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RESUMO

Normalmente, em um cenário do mundo real, poucas assinaturas estão disponíveis para treinar
um sistema de verificação automática de assinaturas (SVAA). Para resolver esse problema,
diversas abordagens para a duplicação de assinaturas estáticas foram propostas ao longo dos
anos. Essas abordagens geram novas amostras de assinaturas sintéticas aplicando algumas
transformações na imagem original da assinatura. Algumas delas geram amostras realistas,
especialmente o duplicator. Este método utiliza um conjunto de parâmetros para modelar o
comportamento do escritor (variabilidade do escritor) ao assinar. No entanro, esses parâmetros
só empiricamente definidos. Este tipo de abordagem pode ser demorado e pode selecionar
parâmetros que não descrevem a real variabilidade do escritor. A principal hipótese desse
trabalho é que a variabilidade do escritor observada no domínio da imagem também pode ser
transferido para o domínio de características. Portanto, este trabalho propõe um novo método para
modelar automaticamente a variabilidade do escritor para a posterior duplicação de assinaturas
no domínio de imagem (duplicator) e domínio de característias (filtro Gaussiano e variação do
método de Knop). Este trabalho também propõe um novo método de duplicação de assinaturas
estáticas, que gera as amostras sintéticas diretamente no domínio de características usando um
filtro Gaussiano. Além disso, uma nova abordagem para avaliar a qualidade de amostras sintéticas
no domínio de características é apresentada. As limitações e vantagens de ambas as abordagens
de duplicação de assinaturas também são exploradas. Além the usar a nova abordagem para
avaliar a qualidade das amostras, o desempenho de um SVAA é avaliado usando as amostras e
três bases the assinaturas estáticas bem conhecidas: a GPDS-300, a MCYT-75 e a CEDAR. Para
a GPDS-300, quando o classificador SVM foi treinando com somente uma assinatura genuína
por escritor, ele obteve um Equal Error Rate (EER) de 5,71%. Quando o classificador também
utilizou as amostras sintéticas geradas no domínio de imagem, o EER caiu para 1,08%. Quando
o classificador foi treinado com as amostras geradas pelo filtro Gaussiano, o EER caiu para 1,04%.

Palavras-chave: Biometria, Variabilidade do Escritor, Verificação de Assinaturas Manus-

critas Estáticas



ABSTRACT

Normally, in a real-world scenario, there are few signatures available to train an automatic
signature verification system (ASVS). To address this issue, several offline signature duplication
approaches have been proposed along the years. These approaches generate a new synthetic
signature sample applying some transformations in the original signature image. Some of
them generate realistic samples, specially the duplicator. This method uses a set of parameters
to model the writer’s behavior (writer variability) during the signing act. However, these
parameters are empirically defined. This kind of approach can be time consuming and can
select parameters that do not describe the real writer variability. The main hypothesis of
this work is that the writer variability observed in the image space can be transferred to the
feature space as well. Therefore, this work proposes a new method to automatically model
the writer variability for further signature duplication in the image (duplicator) and the feature
space (Gaussian filter and a variation of the Knop’s method). This work also proposes a new
offline signature duplication method, which directly generates the synthetic samples in the
feature space using a Gaussian filter. Furthermore, a new approach to assess the quality of
the synthetic samples in the feature space is introduced. The limitations and advantages of
both signature augmentation approaches are also explored. Despite using the new approach
to assess the quality of the samples, the performance of an ASVS was assessed using them
and three well-known offline signature datasets: GPDS-300, MCYT-75, and CEDAR. For the
GPDS-300, when the SVM classifier was trained with only one genuine signature per writer, it
achieved an Equal Error Rate (EER) of 5.71%. When the classifier also was trained with the
synthetic samples generated in the image space, the EER dropped to 1.08%. When the classifier
was trained using the synthetic samples generated by the Gaussian filter, the EER dropped to 1.04%.

