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A Dataset for Breast Cancer Histopathological
Image Classification

Fabio A. Spanhol∗, Luiz S. Oliveira, Caroline Petitjean, and Laurent Heutte

Abstract—Today, medical image analysis papers require solid
experiments to prove the usefulness of proposed methods. How-
ever, experiments are often performed on data selected by the
researchers, which may come from different institutions, scan-
ners, and populations. Different evaluation measures may be used,
making it difficult to compare the methods. In this paper, we in-
troduce a dataset of 7909 breast cancer histopathology images
acquired on 82 patients, which is now publicly available from
http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset in-
cludes both benign and malignant images. The task associated with
this dataset is the automated classification of these images in two
classes, which would be a valuable computer-aided diagnosis tool
for the clinician. In order to assess the difficulty of this task, we
show some preliminary results obtained with state-of-the-art im-
age classification systems. The accuracy ranges from 80% to 85%,
showing room for improvement is left. By providing this dataset
and a standardized evaluation protocol to the scientific community,
we hope to gather researchers in both the medical and the machine
learning field to advance toward this clinical application.

Index Terms—Breast cancer, histopathology, image classifica-
tion, medical imaging.

I. INTRODUCTION

CANCER is a significant public health problem in the world
today. According to the International Agency for Research

on Cancer of the World Health Organization, 8.2 million deaths
were caused by cancer in 2012 and 27 million of new cases of
this disease are expected before 2030 [1]. In particular, breast
cancer (BC) is one of most common types of cancer among
women. Mortality of BC is very high when compared to other
types of cancer.

Detection and diagnosis of BC can be achieved by imaging
procedures such as diagnostic mammograms (X-rays), magnetic
resonance imaging, ultrasound (sonography), and thermogra-
phy [2]. Imaging for cancer screening has been investigated for
more than four decades [3]. However, biopsy is the only way
to diagnose with confidence if cancer is really present. Among
biopsy techniques, the most common are fine needle aspiration,
core needle biopsy, vacuum-assisted, and surgical (open) biopsy
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(SOB) [4]. The procedure consists in collecting samples of cells
or tissue, which are fixed across a glass microscope slide for
subsequent staining and microscopic examination. Diagnosis
from a histopathology image is thus the gold standard in diag-
nosing almost all types of cancer, including BC [5], [6]. The
final BC diagnosis, including grading and staging, is done by
pathologists applying visual inspection of histological samples
under microscope.

Histopathological analysis is a highly time-consuming spe-
cialized task, dependent on the experience of the pathologists
and influenced by factors such as fatigue and decrease of atten-
tion. As pointed by Gurcan et al. [7], there is a pressing need
for computer-assisted diagnosis (CAD) to relieve the workload
on pathologists by filtering obviously benign areas, so that the
experts can focus on the more difficult-to-diagnose cases [8].

A considerable amount of efforts has thus been devoted to
the field of BC histopathology image analysis, and in particular
to the automated classification of benign or malignant images,
for computer-aided diagnosis. Kowal et al. [9] compare and test
different algorithms for nuclei segmentation on a dataset of 500
images, for which accuracies ranging from 96% to 100% are re-
ported. Filipczuk et al. [10] present a BC diagnosis system based
on the analysis of cytological images of fine needle biopsies, to
discriminate the images as either benign or malignant. Using
four different classifiers trained with a 25-D feature vector, they
report a performance of 98% on 737 images. Similarly to [9]
and [10], George et al. [11] propose a diagnosis system for BC
based on the nuclei segmentation of cytological images. Using
different machine learning models, such as neural networks and
support vector machines (SVMs), they report accuracy rates
ranging from 76% to 94% on a dataset of 92 images. Zhang
et al. [12] propose a cascade approach with rejection option. In
the first level of the cascade, authors expect to solve the easy
cases, while the hard ones are sent to a second level where a
more complex pattern classification system is used. They assess
the proposed method on a database proposed by the Israel In-
stitute of Technology, which is composed of 361 images (40×
magnification). On this dataset, they report results of 97% of
reliability. In another work [13], the same authors assessed an
ensemble of one-class classifiers on the same database achieving
a recognition rate of 92%.

