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Abstract—Breast cancer (BC) is a deadly disease, killing
millions of people every year. Developing automated malignant
BC detection system applied on patient’s imagery can help
dealing with this problem more efficiently, making diagnosis
more scalable and less prone to errors. Not less importantly,
such kind of research can be extended to other types of cancer,
making even more impact to help saving lives. Recent results on
BC recognition show that Convolution Neural Networks (CNN)
can achieve higher recognition rates than hand-crafted feature
descriptors, but the price to pay is an increase in complexity to
develop the system, requiring longer training time and specific
expertise to fine-tune the architecture of the CNN. DeCAF (or
deep) features consist of an in-between solution it is based on
reusing a previously trained CNN only as feature vectors, which
is then used as input for a classifier trained only for the new
classification task. In the light of this, we present an evaluation of
DeCaf features for BC recognition, in order to better understand
how they compare to the other approaches. The experimental
evaluation shows that these features can be a viable alternative
to fast development of high-accuracy BC recognition systems,
generally achieving better results than traditional hand-crafted
textural descriptors and outperforming task-specific CNNs in
some cases.

I. INTRODUCTION

Cancer is currently a deadly disease rising across the globe.
Some publications, such as that of the International Agency
for Research on Cancer (IARC), which is part of the World
Health Organization (WHO), report numbers of about 8.2
million deaths caused by cancer in the year of 2012 only.
The incidence of this illness is expected to be of about
27 million new cases until 2030 [1]. Among the several
existing types of cancer, breast cancer (BC) presents two
very concerning characteristics: 1) it is the most common
cancer among women worldwide; and 2) it presents a very
high mortality rate when compared to other types of cancer.
Since histopathological analysis remains the most widely used
method for BC diagnosis [2], and most of the diagnosis
continues being done by pathologists applying visual inspec-
tion of histological samples under the microscope, automatic
classification of histopathological images is a research topic
that can make BC diagnosis faster and less prone to errors.
Until recently, though, works on BC histopathology image
recognition systems have mainly worked with small datasets,

which is generally a great limitation in developing high-
accuracy image recognition systems. The recent release of
the BreaKHis dataset [3], containing more than 7,900 images
with four different magnifications from more than 80 patients,
consisted of an important advance to bridge this gap, allowing
researchers to apply the machine learning techniques for this
problem.

Current state-of-art results on the BC recognition follow
the two most common ways for designing image recognition
systems. The approach in [3], which we generally refer to
as visual feature descriptors or hand-crafted features, follows
a more “traditional” approach, where an evaluation of the
combination of six different feature sets and four base clas-
sifiers is conducted, and the final system is defined by the
combination that produces the best results in the validation
set. In contrast, in [4] and [5], the approaches follow the deep
learning trend, where a Convolutional Neural Network (CNN)
is trained for the BC recognition problem. The first is a method
independent of magnification, based on single and multi-task
CNN architectures. The second, referred here as either CNN
from scratch or task-specific CNN, interchangeably, relies on
the extraction of several small patches of the original images
for training a specific CNN architecture. The reported results
clearly show that the latter can achieve higher recognition
rates. However, the development of such system requires
longer training time, some tricks like random patches [6] to
improve performance, and still a lot of expertise from the
developer to tweak the system.

An in-between alternative to hand-crafted and task-specific
CNN methods has been appearing frequently in the literature,
often referred to as DeCAF features or neural codes [7]–[10].
This approach consists of reusing a pre-trained CNN only
as a feature extractor, on top of which the parameters of a
new classifier can be learned only for the new classification
task. This approach has shown to be a very good general-
purpose image feature extraction, providing competitive results
in various tasks [7]–[10]. Although training a CNN from
scratch when a large training set is available can still be the
best option for the best accuracy, provided proper resources
are available, DeCAF features can be a viable alternative to
develop high-accuracy systems very fast, similar to a system



based on hand-crafted features. Thus, if DeCAF features are
able to outperform other visual feature descriptors, it can be
set as a standard starting point to develop high-accuracy image
recognition systems. And the development of accurate systems
related to this area, e.g. systems for recognizing other types
of cancer, can be done much faster.