Keywords: Biometrics, Writer Variability, Offline Handwritten Signature Verification
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1 INTRODUCTION

The traditional identity recognition methods use some previous knowledge or an object
to confirm the identity of a person. The identity representations used by these methods can
be lost, shared, or stolen, compromising the safety of the user. With the increasing need for
safer security systems, biometrics have been occupying an academic and commercial prominent
position. The biometric verification methods use the physical, behavioral, or chemical traits of
a person to recognize him/her [73, p. 1-3] [68]. One of the behavioral biometric traits is the
handwritten signature of the individual [88].

1.1 CHALLENGES

The handwritten signature can represent the name of an individual ranging from a
simple abbreviation to a full name. Furthermore, it can present a legible or a flourished form
[93, p. 309]. According to Allen (2016) [3], the signature is the most used type of handwriting
by some writers. Each writer has a particular behavior when signing. Several aspects, such as
age [50, 109], physical [124] and emotional state [69], health [69], culture [23, 38], and others
can contribute to this behavior [93, p. 6]. Due to this particular behavior, signatures written by
the same writer never are exactly alike. This is referred to as intrapersonal variability or writer
variability. Furthermore, the signatures of different writers does not have the exact same visual
aspect. This is called interpersonal variability [92]. Due to the interpersonal variability, the
signatures are widely accepted and used to verify a person’s identity [21] [140].

Considering the signature acquisition process, the signatures can be classified into online
and offline signatures. While the online signature is acquired storing the dynamic information
about it, the offline signature is acquired storing the static information about the signature. The
dynamic information is acquired using a special device that can register the trajectory, speed, and
pressure of the signature along the time. The static information is acquired using a camera or
scanner digitizing the image of the signature, written in a surface like a piece of paper. Due to
the lack of the dynamic information, it is harder to verify an individual’s identity with offline
signatures than with online signatures [22].

Because of the importance attached to signatures, they have been the target of falsification.
There are three main types of forgeries. A random forgery is created when a forger uses his/her
own name and does not know the target’s name. A simple forgery is created when a forger only
knows the target’s name and uses it to create the forgery. It is called skilled forgery when a forger
knows the target’s name, and trains to reproduce the target’s signature. For skilled forgeries,
the forger tries to mimic the target’s behavior imitating the visual aspect, trajectory, pressure,
and speed of the signature. With this in mind, the automatic signature verification systems
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were designed to avoid and to identify forgeries. These systems try to automatically divide the
signatures into genuine signatures and forgeries [92].

1.2 MOTIVATION

Despite the promising results presented by the automatic offline signature verification
systems, several of them require a great number of signatures per writer to achieve such results
[56, 58, 123, 136, 146, 147]. Since the signature acquisition is costly and a time-consuming
process, normally, this number of signatures is not available for use. Moreover, it requires several
privacy, bureaucratic, legal, and security measures [122, 22]. To solve this issue some solutions
like the search for the combination of the best features and classifiers [145, 60, 17, 56, 136, 146],
the use of one-class classifiers [53, 60], and the use of offline signature augmentation approaches
[65, 35, 48, 41, 42, 19, 23, 21, 39, 38, 109, 135] were proposed in the literature. Among these
techniques, the offline signature augmentation approaches can be highlighted.

Offline signature augmentation techniques are used to synthetically generate signature
samples to train a signature verification system. While duplication distorts the real signatures
to generate synthetic signatures or duplicates [65, 35, 48, 41, 42, 19, 23, 21, 39, 38, 135],
the composition uses a set of geometric shapes to create synthetic signatures [109]. The
duplication techniques based on human behavior have presented more realistic duplicates
[41, 42, 19, 23, 39, 21, 38], specially the method proposed by Diaz et al. (2017a) [21].