We can gather from the literature that most of the works on BC
histopathology image analysis are carried out on small datasets,
which are usually not available to the scientific community. In a
recent review, Veta et al. [14] point out that the main obstacle in
the development of new histopathology image analysis methods
is the lack of large, publicly available, annotated datasets. An-
notated database is also crucial to develop and validate machine
learning systems.
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In this paper, we introduce a database, called BreaKHis, that
is intended to mitigate this gap. BreaKHis is composed of 7909
clinically representative microscopic images of breast tumor
tissue images collected from 82 patients using different magni-
fying factors (40×, 100×, 200×, and 400×). To date, it con-
tains 2480 benign and 5429 malignant samples. This database
has been built in collaboration with the P&D Laboratory1—
Pathological Anatomy and Cytopathology, Parana, Brazil. We
believe that researchers will find this database useful as it makes
future benchmarking and evaluation possible. The database is
available for research purposes from now on, upon request.2

Additionally, we present in this paper the classification
performance of a baseline pattern recognition system, designed
to discriminate between benign and malignant tumors with
state-of-the-art feature extractors and classifiers, with the aim
of showing the difficulty of the problem. The classification
system is based on four machine learning models, trained with
different textural representations and keypoint detectors. A
comprehensive set of experiments shows that accuracy rates
with this baseline system range from 80% to 85%, depending
on the image magnification factor. To give an insight about the
discriminative power of the textural representations we have
used, we also present the performance of the oracle. The oracle
is an abstract model defined in [15], which always selects the
classifier that predicted the correct label, for a given query
sample, if such a classifier exists. In other words, it represents
the ideal classifier selection scheme. The difference between
the performance of a real-life classification system and the
abstract model of the oracle shows that room for improvement
is left with a high potential of increased accuracy. Performance
may be improved by using dedicated, improved descriptors, or
designing a strategy to select appropriate descriptors.

This paper is structured as follows. Section II introduces the
proposed database. Section III describes the feature sets and the
classifiers. Section IV reports our experiments and discusses our
results. Finally, Section V concludes the work.

II. BREAKHIS DATASET

The BreaKHis database contains microscopic biopsy images
of benign and malignant breast tumors. Images were collected
through a clinical study from January 2014 to December 2014.
All patients referred to the P&D Laboratory, Brazil, during this
period of time, with a clinical indication of BC were invited to
participate in the study. The institutional review board approved
the study and all patients gave written informed consent. All the
data were anonymized.

Samples are generated from breast tissue biopsy slides,
stained with hematoxylin and eosin (HE). The samples are col-
lected by SOB, prepared for histological study, and labeled by
pathologists of the P&D Lab. The preparation procedure used in
this work is the standard paraffin process, which is widely used
in clinical routine. The main goal is to preserve the original tissue
structure and molecular composition, allowing to observe it in a

1http://www.prevencaoediagnose.com.br/
2http://web.inf.ufpr.br/vri/breast-cancer-database

TABLE I
MAGNIFICATION AND DIGITAL RESOLUTION OF THE ACQUISITION SYSTEM

Visual Objective Effective
magnification lens pixel size (μm )

40× 4× 0.49
100× 10× 0.20
200× 20× 0.10
400× 40× 0.05

light microscope. The complete preparation procedure includes
steps such as fixation, dehydration, clearing, infiltration, em-
bedding, and trimming [16]. To be mounted on slides, sections
of 3 μm are cut using a microtome. After staining, the sections
are covered with a glass coverslip. Then, the anatomopatholo-
gists identify the tumoral areas in each slide, by visual analysis
of tissue sections under a microscope. Final diagnosis of each
case is produced by experienced pathologists and confirmed by
complementary exams such as immunohistochemistry analysis.

An Olympus BX-50 system microscope with a relay lens
with magnification of 3.3× coupled to a Samsung digital color
camera SCC-131AN is used to obtain digitized images from the
breast tissue slides. This camera uses a 1/3” Sony Super-HAD
(Hole-Accumulation Diode) interline transfer charge-coupled
device with pixel size 6.5 μm × 6.25 μm and a total pixel
number of 752 × 582. Images are acquired in three-channel
red–green–blue (RGB) TrueColor (24-bit color depth, 8 bits per
color channel) color space using magnifying factors of 40×,
100×, 200×, and 400×, corresponding to objective lens 4×,
10×, 20×, and 40×. The camera is set for automatic exposure
and focusing is done manually on the microscope looking at
the digital image on the computer screen. Table I shows the
effective pixel size in micrometers for each magnifying factor
and objective lens we have used. The pixel size is the physical
pixel size of the camera (6.5 μm), divided by the relay lens
magnification (3.3) and the objective lens.

The original images contain black borders on both the left
and right sides and text annotations in the upper left corner. To
remove these undesired areas, the resulting images are cropped
and saved in three-channel RGB, 8-bit depth in each channel,
portable network graphics format with no compression, dimen-
sion of 700 × 460 pixels. Resulting images are raw images with-
out normalization nor color standardization.