Given these standpoints, the main focus of this work lies
in evaluating DeCAF features for BC histopathological image
classification, considering the BreaKHis dataset as benchmark,
aiming at better understanding how this approach compares
with hand-crafted descriptors and task-specific CNNs. More
precisely, our goal is to make use of a pre-trained CNN to ex-
tract DeCAF features, from different layers of the network, to
understand whether these features are good enough to compete
with visual feature descriptors, such as those presented in [3],
and how they compare with deep learning based methods, such
as CNN trained from scratch for the problem, as in [4], and
an independent magnification CNN approach, presented in [5].
To achieve these goals, we make use of the multiple feature
vector (MFV) framework originally described in [11], which
allows us also to evaluate this feature set in different scenarios,
such as by combining classification results from sub-images
(which we also refer to as patches) and/or from combining
different feature sets. In this case, not only can we evaluate the
performance of DeCAF features when a patch-based method is
used, but also combine DeCAF features from different layers
of the pre-trained CNN.

II. RELATED WORK

In the literature, the first published work on automatic
imaging processing for cancer diagnosis is dated more than
40 years [12]. Despite this long interest in this problem,
developing solutions for it is still challenging due to the
complexity of the images that such systems need to analyze.

The interest of the research community in this topic is
proved by the high number of research papers published in
recent years, related to this topic [13]–[16]. It is worth
mentioning that most of these recent works related to BC clas-
sification are focused on Whole-Slide Imaging (WSI) [15]–
[18]. However, the broad adoption of WSI and other forms of
digital pathology has been facing obstacles such as the high
cost of implementing and operating the technology, insuffi-
cient productivity for high-volume clinical routines, intrinsic
technology-related concerns, unsolved regulatory issues, as
well as “cultural resistance” from the pathologists [19].

Another relevant aspect is that until recently most of the
works on BC histopathology image analysis were carried out
on small datasets. Another drawback is that these datasets are
usually not available to the scientific community, which not
only makes it difficult for other researchers to develop new
systems, since they need to gather images to compose the
training set, but also to benchmark the results achieved by
the systems. With the aim at bridging this gap, the BreaKHis
dataset has been released and made freely available to the
research community [3]. This database contains microscopic
images from the surgical biopsy (SOB) of breast tumors,
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Figure 1. Image samples from the BreaKHis database. Distinct areas,
belonging to the same slide of breast malignant tumor (stained with HE),
seen in different magnification factors: (a) 40×, (b) 100×, (c) 200×, and (d)
400×.

totalizing 7,909 images divided into benign and malignant tu-
mors, which have been collected at four different magnification
factors (or zoom level, which is a term that we make use of
interchangeably): 40×, 100×, 200× and 400×. Samples have
been generated from breast tissue biopsy slides, stained with
hematoxylin and eosin (HE). These samples were prepared
for histological study and labeled by pathologists of the
Prevenção&Diagnose (P&D) Lab. The acquired digital images
are available in 3-channel RGB (Red-Green-Blue) TrueColor
(24-bit color depth, 8 bits per color channel) color space,
dimension of 700 × 460 pixels. Figure 1 presents samples
from this set, at the four corresponding magnification factors.
A complete description of the BreaKHis database can be found
in [3].

Since the recent publication of the BreaKHis dataset, some
methods have been proposed using this dataset. In [3], the
authors present an evaluation of different combinations of six
different visual feature descriptors along with different classi-
fiers. They report accuracies ranging from 80% to 85%, which
may vary depending on the image magnification factor. Span-
hol et al. [4] present results from a CNN for this set. Given that
CNNs generally require large datasets, they make use of the
random-patches trick, which consists of extracting sub-images
at both training and test phases. During training, the idea is
to increase the training set by means of extracting patches
at randomly-defined positions. And during test, patches are
extracted from a grid, and after classifying each patch, their
classification results are combined. The authors show that,
with this approach, increases in about 4 to 6 percentage points
can be observed in the accuracy. Recently, Bayramoglu et
al. [5] proposed a method to classify the BC histopathology
images, which is independent of the magnifications factors.
Their experimental results are competitive with previous state-
of-the-art results obtained from hand-crafted features [3].