Diaz et al. (2017a) [21] argue that the writer variability can be modeled by a global set
of parameters or a global parameter vector. Despite of different writers have their own behavior
when they write, some of these behaviors can be shared by them during the writing process.
Consequently, these common variability traits can be modeled by a global parameter vector.
The authors tested their hypothesis with two signature datasets and using a predefined set of
parameters. However, they defined the parameters empirically and manually. They considered
two factors: the visual aspect of the duplicates and the performance of an automatic signature
verification system. They selected the parameters that generated the most human-like duplicates
and achieved the best performance using the automatic signature verification system [92].

1.3 OBJECTIVES

This work proposes a method to automatically model the writer variability. It is modeled
using a set of offline signatures to optimize a global parameter vector. Like Diaz et al. (2017a)
[21], the parameter vector describes the most common behavioral traits shared by a group of
writers. With the writer variability model, it is possible to generate more realistic duplicates.
Moreover, this work proposes a validation method to assess the quality of duplicates in the feature
space using their writer variability. It also presents two methods to generate offline synthetic
samples directly in the feature space using a Gaussian filter [85] and the variation of the Knop’s
method [77]. Therefore, the objectives of this work are:
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• To automatically model the writer variability;

• To present an alternative to increase the number of signatures that are used in automatic
offline signature systems;

• To generate more realistic synthetic signature samples (duplicates) using the writer
variability model;

• To improve the performance of a verification system with the duplicates generated using
the proposed method;

• To explore the effect of the duplicates on a verification system;

1.4 HYPOTHESIS

Considering a sufficient discriminant feature descriptor, the main hypothesis of this
work is that the writer variability observed on the image space can be transferred to the feature
space as well. Therefore, the proposed method tries to automatically model the writer variability
considering only the feature space. Consequently, this work does not assess the visual aspect of
the synthetic samples directly.

1.5 CONTRIBUTIONS

The main contributions of this work are listed as follows:

• It is presented a method to automatically model the writer variability using offline
signatures, which was published in [92];

• For the first time, it is presented a method to generate duplicates of offline signature
samples directly in the feature space with a Gaussian filter, which was also published in
[92];

• It is presented a new approach to assess the quality of duplicates in the feature space
considering the writer variability, which was also published in [92];

• The experiments show how the writer variability model can be used to generate more
realistic duplicates in the image and the feature domain;

• The experiments details the effect of duplicates on an offline signature verification
system;

• The advantages and limitations of both signature augmentation approaches are explored
in this work.
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1.6 DOCUMENT STRUCTURE

The next chapters are organized as follows: Chapter 2 presents the biometrics, writing,
and signature concepts. Chapter 3 shows the state of the art of the offline handwritten signature
verification. Chapter 4 describes the proposed method for modeling the intrapersonal writer
variability and associated concepts. Moreover, it shows how the proposed method can be used
to generate more realistic synthetic signature samples in the image and the feature space using
three offline signature augmentation approaches. Chapter 5 shows how these synthetic samples
can be assessed, using their features and the performance of an automatic signature verification
system. Furthermore, it explores the advantages and limitations of the signature augmentation
approaches. Finally, Chapter 6 presents the conclusions and the references.
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2 THEORETICAL FOUNDATION

To better understand this work, the concepts of biometrics, writing, and signature are
presented in the following sections. The related concepts are also presented.

2.1 BIOMETRICS

The word biometrics was derived from the Greek words bio (life) and metric (to measure)
[119, p. 1]. Biometrics consists of the recognition of an individual using his/her chemical,
physical, or behavioral traits. Unlike the traditional methods that need some knowledge or
the possession of an object, biometrics uses the individual traits to recognize him/her. The
identity representation used by the traditional methods can be lost, shared, handled, or stolen,
compromising the security of a system. Due to the constant need for more secure systems,
biometrics has gained a prominent position commercially and academically [72] [68].