The acquisition of images at different magnifications is per-
formed as follows: first the pathologist identifies the tumor and
defines a region of interest (ROI). To cover the whole ROI, sev-
eral images are captured using the lowest magnification, i.e.,
40×. The pathologist preferentially selects images with a single
type of tumor (majority of the cases), but some of the images
also include transitional tissue, e.g., normal-pathological. In av-
erage, a total of 24 images per patient is captured from each slide
using the lowest magnification (see Table II). Then, the mag-
nification is manually increased to 100× and a similar number
of images is captured inside the initial ROI. This process is re-
peated for 200× and 400× magnifications, respectively. A final
visual (i.e., manual) inspection discards out-of-focus images.
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TABLE II
IMAGE DISTRIBUTION BY MAGNIFICATION FACTOR AND CLASS

Magnification Benign Malignant Total

40× 625 1370 1995
100× 644 1437 2081
200× 623 1390 2013
400× 588 1232 1820
Total 2480 5429 7909
# Patients 24 58 82

TABLE III
BENIGN IMAGE DISTRIBUTION BY MAGNIFICATION FACTOR

AND HISTOLOGICAL SUBTYPES

Magnification A F TA PT Total

40× 114 253 109 149 598
100× 113 260 121 150 614
200× 111 264 108 140 594
400× 106 237 115 130 562
Total 444 1014 453 569 2368
# Patients 4 10 3 7 24

TABLE IV
MALIGNANT IMAGE DISTRIBUTION BY MAGNIFICATION FACTOR AND

HISTOLOGICAL SUBTYPES

Magnification DC LC MC PC Total

40× 864 156 205 145 1370
100× 903 170 222 142 1437
200× 896 163 196 135 1390
400× 788 137 169 138 1232
Total 3451 626 792 560 5429
# Patients 38 5 9 6 58

To date, the database is composed of 7909 images divided
into benign and malignant tumors. Table II summarizes the im-
age distribution. Both breast tumors, benign and malignant, can
be sorted into different types based on the aspect of the tumoral
cells under the microscope. The dataset currently contains four
histological distinct types of benign breast tumors: adenosis
(A), fibroadenoma (F), phyllodes tumor (PT), and tubular ade-
noma (TA); and four malignant tumors (breast cancer): ductal
carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma
(MC), and papillary carcinoma (PC). The distribution of benign
and malignant tumors in these classes is presented in Tables III
and IV, respectively.

Fig. 1 shows four images—with the four magnification factors
(a) 40×, (b) 100×, (c) 200×, and (d) 400×—acquired from a
single slide of breast tissue containing a malignant tumor (breast
cancer). Highlighted rectangle (manually added for illustrative
purposes only) is the area of interest selected by pathologist to
be detailed in the next higher magnification.

III. FEATURE EXTRACTORS AND CLASSIFIERS

Histological tissue images can be characterized by two types
of approaches. The first one is based on explicit segmentation

Fig. 1. Slide of breast malignant tumor (stained with HE) seen in different
magnification factors: (a) 40×, (b) 100×, (c) 200×, and (d) 400×. Highlighted
rectangle (manually added for illustrative purposes only) is the area of interest
selected by pathologist to be detailed in the next higher magnification factor.

to extract structure properties, such as nuclei shape, glandular
unit shape, etc., while the second one is a global approach based
on texture representation. Since segmentation of histological
tissue images is not a trivial task and can be prone to errors, we
have chosen a global approach based on state-of-the-art texture
representation.

In this section, we briefly describe all the representations
we have used to train the classifiers. These include the textural
descriptors most commonly found in the literature, such as local
binary patterns (LBP) [17], completed LBP (CLBP) [18], local
phase quantization (LPQ) [19], gray-level co-occurrence matrix
(GLCM) [20], threshold adjacency statistics (TAS) [21], and one
keypoint descriptor, named ORB [22]. Keypoint descriptors are
most often used for object recognition; however, the literature
shows that this kind of descriptor can produce interesting results
for texture classification on microscopic images [23].

A. Local Binary Patterns

The LBP operator [17] consists in computing the distribution
of binary patterns in the circular neighborhood of each pixel.
The neighborhood is characterized by a radius R and a number
of neighbors P . The principle is to threshold neighboring pixels,
compared to the central pixel: to each of the P neighbors, the
value 1 is assigned, if the current pixel intensity is superior
or equal to the central pixel intensity; otherwise, value 0 is
assigned. Thus, for each pixel, a binary pattern is obtained from
the neighborhood. A total of 2P different binary patterns can be
obtained. The LBP code at pixel p is obtained by computing the
scalar product between the binary code and a vector of powers
of two, and summing up the result:

LBP(p) =
P −1∑

i=0

2i .δ(f(qi) − f(p)) (1)

where f(qi) and f(p) are gray levels of pixels qi and p, respec-
tively, and δ is the Kronecker function. Histogram of the LBP
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codes can then be used as a texture descriptor. Note that some
patterns, which are identical up to one or several rotations, do not
have the same LBP code: for example, 10000000 and 01000000
have 255 and 128 as LBP codes, respectively. This behavior can
be avoided with the rotation invariant LBP, introduced in [17]:
each pattern is rotated P times, and the minimum LBP code over
the P rotations is retained. With this modification, 1000000 and
01000000 have the same LBP code. For P = 8, the rotation in-
variant LBP method decreases the number of possible patterns
from 256 to 36.