It is worth mentioning that deep learning approaches have
been consistently outperforming more traditional machine
learning methods in several tasks. Nonetheless, achieving good
performance depends on the size of the training set, or on
more specialized training schemes such as random patches,
which generally require a very long training time. A solution
that avoids having to handle large training datasets and long
training time, and which has recently been reported with very
good performance, is to rely on reusing existent pre-trained
CNNs. Often referred to as DeCAF features or neural codes,
this approach has been previously applied to diverse tasks,
such as object recognition [7], image retrieval [8], texture
recognition [9], among others [10].

III. DECAF FEATURES

The idea of DeCAF features consists of extracting features
from an image and using them as input for a classifier, as any
other feature set. Nevertheless, DeCAF are based on represen-
tation learning, where the parameters of a neural network are
learned in a way that raw data, i.e., the pixels of the images,
can be converted to a high-level representation [20]. The main
difference between DeCAF features and the current standard
of using CNNs [4], [6], [21], is that a previously-trained CNN
is simply reused as feature extractor, the output of which is
fed into another classifier, trained on problem-specific data.

In details, the DeCAF feature set consists of reusing the
architecture and parameters of a pre-trained neural network,
commonly a CNN, passing the input image through a feed-
forward step, and using the outputs of a given layer of the
network as input for the classifier [7]–[10]. To implement this
idea, we make use of the pre-trained BVLC CaffeNet Model1

(or CaffeNet for sake of simplicity), which is freely available
on the Caffe deep learning framework2. This model consists
of a slight modification of the AlexNet model [21], given that
it has not been trained with data augmentation, and the order
of the pooling and normalization layers is switched, i.e., in
CaffeNet pooling is done prior to normalization.

The CaffeNet model has been trained on the ImageNet
dataset [22], more specifically the dataset released for the
ILSVRC12 challenge, obtaining a top-1 accuracy of 57.4%
and a top-5 accuracy of 80.4% on the validation set. That
set contains about 1.2 million samples, distributed into 1,000
distinct classes. Given the high number and variability of the
classes, together with the high number of samples, the main
assumption is that the representation learned from a CNN
trained on this dataset defines a very good general-purpose
feature extractor.

In order to convert the CaffeNet model into a feature
extractor, we make use of the outputs of the top-most layers
of the CNN, such as layers fc6, fc7, and fc8 (references
are presented at the bottom right of Figure 2). The vectors
corresponding to the output of those layers can then be used
as inputs for a classifier, trained only on task-specific data.

1https://github.com/BVLC/caffe/tree/master/models/bvlc reference caffenet
2http://caffe.berkeleyvision.org/

IV. EXPERIMENTS

In this section, we present an extensive experimental eval-
uation on the BreaKHis dataset, in order to evaluate DeCAF
features in different scenarios. The accuracy is evaluated on
each level of zoom independently, considering both the image-
level and patient-level accuracy metrics. The reason for the
second metric is that, generally, in medical imaging, decision
is made patient-wise. For a better understanding, we define
both metrics below.

Image-level accuracy simply corresponds to the score from
the total number of correctly-classified images. That is, let
Nim be the total number of images in the dataset, and Nc

the total of correctly-classified images, image-level accuracy
is defined as:

Image-level accuracy =
Nc

Nim
. (1)

Patient-level accuracy, on the other hand, corresponds to
the average image-level accuracy per patient. More formally,
let NP be the total number of patients, Np

c be the total of
correctly-classified images from patient p, and Np

im the total of
images for the same patient, patient-level accuracy is defined
as:

Patient-level accuracy =

∑Np

p=1
Np

c

Np
im

NP
. (2)

Despite the relatively large number of layers in the CaffeNet
model, in this work we focus only on extracting features
from the three top-most layers, i.e., fc6, fc7, and fc8, which
supposedly present the three most high-level features. These
layers are composed of 4,096, 4,096, and 1,000 dimensions,
respectively. Given the high-dimensionality of those vectors,
we consider only Logistic Regression as base classifier, since
it is fast at both training and classification phases, and can
provide output probabilities.