2.1.1 Verification and Identification

The verification compares the biometric pattern of an individual with a pattern stored in
a database. The individual who will be recognized claims that he/she has a determined identity,
and the system performs a one-to-one comparison to determine if the statement is true or false.
This procedure avoids different people use the same identity [73, p. 6]. The verification can be
formally expressed as a bi-class problem (Equation 2.1). For a set of input features 𝑋𝑄 and an
identity statement 𝐼, determine if (𝐼, 𝑋𝑄) belongs to 𝜔1 or 𝜔2. In which, 𝜔1 is the true statement,
and 𝜔2 is the false statement. Therefore, 𝑋𝑄 is compared with 𝑋𝐼 (set of features of the user
stored in the database) to determine which class the user belongs to. The function 𝑆(𝑋𝑄 , 𝑋𝐼)
measures the similarity between the input (𝑋𝑄) and the feature vectors of the user (𝑋𝐼) stored in
the database, using a threshold 𝜂 [107, p. 8-9].

(𝐼, 𝑋𝑄) ∈

𝜔1, if 𝑆(𝑋𝑄 , 𝑋𝐼) ≥ 𝜂
𝜔2, otherwise

(2.1)

The identification compares the biometric pattern of the individual with the patterns
stored in the database. The system performs a one-to-many comparison to determine if the
identity belongs to the individual. The identity of the individual will not be determined in
case of the biometric pattern is not registered in the database. This procedure avoids that a
person uses multiple identities [73, p. 6]. The identification can be formally expressed as a
problem of multiple classes (Equation 2.2). For a set of input features 𝑋𝑄 , determine the identity
𝐼𝑘 , 𝑘 ∈ {1, 2, ...𝑀, 𝑀 + 1}. In which, 𝐼1, 𝐼2, ...𝐼𝑀 are the 𝑀 identities in the system, and 𝐼𝑀+1
indicates the rejection case when none of the identities can be assigned to the input. Furthermore,
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𝑋𝐼𝑘 is the biometric pattern corresponding to the identity 𝐼𝑘 , and 𝜂 is a predefined threshold [107,
p. 9-10]

𝑋𝑄 ∈

𝐼𝐾 , if 𝐾 = arg max

𝑘
{𝑆(𝑋𝑄 , 𝑋𝐼𝑘 )} and 𝑆(𝑋𝑄 , 𝑋𝐼𝑘 ) > 𝜂

𝐼𝑀+1, otherwise
(2.2)

In the both formulations, 2.1 and 2.2, the function can represent a similarity, dissimilarity,
or a distance metric. Greater is the dissimilarity or distance between 𝑋𝑄 and 𝑋𝐼 , smaller is the
correspondence between them. On the other hand, the greater is the similarity between 𝑋𝑄 and
𝑋𝐼 , the greater is the correspondence between them [107, p. 10].

2.1.2 Performance

Several factors can affect a biometric system. The adverse conditions of the sensor, the
alteration of the user biometric traits, changes in the environmental conditions, and the interaction
between sensor and user can affect the system. Therefore, it is difficult for a biometric system
to provide a perfect match between two biometric samples of the same user. Consequently, the
distance between the sets of features of these samples generally is different from zero [107, p. 10].

Another factor that can affect a system is the variability of the biometric traits. The
variability observed in a set of biometric traits of the same individual is named as intrapersonal
variability. The variability observed in a set of biometric traits of different individuals is named as
interpersonal variability. During the development of the biometric system, one of the objectives
is to minimize the intrapersonal and maximize the interpersonal variability [73, p. 7].

A similarity metric indicates how similar two sets of biometric traits are. When the same
biometric trait belongs to the same individual, it is called true, authentic, or genuine. Otherwise,
it is called false. A false rejection or error type I happens when a genuine sample is considered
as a false sample. In terms of a threshold, it happens when a value is lower than the threshold
𝜂. A false acceptance or error type II happens when a false sample is considered as a genuine
sample. In terms of a threshold, it occurs when the value is greater than or equals to the threshold
𝜂 (Figure 2.1) [107, p. 10-12].

The False Acceptance Rate (FAR) or False Match Rate (FMR) is the percentage of false
values that exceeds the threshold 𝜂 (Equation 2.3) [73, p. 8]. In which, FA represents the number
of false acceptances and N represents the total number of samples [132, p. 35].