Another improvement originated from the observation that
some binary patterns occur more often in texture images than
others. These frequent patterns are usually those with a small
number of transitions, i.e., 0-1 or 1-0: for example, 00000000
(no transition), 011111111 (two transitions), 00011111 (two
transitions) occur more often than 10101010 (eight transitions),
or 01100101 (six transitions). The frequent patterns are called
uniform patterns [17]. The LBP method that takes into account
uniform patterns makes the number of LBP codes used for
histogram bins decrease from 36 to 10. In our experiments, we
work with rotation-invariant uniform patterns, with a standard
value of P = 8 neighbors, providing a 10-D feature vector.

B. Completed Local Binary Pattern

The CLBP is one of the latest variants of LBP is the CLBP
[18], which provides a completed modeling of the LBP, based on
three components extracted from the local region: center pixel,
sign, and magnitude. The center pixel is coded by a binary code
after global thresholding, with the threshold set as the average
gray level of the whole image. For the two other components, a
neighborhood of radius R and number of neighbors P is consid-
ered, similarly to LBP. The difference signs and magnitudes are
then computed and coded by specific operator into binary format
so that they can be combined to form the final CLBP histogram
[18]. Note that the operator coding the sign component corre-
sponds to the original LBP operator. We have assessed different
configurations suggested in [18] and the best results observed in
our experiments have been obtained with the combination of all
components using a 3-D joint histogram, while the best values
for the parameters P and R are 24 and 5, respectively, yielding
a 1352-D feature vector.

C. Local Phase Quantization

LPQ is based on quantized phase information of the discrete
Fourier transform (DFT) [19]. It uses the local phase informa-
tion extracted using the 2-D DFT or, more precisely, a short-
term Fourier transform computed over a rectangular M×M
neighborhood Np at each pixel position p of the image f(p).
The quantized coefficients are represented as integer values in
the range 0–255 using binary coding described in [19]. These
binary codes are generated and accumulated in a 256-bin his-
togram, similar to the LBP method. The accumulated values in
the histogram are used as the LPQ 256-D feature vector. In our
experiments, a variant of LPQ, named LPQ-TOP [24], produced
better results. The main difference is that LPQ and LPQ-TOP
use different default values for their parameters.

Fig. 2. PFTAS thresholding on a malignant image. From left to right, top
to bottom: original image, binarized images using threshold ranges [μ + σ,
μ − σ], [μ − σ, 255], and [μ, 255].

D. Gray-Level Co-Occurrence Matrices

GLCM are widely used to characterize texture images. In
our experiments, four adjacency directions 0◦, 45◦, 90◦, 135◦,
and eight gray levels are used to compute the GLCM. On the
GLCM, 13 Haralick parameters are computed [20]: angular
second moment, contrast, correlation, sum of squares, variance,
inverse difference moment, sum average, sum variance, sum
entropy, entropy, difference variance, difference entropy, infor-
mation measures of correlation 1, and information measures of
correlation 2. Finally, we obtain a final feature vector by aver-
aging the 13-D feature vectors in the four directions.

E. Parameter-Free Threshold Adjacency Statistics (PFTAS)

The TAS is a simple and fast morphological measure intro-
duced in [21] for cell phenotype image classification. Since
BC images share some similarities with these images, we have
used the PFTAS [25], the parameter-free version of TAS. Its
principle is to accumulate in the histogram bins, pixels accord-
ing to their number of white neighbors, in multiple-threshold
binarized images. The original image is binarized using three
different threshold ranges: [μ + σ, μ − σ], [μ − σ, 255], and [μ,
255], where μ is an Otsu defined threshold, and σ is the standard
deviation of the above threshold pixels. Fig. 2 illustrates these
images.

For each binarized image, a normalized histogram of pixels
having i (i ranging from 0 to 8) white pixels as neighbors is
computed. All three histograms are concatenated to form a 27-
D feature vector for each one of three RGB channels, yielding a
81-D feature vector. Finally, this vector and its bitwise negated
version are concatenated, resulting in a 162-D feature vector.