The experiments have been organized in the following
way. By considering a patch-based recognition and different
configurations for it, we first evaluate the use of DeCAF
feature sets individually, by making use of the output of either
layer fc6, fc7, or fc8, and we consider systems with 1, 4
and 16 patches, based on the MFV framework presented in
[11]. The main objective of these experiments is to observe
the differences in accuracy of DeCAF features from different
layers, and the impact when a patch-based classification is
conducted.

Then, we conduct similar experiments, but considering the
combination of more than one feature set at the same time,
i.e. features from more than one layer of the network. Again,
we implemented this idea based on the framework presented
in [11], where the features are combined considering outputs
at patch level.

For a direct comparison with the state of the art, the same
partitions for the five-fold replications used in [3], [4] and
available in the download page of the dataset3.

3http://web.inf.ufpr.br/vri/breast-cancer-database
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Figure 2. An illustration of the AlexNet model (extracted from [21]), which is used as baseline for the Caffe model. At the bottom right, the reference
names for the top layers are listed.

A. Results

By considering the previously-described setup, the first
evaluation employed DeCAF features from each of the three
aforementioned layers, individually, with 1, 4 and 16 patches.
The results are listed in Table I. It is clear that features from
layer fc8 perform worse than those from the other two layers,
which presented the best results in all cases. Comparing to fc7
and fc6, there is a slight advantage for the first, with the best
patient level accuracy in 3 out of 4 zoom levels, considering
that both achieved the best accuracies at image level in two
magnification factors. Regarding the use of patches, the results
show that this could be an interesting alternative to improve
the results with these features. Except from the 400× zoom
level, where the best patient-level accuracy was achieved with
the entire image (a single patch), the best results in all the other
zoom levels are with at least 4 patches. With zoom level 200×,
the system with 16 patches performs considerably better.

B. Results Using Combination

The results presented herein are related to experiments
evaluating the combination of DeCAF features from layers
fc6, fc7, and fc8 (pointed out as simply 6, 7, and 8 given the
space constraints), considering the four possible feature sets
that could be used, i.e. 6+7+8, 6+7, 6+8, and, 7+8. Given
that we have observed that combining features from the three
layers simultaneously had not provided the highest recognition
rates, Table II presents the results from only the pairwise
combinations.

Overall, even though we can observe some improvements
in the accuracy for some cases, the largest margin of gain,
compared to the best results obtained with a single feature
set at time, is of only 0.3%, i.e., the increase from 86.0% to
86.3% in patient accuracy in the 200× magnification factor,
and the increase from 84.3% to 84.6% in image accuracy in
the 40× magnification factor.

C. Comparison of Method Accuracy

In Table III we compare the accuracy of the approaches
based on traditional hand-crafted features [3], task-specific
CNN [4] and DeCAF features (this work). Such methods are

Table I
ACCURACY, WITH RESPECTIVE STANDARD DEVIATION, WITHOUT

COMBINATION OF LAYERS. P STANDS FOR PATIENT-LEVEL ACCURACY, I
FOR IMAGE-LEVEL ACCURACY, AND #P FOR NUMBER OF PATCHES. IN

BOLD, WITH A GRAY BACKGROUND, ARE HIGHLIGHTED THE BEST
RESULTS AT EACH LEVEL AND MAGNIFICATION FACTOR.

