote that the distribution of the samples for each trial is publicly

vailable and allows for a fair comparison of methods. To handle

he image high resolution (752 × 582) and to augment data for

raining, images were divided into patches. The patches will form

he instances, whereas bags will be considered at two levels: at

he patient level, patches will be collected independently from all

he patient’s images; at the image level, patches will be originating

rom the image of interest. 

A size of 64 × 64 pixel was chosen for the patch size, as it has

een shown to be particularly relevant for CNN-based classification

 Spanhol et al., 2016a ). For training, 10 0 0 patches are randomly

xtracted from each input image. For test, to preserve computa-

ional cost, a grid of non-overlapping patches is extracted, yield-

ng around 100 patches per image. Each patch is described with

 162-long feature vector of Parameter-Free Threshold Adjacency

tatistics (PFTAS) features ( Coelho et al., 2010; Hamilton, S Pan-

elic, Hanson, & Teasdale, 2007 ). These features have shown to be

articularly relevant for this dataset, when assessed against many

thers such as local binary patterns (LBP), completed LBP, local

hase quantization, gray-level co-occurrence matrices, as well as

omputer vision features such as ORB (oriented FAST and rotated

RIEF) ( Spanhol et al., 2016b ). 

Twelve MIL methods were evaluated on the BreaKHis dataset,

s described in Section 2 : APR, DD and EM-DD, citation-kNN, mi-

VM and MI-SVM, both with linear, polynomial and RBF kernels,
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Table 2 

Accuracy rate at respective levels. Best results columnwise are in bold. For statistical significance, please see text. 

Patient as bag Image as bag 

40 × 100 × 200 × 400 × 40 × 100 × 200 × 400 ×
Iterated-discrim APR 73.8 ± 3.8 66.5 ± 4.1 84.2 ± 4.9 68.0 ± 5.6 70.4 ± 2.4 65.1 ± 5.0 81.3 ± 5.5 67.3 ± 4.9 

DD 70.5 ± 6.1 64.5 ± 4.3 68.3 ± 3.6 71.2 ± 3.3 71.2 ± 5.9 66.1 ± 5.4 66.7 ± 2.9 70.8 ± 3.8 

EM-DD 78.3 ± 5.6 80.6 ± 5.2 77.1 ± 6.3 78.7 ± 5.7 73.1 ± 5.4 76.4 ± 4.8 78.2 ± 5.2 76.2 ± 5.6 

Citation-kNN 73.7 ± 4.6 72.8 ± 5.4 75.7 ± 3.1 77.2 ± 3.6 73.1 ± 4.3 73.0 ± 5.7 71.3 ± 3.5 78.7 ± 3.1 

mi-SVM Linear 79.5 ± 4.3 83.4 ± 4.6 83.6 ± 4.7 81.0 ± 5.2 72.6 ± 4.4 80.6 ± 3.7 80.1 ± 4.9 78.2 ± 5.3 

mi-SVM poly 75.2 ± 6.1 79.8 ± 4.8 76.5 ± 3.9 68.5 ± 5.1 75.6 ± 5.7 78.7 ± 4.0 75.2 ± 5.6 69.2 ± 4.8 

mi-SVM RBF 77.8 ± 1.6 75.4 ± 1.5 73.8 ± 2.3 72.9 ± 3.4 77.9 ± 2.2 77.3 ± 2.1 74.6 ± 2.9 71.4 ± 3.9 

MI-SVM Linear 85.6 ± 5.6 82.1 ± 5.9 84.6 ± 4.8 80.9 ± 4.9 79.5 ± 4.1 78.2 ± 4.4 80.8 ± 4.7 78.9 ± 5.1 

MI-SVM poly 84.8 ± 2.7 82.5 ± 4.6 83.9 ± 4.2 81.3 ± 4.2 86.2 ± 2.8 82.8 ± 4.8 81.7 ± 4.4 82.7 ± 3.8 

MI-SVM RBF 79.0 ± 2.1 71.9 ± 2.9 76.2 ± 1.9 73.0 ± 3.5 78.3 ± 3.2 72.2 ± 3.0 76.8 ± 1.6 71.9 ± 2.4 

Non-parametric 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1 

MILCNN 86.9 ± 5.4 85.7 ± 4.8 85.9 ± 3.9 83.4 ± 5.3 86.1 ± 4.2 83.8 ± 3.1 80.2 ± 2.6 80.6 ± 4.6 

Fig. 3. Accuracy results of MIL benchmark with patient as bag (left part of Table 2 ). Best viewed in color. 
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on-parametric MIL, and MILCNN. For all methods except the non-

arametric and the MILCNN, we used the implementation of the J.