F. ORB

ORB (for Oriented FAST and Rotated BRIEF) [22] has been
proposed as an alternative to the traditional SIFT [26] and SURF
[27] keypoint detectors, in terms of computational cost and
matching performance. It is designed to be rotation invariant
and resistant to noise. ORB is based on the well-known FAST
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keypoint detector [28] and the BRIEF keypoint descriptor [29].
ORB works as follows: first FAST is used to find keypoints; then,
Harris corner detection selects the top N points among them.
Since FAST features do not have an orientation component,
an efficiently computed orientation is added. This orientation
compensation mechanism makes ORB rotation invariant.

In this work, we have used the OpenCV implementation [30]
with the default parameters, which returns a 32-D vector for
each keypoint. Best results have been achieved using 500 key-
points, considering balance between runtime and improvement
of recognition rate. At the end, the image is represented by a
single 32-D vector that contains the average of all keypoints.

G. Classifiers

Four different classifiers were used to assess the aforemen-
tioned feature sets: a 1-nearest neighbor (1-NN), quadratic lin-
ear analysis (QDA), SVMs, and random forests (RF) of decision
trees. A k-NN is a type of instance-based learning that stores all
available training data and classifies the testing samples based
on a similarity measure (e.g., Euclidean distance). In particular,
the 1-NN is often used to assess the discriminating power of
the features. QDA is closely related to linear discriminant anal-
ysis (LDA), where it is assumed that the measurements from
each class are normally distributed. Unlike LDA however, QDA
does not assume that the covariance of each of the classes is
identical. SVM, a very popular classification algorithm, builds
a hyperplane in a high-dimensional space, which can be used
for classification and regression. Differently from other linear
discriminant functions, it provides the optimal hyperplane that
separates two classes [31]. RF is an ensemble approach that
combines decision tree predictors. The principle behind ensem-
ble methods is that a group of weak learners (in this case the
decision trees) can come together to form a strong learner [32].
One of the advantages of the RF is that they are quite fast and
able to deal with unbalanced data.

IV. EXPERIMENTS AND DISCUSSION

A. Protocol

The BreaKHis dataset has been randomly divided into a train-
ing (70%) and a testing (30%) set. To make sure the classifier
generalizes to unseen patients, we guarantee that patients used to
build the training set are not used for the testing set. The results
presented in this work are the average of five trials. This proto-
col was applied independently to each of the four magnifications
available. Note that we have also made the folds available along
with the dataset, to allow for a full comparison of classification
results.

For the SVM, different kernels were tried; we retained the
Gaussian kernel which produced the best results. The kernel
parameters γ and C were empirically defined through a grid
search and fivefold cross-validation using the training set. The
same protocol was applied to tune the parameters of the RF. All
the experiments were carried out using scikit-learn, an open-
source machine learning library in Python [33]. Table V recalls
the six representations we have used to train the classifiers.

TABLE V
SUMMARY OF THE DESCRIPTORS

Name Feature number

CLBP 1352
GLCM 13
LBP 10
LPQ 256
ORB 32
PFTAS 162

Since the decision is patientwise, we report the recognition
rate at the patient level, and not at the image level. Let NP be
the cancer images of patient P . For each patient, if Nrec images
are correctly classified, then one can define a patient score as

Patient Score =
Nrec

NP
(2)

and the global recognition rate as

Recognition Rate =
∑

Patient score
Total number of patients

. (3)

The receiver operating characteristic (ROC) curve is another
valuable tool for performance analysis, especially since our data
are unbalanced data. Indeed, the ROC curve is insensitive to
changes in class distribution. If the proportion of positive to
negative instances changes in a test set, the ROC curves will not
change [34].

B. Results

Table VI reports the performance of all classifiers and de-
scriptors we have assessed. We propose a two-level analysis of
this table. Let us first focus on the influence of the magnification
factors, by comparing columns (best results in bold). Interest-
ingly, the magnification factors do not seem to have the same
level of information. In particular, the first level (40×) exhibits
the best results over CLBP, LBP, and ORB. This slight tendency
that 40× may be the most informative magnification factor is in
accordance with the pathologist behavior, which starts by exam-
ining factor 40 and switches to the next level, until he establishes
his diagnosis. Note, however, that the 200× magnification fac-
tor also shows high potential, with the best results over GLCM
and PFTAS, higher than those obtained with the 40× level. The
complementarity of the magnification factors could be fruitfully
investigated in the future, through a coarse-to-fine analysis for
example. It is beyond the scope of this paper.