Layer #p
Magnification factor

40× 100× 200× 400×

P

fc8
1 82.0 ± 2.5 82.0 ± 3.6 82.3 ± 2.1 81.3 ± 1.7
4 82.3 ± 5.5 83.2 ± 6.2 81.6 ± 3.0 79.4 ± 6.3

16 83.4 ± 6.9 83.8 ± 8.5 85.8 ± 3.5 80.7 ± 9.1

fc7
1 83.1 ± 2.3 82.6 ± 3.5 82.5 ± 2.3 81.9 ± 2.1
4 82.7 ± 5.0 83.0 ± 5.9 82.0 ± 2.8 80.4 ± 5.6

16 83.4 ± 6.7 83.1 ± 8.4 86.0 ± 3.7 81.6 ± 8.6

fc6
1 82.0 ± 3.3 83.3 ± 4.0 82.4 ± 3.1 81.0 ± 2.5
4 82.8 ± 5.8 83.9 ± 5.9 81.8 ± 3.8 79.9 ± 6.1

16 82.5 ± 8.6 83.6 ± 8.5 85.4 ± 5.2 81.1 ± 9.0

I

fc8
1 81.0 ± 1.6 80.9 ± 3.9 81.9 ± 1.1 80.2 ± 1.3
4 83.7 ± 2.8 84.4 ± 4.3 82.0 ± 1.1 81.0 ± 2.6

16 83.2 ± 2.4 84.0 ± 4.9 83.4 ± 1.1 80.9 ± 3.7

fc7
1 82.2 ± 1.4 81.4 ± 3.9 81.9 ± 1.1 80.8 ± 1.5
4 83.7 ± 2.7 83.7 ± 4.3 82.0 ± 1.1 81.4 ± 2.0

16 83.1 ± 2.1 83.3 ± 4.6 84.1 ± 1.5 81.6 ± 3.7

fc6
1 81.1 ± 2.3 82.1 ± 4.0 81.9 ± 1.4 79.8 ± 1.5
4 84.3 ± 2.9 84.7 ± 4.4 82.2 ± 2.0 81.1 ± 2.2

16 83.0 ± 2.6 84.6 ± 5.0 84.0 ± 2.8 81.1 ± 3.9

compared in terms of F1 score (also referred to as F-score
and F-measure in the literature [23]), which is given by the
harmonic mean between precision and recall (Eq. 3),

F1 = 2× precision× recall

precision+ recall
. (3)

For patient-level evaluation, we consider the mean F1 score
over all patients, similarly to patient-level accuracy defined
in Equation 2. This metric can provide a better idea of the
accuracy in detecting positive cases, i.e., malignant cancer,
where errors in such detection are very costly for this sort
of problem (it can cost patients’ lives). In general, F1 score
highlights better the nice performance of DeCAF features.
Compared with the performance of the visual feature ex-



Table II
ACCURACY, WITH RESPECTIVE STANDARD DEVIATION, RESULTING FROM

COMBINING DECAF FEATURES FROM LAYERS FC6, FC7 AND FC8. P
STANDS FOR PATIENT-LEVEL ACCURACY, I FOR IMAGE-LEVEL ACCURACY,
AND #P FOR NUMBER OF PATCHES. IN BOLD, WITH A GRAY BACKGROUND,

ARE HIGHLIGHTED THE BEST RESULTS AT EACH LEVEL AND
MAGNIFICATION FACTOR.

Setup #p
Magnification factor

40× 100× 200× 400×

P

6+7
1 82.6 ± 2.7 83.4 ± 4.4 82.7 ± 2.3 82.1 ± 2.4
4 83.6 ± 4.9 83.4 ± 6.6 82.1 ± 3.4 80.6 ± 5.7
16 83.4 ± 7.8 83.6 ± 8.7 85.8 ± 4.2 81.2 ± 9.0

6+8
1 82.8 ± 2.6 83.5 ± 4.2 83.0 ± 2.1 82.0 ± 2.0
4 83.4 ± 5.3 83.4 ± 6.6 82.2 ± 3.6 79.9 ± 6.1
16 83.3 ± 7.4 83.8 ± 8.7 86.0 ± 4.1 80.7 ± 9.2

7+8
1 82.7 ± 2.3 82.4 ± 3.4 82.8 ± 2.1 82.0 ± 1.5
4 82.7 ± 5.0 83.3 ± 6.7 81.5 ± 3.2 79.9 ± 6.2
16 83.3 ± 6.8 83.6 ± 8.6 86.3 ± 3.5 80.8 ± 9.0