ang’s MIL Library 1 with MATLAB 2017a. The non-parametric MIL

lgorithm was obtained from the author’s website 2 . For the im-

lementation of MILCNN in Python, Keras and Theano were used

 Chollet, 2015 ). The hyper-parameters for each method were op-

imized using grid search (cf Appendix A ). Regarding the non-

arametric MIL method, the main (and almost only) hyperparam-

ter is the number of neighbors. It is found with grid search and

ypically depends on the dataset. The other hyperparameters are

elated to implementation and train/test setting; they include the

aximum number of iterations to maximize the training accuracy

nd the number of runs on which accuracy is averaged. These hy-
1 CMU MIL toolbox: http://www.cs.cmu.edu/ ∼juny/MILL/ . 
2 https://github.com/ragavvenkatesan/np-mil. 

p  

a  

c  

t  
er parameters should be set as high as possible, or at least as the

esult of a tradeoff between computation time and accuracy, and

o not have a tremendous influence on the results. 

In the following, we first show the benchmark of MIL methods,

nd then assess the best MIL method against single instance clas-

ification frameworks. 

.3. Results 

.3.1. MIL Benchmark on breakhis dataset 

We provide results for two different settings, as aforemen-

ioned. In the first setting, each patient is considered as a bag,

hich is labeled with its diagnosis, and the instances are the

atches extracted from the images. As can be seen in Table 1 , in

verage 25 images are available for each patient, for each magnifi-

ation factor. Since around 100 patches are extracted per image in

est, each bag (or patient) contains around 2500 instances. In the

http://www.cs.cmu.edu/~juny/MILL/
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Fig. 4. Accuracy results of MIL benchmark with image as bag (right part of Table 2 ). Best viewed in color. 

Fig. 5. Accuracy results: MIL vs SIL at patient level (left part from Table 3 ). Best viewed in color. 
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Table 3 

Comparison of MIL (non-parametric) vs single instance classification (SIL). Best results columnwise are in bold. For statistical significance, please see text. 

Patient as bag (MIL) or level (SIL) Image as bag (MIL) or level (SIL) 

40 × 100 × 200 × 400 × 40 × 100 × 200 × 400 ×
MIL Non-parametric 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1 

SIL CNN 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0 

1-NN 80.9 ± 2.0 80.7 ± 2.4 81.5 ± 2.7 79.4 ± 3.9 79.1 ± 2.1 77.8 ± 3.0 79.6 ± 1.9 77.6 ± 4.0 

QDA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9 82.8 ± 3.6 80.7 ± 4.9 83.3 ± 3.0 80.5 ± 5.6 

RF 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8 80.2 ± 1.9 80.4 ± 3.8 82.4 ± 2.3 80.0 ± 4.5 

SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8 79.9 ± 3.7 77.1 ± 5.5 84.2 ± 1.6 81.2 ± 3.6 

Fig. 6. Accuracy results: MIL vs SIL at image level (right part from Table 3 ). Best viewed in color. 
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econd setting, we consider each image as a bag; in this case, the

nstances are the patches, and a bag contains approximately 100

nstances. 

Results are presented in Table 2 , and Figs. 3 and 4 . Due to

he large standard deviation values, we performed paired T -tests

n the accuracy rates on all trials, in order to fairly compare the

ethods and considered the difference to be significant when the

 -value is inferior to 0.05. As expected, DD-based approaches, APR

nd citation-kNN yield the poorest results which leads us to think

hat positive instances are not clustered in a single area of the

eature space. SVM-based approaches perform better. In particu-

ar, MI-SVM leads to enhanced results, compared to mi-SVM, with

 p -value of 0.0029, which shows that a bag level paradigm is bet-

er suited to the data. At last, best classification rates are obtained

ith the non-parametric MIL and the MILCNN approaches, which

oth outperform all the other methods, with p -values inferior

o 0.001 (when comparing to either MILCNN or non-parametric

IL); however there is no significant difference between MIL-

NN and non-parametric MIL ( p = 0.77). To compare MIL against

ingle instance classification methods in the following section,

e arbitrarily retain the non-parametric MIL as the best MIL
ethod. y
.3.2. MIL Vs single instance learning 

Using the same protocol (same trials, same training and test

et distribution), we compare results of non-parametric MIL with

tate-of-the-art, single instance classifiers, namely 1-NN, quadratic

iscriminant analysis (QDA), random forest (RF), and SVM, partly

btained from previous experiments ( Spanhol et al., 2016b ). Hyper-

arameters of these classifiers were tuned using grid search and

nly the best results were retained. These classifiers take as input

he PFTAS feature vector describing each image. For the CNN ap-

roach, we used AlexNet ( Krizhevsky, Sutskever, & Hinton, 2012;

panhol et al., 2016a ). Decisions are taken on each patch and are

used together using the Max Fusion Rule. For further details, we

efer the reader to Spanhol et al. (2016a,b) . 