The other level of analysis concerns the feature vector com-
parison (best results are underlined in Table VI). All feature
vectors exhibit stable and close results. These results are lit-
tle influenced by the classifiers: for each factor and for each
feature vector, the recognition rates of the four classifiers are
in a range of less than 4%. Note, however, that the results ob-
tained by CLBP with QDA fall out of this range and are far
below the other mean recognition rates. Indeed, QDA is based
on the estimation of covariance matrices: in order to make a
proper estimation of these matrices, a large amount of samples is
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TABLE VI
MEAN RECOGNITION RATES AND STANDARD DEVIATIONS OF THE CLASSIFIERS

TRAINED WITH DIFFERENT DESCRIPTORS

Descriptor Classifier Magnification Factors

40× 100× 200× 400×

CLBP 1-NN 73.6 ± 2.5 71.0 ± 2.8 69.4 ± 1.5 70.1 ± 1.3
QDA 39.4 ± 13.5 51.7 ± 17.3 50.3 ± 16.0 49.4 ± 15.5
RF 74.5 ± 0.7 72.5 ± 3.8 70.0 ± 2.4 72.3 ± 2.1

SVM 77.4 ± 3.8 76.4 ± 4.5 70.2 ± 3.6 72.8 ± 4.9
GLCM 1-NN 74.7 ± 1.0 76.8 ± 2.1 83.4 ± 3.3 81.7 ± 3.3

QDA 67.0 ± 6.0 74.2 ± 3.5 78.6 ± 1.7 77.0 ± 2.3
RF 73.6 ± 1.5 76.0 ± 1.9 82.4 ± 2.3 79.8 ± 2.5

SVM 74.0 ± 1.3 78.6 ± 2.6 81.9 ± 4.9 81.1 ± 3.2
LBP 1-NN 75.6 ± 2.4 73.0 ± 2.4 72.9 ± 2.3 71.2 ± 3.6

QDA 69.7 ± 3.8 69.7 ± 4.2 68.8 ± 4.7 72.3 ± 4.6
RF 74.0 ± 2.9 73.1 ± 1.9 70.1 ± 2.5 70.7 ± 4.3

SVM 74.2 ± 5.0 73.2 ± 3.5 71.3 ± 4.0 73.1 ± 5.7
LPQ 1-NN 72.8 ± 4.9 71.1 ± 6.4 74.3 ± 6.3 71.4 ± 5.2

QDA 70.4 ± 1.1 69.3 ± 4.2 67.2 ± 1.9 68.3 ± 1.8
RF 73.8 ± 5.0 72.3 ± 5.5 73.4 ± 5.9 71.1 ± 3.8

SVM 73.7 ± 5.5 72.8 ± 5.0 73.0 ± 6.6 73.7 ± 5.7
ORB 1-NN 71.6 ± 2.0 69.3 ± 2.0 69.6 ± 3.0 66.1 ± 3.5

QDA 74.4 ± 1.7 66.5 ± 3.2 63.5 ± 2.7 63.5 ± 2.2
RF 72.3 ± 1.8 69.3 ± 1.0 68.6 ± 1.7 67.6 ± 1.2

SVM 71.9 ± 2.3 69.4 ± 0.4 68.7 ± 0.8 67.3 ± 3.1
PFTAS 1-NN 80.9 ± 2.0 80.7 ± 2.4 81.5 ± 2.7 79.4 ± 3.9

QDA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9
RF 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8

SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8

Bold shows the best results over the magnification factors. For each magnification factor,
underlining shows the five best results over the feature vectors and classifiers.

Fig. 3. ROC curves for the confusion matrices presented in Table VII.

required, which should be all the greater given that CLBP is high
dimensional (1352).

Over all the feature vectors, the PFTAS performs best. Since
the best overall performance (recognition rate of 85.1% for fac-
tor 200×) is achieved by the SVM trained with PFTAS descrip-
tors, we focus on the SVM/PFTAS association and further an-
alyze their performance, by drawing the associated ROC curve
(see Fig. 3) and reporting the confusion matrices in Table VII,
which confirms that 200 seems to be the most discriminant mag-
nification factor. As we can see, most of the confusions occur
when a benign tumor is classified as malignant (high false pos-
itive rate). This may be partially explained, as pointed out by

TABLE VII
CONFUSION MATRICES PRODUCED BY THE SVM CLASSIFIER TRAINED

WITH THE PFTAS DESCRIPTOR

40× 100× 200× 400×

B M B M B M B M

B 0.62 0.38 0.38 0.62 0.75 0.25 0.75 0.25
M 0.06 0.94 0.06 0.94 0.06 0.94 0.11 0.89

B: benign, M: malignant.