I

6+7
1 81.7 ± 1.9 82.4 ± 4.5 82.2 ± 1.0 80.9 ± 1.6
4 84.6 ± 2.6 84.4 ± 4.7 82.3 ± 1.9 81.5 ± 2.6
16 83.4 ± 2.3 84.3 ± 5.0 84.1 ± 2.2 81.3 ± 3.9

6+8
1 81.8 ± 1.8 82.4 ± 4.5 82.6 ± 1.0 80.8 ± 1.3
4 84.5 ± 3.1 84.8 ± 4.5 82.6 ± 1.7 81.1 ± 2.5
16 83.2 ± 2.4 84.8 ± 5.1 84.1 ± 2.0 81.0 ± 4.0

7+8
1 81.8 ± 1.5 81.6 ± 4.0 82.2 ± 1.1 80.9 ± 1.0
4 83.6 ± 2.8 84.4 ± 4.4 81.7 ± 1.3 81.4 ± 2.4
16 83.0 ± 2.1 83.9 ± 4.7 84.0 ± 1.3 81.1 ± 3.8

tractors published in [3], our method outperforms the other
approaches, at both patient and image level scores. Compared
with the task-specific CNNs from [4], we can observe results
that are similar to those with overall accuracy. However, a
closer gap between the approaches is observed, especially at
the 100× magnification factor.

Table III
F1 SCORES (PATIENT AND IMAGE LEVELS) OF THE THREE APPROACHES.
THE BEST RESULTS ARE IN BOLD, AND ON A GRAY BACKGROUND ARE
THE CASES AT WHICH HIGHER RESULTS ARE ACHIEVED IN THIS WORK,

COMPARED THOSE PRESENTED IN [3]. RESULTS FROM THE COMBINATION
OF MULTIPLE CLASSIFIERS ARE MARKED WITH *.

F1 score at Approach
Magnification factor

40× 100× 200× 400×

Patient Level

[3] 86.0 84.9 87.8 85.6
[4] 90.0 86.9 87.8 85.4
[4]* 93.5 91.7 89.1 89.9

This work 88.5 88.5 90.3 87.1

Image Level

[3] 87.8 86.1 88.5 86.3
[4] 92.9 88.9 88.7 85.9
[4]* 90.1 88.0 87.8 85.9

This work 88.0 88.8 88.7 86.7

D. Discussion

For a better understanding of the results presented herein,
in Table IV we compile the best results obtained in this work,
and list them together with the best results presented in [3],
[4] and [5]. All the results published in [5] are based on the
patient score and the image level analysis is not available.

The main observation is that the use of DeCAF features
can generally achieve better results than the use of more
traditional visual feature descriptors, such as LBP (Local
Binary Patterns) [24] and PFTAS (Parameter Free Threshold
Analysis) [25], [26], and, in almost half of cases, even beat
the results of a CNN [4], [5]. Compared with the traditional
approach [3], only in the 200× zoom level there is a tie in
image-level accuracy, while DeCAF loses in patient accuracy
in the 400× magnification factor. In the remaining cases,
the recognition rates achieved with DeCAF features are at
least 0.4% better, but this difference can be as large as
4.1%. Compared with the CNN-based approach presented
in [4], which achieved higher results, DeCAF features beat
that method in the 200× zoom level, and in 400× in image
accuracy. Without considering the combination of classifiers
presented in [4], the system with DeCAF features also beats
the CNN in patient accuracy in that magnification factor. And
in the 40× magnification factor, image-level accuracy is close
to that of CNN. However, for patient-level accuracy in the
same zoom level, and both metrics in 100× magnification,
CNN beats our results by a larger margin, ranging from 4.5
to 6.0%. This points out that the task-specific CNN might be
better to deal with images with more fine-grained structures,
while DeCAF features can be better suited for more coarse-
grained problems.

Table IV
COMPARISON WITH THE LITERATURE. THE BEST RESULTS ARE IN BOLD,

AND ON A GRAY BACKGROUND ARE THE CASES AT WHICH HIGHER
RESULTS ARE ACHIEVED IN THIS WORK, COMPARED THOSE PRESENTED IN

[3]. RESULTS FROM THE COMBINATION OF MULTIPLE CLASSIFIERS ARE
MARKED WITH *.