Results are reported in Table 3, Fig. 5 (patient level) and

ig. 6 (image level). Apart from the single instance CNN, we can

bserve that the non-parametric MIL, trained using the same PF-

AS feature vector, is better than all the other four SIL methods;

 -values for all methods 1-NN, QDA, RF, SVM against MIL are in-

erior to 0.0073. This suggests that instances, namely patches, may

rovide only partial, complementary information for the image or

he patient level ( Alpaydin et al., 2015 ), and that a bag-based anal-

sis is valuable for the analysis of histopathological images. 
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Now, the single instance CNN is not only better than the

other single instance learning models trained with hand-crafted

textual descriptors (in accordance with previous experiments

( Spanhol et al., 2016a ) and ( Han et al., 2017 )), its performance are

similar to the non-parametric MIL approach ( p = 0.65). Even if

both methods are not significantly different in terms of accuracy,

the non-parametric MIL still has the advantage of not requiring the

labeling at the image level, but only at a macro (i.e. patient) level:

MIL can leverage weakly labeled data, an advantage in the field of

medical imaging where fine-grain labeling is especially costly. 

5. Conclusions and future works 

Multiple instance learning provides a classification framework

that is particularly adapted to computer-aided diagnosis based

on histopathological image analysis. In the case of the BreaKHis

dataset, several hundreds of images are available per patient. The

patient can thus be considered as a bag, which is labeled with its

diagnosis. 

Our MIL benchmark shows that the recently proposed non-

parametric MIL and MILCNN are particularly efficient for the tasks

of patient and image classification. Patient classification rates can

reach up to 92.1% for the 40 × magnification factor, a level never

reached by conventional classification frameworks, which enhances

the fact that instances are complementary and can be fruit-

fully considered in a MIL framework. MIL can thus leverage dig-

ital histopathological image classification and analysis to improve

computer-aided diagnosis, without the need to label all the images.

As future work, we are currently engaged in experimenting

other deep learning frameworks ( Spanhol, Cavalin, Oliveira, Petit-

jean, & Heutte, 2017 ). With the acceleration of proposals in this

area, no doubt that some more efficient networks will be pro-

posed in the near future. Today’s usage of CNN and more gener-

ally AI or learning based technology is often limited to assist the

clinician for the final decision. In addition to improving the accu-

racy of the decision making process, research should also focus on

extracting those features that matter for the cancer image clas-

sification. These features will give insight on specific areas to be

examined, and the experts will be able to focus on these areas

( Xu et al., 2017 ). By considering the image as a bag and pixels as

the instances, MIL offers an adequate framework for histopatholog-

ical image segmentation, to identify malignant region position ( Jia,

Huang, Chang, & Xu, 2017b; Kraus et al., 2016; Pathak et al., 2014;

Xu et al., 2014 ). 

Acknowledgment 

The authors acknowledge the CRIANN (Centre des Ressources

Informatiques et Applications Numériques de Normandie, France)

for providing computational resources. Fabio Spanhol was sup-

ported for this work by a grant of the Programa de Doutorado San-

duíche no Exterior 88881.135972/2016-01 agency (Coordination for

the Improvement of Higher Education Personnel, Brazil). 

Appendix A. Method hyper-parameterization 

For APR ( Dietterich et al., 1997 ): 

• Kernel Width: 0.999 
• Outside Probability: 0.023 
• GridNum: 250 0 0 

For DD and EM-DD ( Maron & Lozano-Pérez, 1998 ): 

• Scaling: 1 
• Aggregate: average 
• Threshold: 0.5 
• No. of runs: 100 (DD), 500 (EM-DD) 
• Iteration Tolerance (for EM-DD): 0.08 

For Citation-kNN ( Wang & Zucker, 20 0 0 ): 

• Bag Distance Type: minimum 

• Instance Distance Type: Euclidean 

• Reference nodes considered: 5 
• CiterRank: 11 

For mi-SVM and MI-SVM ( Andrews et al., 2002 ): 

• Kernel: Linear, poly, RBF 
• KernelParam - NA/degree/gamma: (NA), 4, 0.32 (mi-SVM), (NA),

5, 0.17 (MI-SVM) 
• CostFactor: 1/0.96/1 (mi-SVM), 1/1/1 (MI-SVM) 
• NegativeWeight: 1/1/1 
• Threshold: 0.5/0.5/0.5 

For non-parametric MIL ( Venkatesan et al., 2015 ): 

• Averaged accuracy over 100 runs 
• Range of k : 50 (using elbow method) 
• Maximum No. of iterations to maximize the training accuracy:

30 0 0 
• Distance Method: Euclidean 

For MILCNN ( Sun et al., 2016 ) the structure is the same as the

ne for CIFAR10 / CIFAR100 with same values of the parameters. 
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