TABLE VIII
ERROR DISTRIBUTION (%) OF THE SVM TRAINED WITH PFTAS OVER

SUBCLASSES

Class Subclass Magnification Factors

40× 100× 200× 400×

Benign Adenosis 15.7 21.7 9.7 10.3
Fibroadenoma 28.5 31.8 29.5 30.2

Phyllodes Tumor 13.6 18.6 10.1 14.4
Tubular Adenoma 23.1 19.5 15.6 16.5

Malignant Ductal 11.6 2.8 13.9 8.7
Lobular 0.0 0.0 0.2 3.2

Mucinous 2.8 5.1 13.9 10.1
Papillary 4.7 0.5 7.1 6.6

A large amount of false positive comes from fibroadenoma (benign)
mistaken for malignant tumor.

Fig. 4. Example of misclassification: (a) benign tumor classified as a malig-
nant tumor and (b) real malignant tumor.

Kowal et al. [9], by the fact that one of the benign tumor present
in the dataset (fibroadenoma) shares similar properties with a
malignant tumor. To verify this hypothesis, we analyze the ori-
gin of errors in the SVM/PFTAS results in Table VIII. This
analysis shows that independently of the magnification factor,
about 30% of errors of the classifier are due to benign tumors
fibroadenoma classified as malignant class. One example of this
misclassification is presented in Fig. 4, where (a) shows a be-
nign tumor classified as a malignant tumor and (b) presents a
real malignant tumor.

In spite of the complexity of the problem, a reliable CAD
system should produce very low false positive and negative
rates. This will be the main challenge for researchers willing
to use the proposed dataset. One way to build a more reliable
system is by combining the classifiers into a multiple classifier
system framework [35]. Another approach that has gained a
lot of attention in the pattern recognition community recently
is the dynamic selection of classifiers (DSC), which selects a
different classifier for each new test sample. DSC techniques
rely on the assumption that each base classifier is an expert
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Fig. 5. Feature space partitioned into three competence regions [36]. Blue
lines delimit local region in which a competent classifier can be found.

in a different local region of the feature space. Based on this
hypothesis, these techniques try to select the most competent
classifier for the local region in the feature space where the test
sample is located.

To show why classifier selection works, we use the example
presented by Kuncheva in [36]. Consider the two-class problem
depicted in Fig. 5 and a pool D of three weak classifiers, D =
{D1 ,D2 ,D3}. Suppose that D1 always predicts class “black”
and that D2 always predicts class “gray.” D3 is a linear classifier
whose discriminant function is shown as the horizontal dashed
line in Fig. 5. D3 predicts class “black” for samples above the
line and class “gray” for samples underneath. The individual
accuracy of these classifiers is about 50%; therefore, the majority
vote among them is useless as it will always match the decision
of the arbiter D3 and lead to 50% error. However, if we use the
three local regions, delimited by the blue lines, and nominate
the most competent classifier for each region (D1 in R1 , D2 in
R2 , D3 in R3), the error of the ensemble will be negligible.

This example shows the potential of the DSC approach. In
real life, it may be quite difficult to find regions that have such
a huge impact on the ensemble performance [36]. The literature
shows several different methods to define such regions. A recent
review can be found in [37].

To assess the potential of the DSC approach, i.e., to verify
a given pool of classifiers is competent, a common method is
to compute the accuracy of the oracle, which is the upper limit
in terms of performance of the pool of classifiers. As stated in
Section I, the oracle is an abstract model which always selects
the classifier that predicted the correct label, for a given query
sample, if such a classifier exists.

A good oracle does not necessarily imply a good performance
on a real-life classification system. However, a DSC approach
depends on a set of classifiers that are competent on different
regions of the feature space; in other words, they depend on a
good performance of the oracle.

Using this abstract fusion model, Table IX shows the upper
limit of the classifiers and representations adopted in this
work. As we can see, despite of the intrinsic complexity
of the problem, the performance of the oracle is very high.
Considering a single architecture of classifier trained with six

TABLE IX
SUMMARY OF ACCURACY OF THE ORACLE (%)

Classifier Magnification factor

40× 100× 200× 400×

1-NN 91.5 91.5 93.1 91.5
QDA 100 96.9 96.2 97.7
RF 92.3 91.5 90.8 92.3
SVM 95.4 95.4 94.6 97.7
All classifiers 100 98.5 97.7 100

The first four lines show the oracle for each classi-
fier using six different representations. The last line
reports the oracle considering all the 24 classifiers
reported in Table VI.

TABLE X
HYPOTHETICAL CONFUSION MATRICES FOR THE ORACLE

40× 100× 200× 400×

B M B M B M B M

B 1.00 0.00 1.00 0.00 0.88 0.12 1.00 0.00
M 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

B: benign, M: malignant.

different representations, the upper limit of the system achieves
93.9% in average, except for the QDA classifier that reaches
100% for the subset of 40× magnification images. Considering
all the architectures and representations (24 experts), the
upper limit increases up to 99% in average. Note that for the
both magnification factors of 40× and 400×, all test images
could be correctly classified by at least one of the classifiers
in the pool.