% Approach
Magnification factor

40× 100× 200× 400×

Pa
tie

nt

[3] 83.8 ± 4.1 82.1 ± 4.9 85.1 ± 3.1 82.3 ± 3.8
[4] 88.6 ± 5.6 84.5 ± 2.4 85.3 ± 3.8 81.7 ± 4.9
[5] 83.0 ± 3.0 83.1 ± 3.5 84.6 ± 2.7 82.1 ± 4.4
[4]* 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2

This work 84.0 ± 6.9 83.9 ± 5.9 86.3 ± 3.5 82.1 ± 2.4

Im
ag

e [3] 82.8 ± 3.6 80.7 ± 4.9 84.2 ± 1.6 81.2 ± 3.6
[4] 89.6 ± 6.5 85.0 ± 4.8 84.0 ± 3.2 80.8 ± 3.1
[4]* 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0

This work 84.6 ± 2.9 84.8 ± 4.2 84.2 ± 1.7 81.6 ± 3.7

V. CONCLUSION

In this work we presented an investigation of the use
of DeCAF features for breast cancer recognition using the
BreaKHis dataset. The large size of the BreaKHis dataset has
given us the opportunity to compare, on the same dataset, CNN
trained from scratch with (DeCAF) features repurposed from
another CNN trained on natural images, which often is not
possible with medical image datasets since they are too small.
From the results we can observe that these features are a viable
alternative for a fast creation of image recognition systems
using deep learning, and this system can perform better than
systems using visual feature descriptors. Compared with a



CNN trained from scratch, DeCAF features present compa-
rable recognition rates. Note that training a CNN specifically
for the problem requires more complex and slower training
schemes.

This result is important for the design of future classification
based systems in computer-aided diagnosis, since it shows that
deep learned features, even if obtained with a CNN trained
on other types of images, are valuable. With this study we
make one more step towards transfer learning for medical
image analysis and CAD/CADx systems, as in [27], where
CNN trained on ImageNet enable the detection of nodules in
medical images.

As future work, one direction is to improve the recognition
accuracy of DeCAF features using patches. Further inves-
tigation on the size of the patches, as well as overlapping
patches, can be beneficial to increase the accuracies obtained
with DeCAF features. Another investigation that can produce
good results is the combination of these features with other
visual descriptors and task-specific CNNs, to exploit the
complementarity of these approaches. In addition, a better
investigation on feature and classifier selection could also
improve performance.
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cation independent breast cancer histopathology image classification,” in
23rd International Conference on Pattern Recognition, vol. 1, December
2016.

[6] L. G. Hafemann, L. E. S. Oliveira, and P. Cavalin, “Forest species
recognition using deep convolutional neural networks,” in Proceedings
of the 22nd International Conference on Pattern Recognition (ICPR).
IEEE, Aug. 2014, pp. 1103–1107.

[7] J. Donahue, J. Yangqing, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “Decaf: A deep convolutional activation feature for
generic visual recognition,” in Proceedings of the 31th International
Conference on Machine Learning (ICML). IMLS, Jun. 2014, pp. 647–
655.

[8] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, Computer
Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I. Cham: Springer Inter-
national Publishing, 2014, ch. Neural Codes for Image Retrieval, pp.
584–599.

[9] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi, “Deep filter banks
for texture recognition, description, and segmentation,” International
Journal of Computer Vision, vol. 118, no. 1, pp. 65–94, 2016.

[10] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: An astounding baseline for recognition,” in 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops. IEEE, jun 2014, pp. 512–519.

[11] P. Cavalin, J. G. Martins, M. N. Kapp, and L. E. S. Oliveira, “A multiple
feature vector framework for forest species recognition,” in Proceedings
of the 28th Symposium on Applied Computing (SAC). ACM, Mar. 2013,
pp. 16–20.

[12] B. Stenkvist, S. Westman-Naeser, J. Holmquist, B. Nordin, E. Bengts-
son, J. Vegelius, O. Eriksson, and C. H. Fox, “Computerized nuclear
morphometry as an objective method for characterizing human cancer
cell populations,” Cancer Research, vol. 38, no. 12, pp. 4688–4697,
1978.

[13] M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, and R. Monczak,
“Computer-aided diagnosis of breast cancer based on fine needle biopsy
microscopic images,” Computers in Biology and Medicine, vol. 43,
no. 10, pp. 1563–1572, 2013.

[14] P. Filipczuk, T. Fevens, A. Krzyzak, and R. Monczak, “Computer-aided
breast cancer diagnosis based on the analysis of cytological images of
fine needle biopsies,” IEEE Transactions on Medical Imaging, vol. 32,
no. 12, pp. 2169–2178, 2013.

[15] Y. M. George, H. L. Zayed, M. I. Roushdy, and B. M. Elbagoury,
“Remote computer-aided breast cancer detection and diagnosis system
based on cytological images,” IEEE Systems Journal, vol. 8, no. 3, pp.
949–964, 2014.

[16] Y. Zhang, B. Zhang, F. Coenen, J. Xiau, and W. Lu, “One-class kernel
subspace ensemble for medical image classification,” EURASIP Journal
on Advances in Signal Processing, vol. 2014, no. 17, pp. 1–13, 2014.

[17] Y. Zhang, B. Zhang, F. Coenen, and W. Lu, “Breast cancer diagnosis
from biopsy images with highly reliable random subspace classifier
ensembles,” Machine Vision and Applications, vol. 24, no. 7, pp. 1405–
1420, 2013.

[18] S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski,
“Automated grading of breast cancer histopathology using spectral clus-
tering with textural and architectural image features,” in in Proceedings
of the 5th IEEE International Symposium on Biomedical Imageging
(ISBI): From Nano to Macro, vol. 61, May 2008, pp. 496–499.

[19] A. J. Evans, E. A. Krupinski, and L. Weinstein, Ronald S. Pan-
tanowitz, “2014 american telemedicine association clinical guidelines for
telepathology: Another important step in support of increased adoption
of telepathology for patient care,” Journal of Pathology Informatics,
vol. 6, p. I13, 2015.

[20] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, Jun. 2009, pp. 248–255.

[23] M. Sokolova, N. Japkowicz, and S. Szpakowicz, AI 2006: Advances in
Artificial Intelligence: 19th Australian Joint Conference on Artificial In-
telligence, Hobart, Australia, December 4-8, 2006. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, ch. Beyond Accuracy, F-
Score and ROC: A Family of Discriminant Measures for Performance
Evaluation, pp. 1015–1021.

[24] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Transactions On Pattern Analysis And Machine Intelligence,
vol. 24, pp. 971–987, 2002.

[25] N. A. Hamilton, R. S. Pantelic, K. Hanson, and R. D. Teasdale, “Fast
automated cell phenotype image classification,” BMC Bioinformatics,
vol. 8, 2007. [Online]. Available: http://www.biomedcentral.com/
1471-2105/8/110

[26] L. P. Coelho, A. Ahmed, A. Arnold, J. Kangas, A. S.Sheikh, E. P.
Xing, W. Cohen, and R. F. Murphy, “Structured literature image finder:
extracting information from text and images in biomedical literature,” in
Linking Literature, Information, and Knowledge for Biology, ser. LNCS,
C. Blaschke and H. Shatkay, Eds., 2010, vol. 6004, pp. 23–32.

[27] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. J.
Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning,” CoRR, vol. abs/1602.03409, 2016. [Online].
Available: http://arxiv.org/abs/1602.03409

http://www.iarc.fr/en/publications/ pdfs- online/wcr/2008/wcr_2008.pdf
http://www.iarc.fr/en/publications/ pdfs- online/wcr/2008/wcr_2008.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.biomedcentral.com/1471-2105/8/110
http://www.biomedcentral.com/1471-2105/8/110
http://arxiv.org/abs/1602.03409

	Introduction
	Related Work
	DeCAF Features
	Experiments
	Results
	Results Using Combination
	Comparison of Method Accuracy
	Discussion

	Conclusion
	References