Table X presents the hypothetical confusion matrices for the
oracle. As we can see, the proposed pool of classifiers is able to
solve most of the confusions. The challenge now lies in defining
a winner strategy to select the classifiers given an input image.

V. CONCLUSION

In this paper, we have presented a dataset of BC histopathol-
ogy images called BreaKHis, which we make available to the
scientific community, and a companion protocol (i.e., the folds)
for two-class classification of benign versus malignant im-
ages. We have performed some first experiments involving six
state-of-the-art feature vectors and four classifiers. They have
shown room for improvement is left, but also that the comple-
mentarity of the magnification factors should be investigated
in the future, to design a possible coarse-to-fine strategy for
processing the different magnification factor images. One may
also consider that different features should be used to describe
the different magnification factors. The oracle results also show
that a single-classifier might not be enough, and that designing a
strategy to combine or select the classifiers given an input image
should help to increase the accuracy.

Additional challenges include multiclass classification for
both the malignant and the benign image sets. Also, the high
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false positive rate that we have highlighted in this work may be
decreased by implementing a rejection scheme.

By making this dataset available for research purposes, we
hope to foster research in computer-aided diagnosis for BC
histopathology, and also in ensemble classification by providing
a real life, challenging dataset. Future studies may provide some
feedback to the pathologist, so as to help him analyzing these
images and defining a strategy to identify areas to be explored.
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[19] V. Ojansivu and J. Heikkilä, “Blur insensitive texture classification using
local phase quantization,” in Proc. 3rd Int. Conf. Image Signal Process.,
2008, vol. 5099, pp. 236–243.

[20] R. Haralick et al., “Textural features for image classification,” IEEE Trans.
Syst. Man Cybern., vol. SMC-3, no. 6, pp. 610–621, Nov. 1973.

[21] N. A. Hamilton, et al. (2007). Fast automated cell phenotype
image classification. BMC Bioinformatics. 8. [Online]. Available:
http://www.biomedcentral.com/1471-2105/8/110

[22] E. Rublee et al., “ORB: An efficient alternative to SIFT or SURF,” in
Proc. IEEE Int. Conf. Comput. Vision, 2011, pp. 2564–2571.

[23] J. Martins et al., “Forest species recognition based on dynamic classifier
selection and dissimilarity feature vector representation,” Mach. Vision
Appl., vol. 26, no. 2, pp. 279–293, 2015.

[24] J. Paivarinta et al., “Volume local phase quantization for blur-insensitive
dynamic texture classification,” in Proc. 17th Scandinavian Conf. Image
Anal., 2011, pp. 360–369.

[25] L. P. Coelho et al., “Structured literature image finder: extracting infor-
mation from text and images in biomedical literature,” in Linking Liter-
ature, Information, and Knowledge for Biology (ser. LNCS) vol. 6004,
C. Blaschke and H. Shatkay, Eds. New York, NY, USA: Springer, 2010,
pp. 23–32.

[26] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. IEEE Int. Conf. Comput. Vision, Sep. 1999, vol. 2, pp. 1150–1157.

[27] H. Bay et al., “Surf: Speeded up robust features,” in Proc. 9th Eur. Conf.
Comput. Vision, May 2006, pp. 404–417.

[28] E. Rosten et al., “Faster and better: A machine learning approach to
corner detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,
pp. 105–119, Jan. 2010.

[29] M. Calonder et al., “BRIEF:binary robust independent elementary fea-
tures,” in Proc. Eur. Conf. Comput. Vision, 2010, pp. 778–792.

[30] G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software Tools,
2000, vol. 25(11), pp. 120–125.

[31] C. Cortes and V. Vapnik, “Suport-vector networks,” Mach. Learning,
vol. 20, pp. 273–297, 1995.

[32] L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1, pp. 5–32,
2001.

[33] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learning Res., vol. 12, pp. 2825–2830, 2011.

[34] T. Fawcett, “An introduction to ROC analysis,” Pattern Recog. Lett.,
vol. 27, pp. 861–874, 2006.

[35] J. Kittler et al., “On combining classifiers,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998.

[36] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms,
2nd ed. New York, NY, USA: Wiley, 2014.

[37] A. S. Britto Jr., R. Sabourin, and L. S. Oliveira, “Dynamic selection of
classifiers—A comprehensive review,” Pattern Recognitional, vol. 47, no.
11, pp. 3665–3680, 2014.

Authors’ photographs and biographies not available at the time of publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