𝐹𝐴𝑅 =
𝐹𝐴 × 100

𝑁
(2.3)

The False Rejection Rate (FRR) or False Non-match Rate (FNMR) can be defined as a
percentage of true values that is lower than the threshold 𝜂 (Equação 2.4) [107]. In which, FR is
the number of false rejections and N is the total number of samples [132, p. 35].
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Figura 2.1: Equal Error Rate representation.
Source: Adapted from Sayeed et al. (2010) [113].

𝐹𝑅𝑅 =
𝐹𝑅 × 100

𝑁
(2.4)

When the threshold 𝜂 changes, the values of FRR and FAR changes as well. However,
when the threshold changes in a biometric system, it is not possible to decrease both errors at the
same time [107, p. 12]. In this case, the Average Error Rate (AER) and the Equal Error Rate
(EER) are used to have an overview of FAR and FRR. The AER is calculated using the mean of
FAR and FRR (Equação 2.5) [49].

𝐴𝐸𝑅 =
𝐹𝐴𝑅 + 𝐹𝑅𝑅

2
(2.5)

The EER represents the intersection between FAR and FRR (Figure 2.1). The EER is
widely used due to its simplicity and its capacity to summarize the performance of a biometric
system [49]. Lower is the EER, better is the performance of the system [132, p. 35]. However,
in practice the distributions of FRR and FAR are not continuous, and the intersection point
between both errors may not exist. Therefore, the interval [𝐸𝐸𝑅𝑚𝑖𝑛, 𝐸𝐸𝑅𝑚𝑎𝑥] or simply the
EER can be reported. Considering that the threshold 𝜂 ranges from 0 to 100 and the EER is in
an interval, the threshold 𝜂 can be divided into 𝜂1 (Equation 2.6) and 𝜂2 (Equation 2.7). After
determining the interval of the EER, it is possible to calculate it using the mean of 𝐸𝐸𝑅𝑚𝑖𝑛 and
𝐸𝐸𝑅𝑚𝑎𝑥(Equation 2.9) [74, p. 149-151].

𝜂1 = max{𝜂 |𝐹𝑅𝑅(𝜂) ≤ 𝐹𝐴𝑅(𝜂)} (2.6)

𝜂2 = min{𝜂 |𝐹𝑅𝑅(𝜂) > 𝐹𝐴𝑅(𝜂)} (2.7)
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[𝐸𝐸𝑅𝑚𝑖𝑛, 𝐸𝐸𝑅𝑚𝑎𝑥] ∈

[𝐹𝑅𝑅(𝜂1), 𝐹𝐴𝑅(𝜂1)], if 𝐹𝑅𝑅(𝜂1) + 𝐹𝐴𝑅(𝜂1) ≤ 𝐹𝐴𝑅(𝜂2) + 𝐹𝑅𝑅(𝜂2)
[𝐹𝐴𝑅(𝜂2), 𝐹𝑅𝑅(𝜂2)], otherwise

(2.8)

𝐸𝐸𝑅 =
𝐸𝐸𝑅𝑚𝑖𝑛 + 𝐸𝐸𝑅𝑚𝑎𝑥

2
(2.9)

2.2 WRITING

Writing consists of the transmission of ideas in a permanent or semi-permanent form
using figures, drawings, or manuscripts. It began to develop due to the need for human beings to
transmit ideas to each other. In the early years of humanity, humans have already registered their
ideas in cavern walls with figures and paintings. It is believed that this type of register began
around 20,000 to 10,000 BC. Lately, these figures were associated with words and became the
ideograms. The ideograms were adopted by Sumerians, Chinese, Aztecs, Mayas, and Egyptians
[78, p. 1].

Afterward, the figures became symbols, and the symbols started to represent syllables
and sounds. The symbols that are used to represent syllables or sounds are called phonographs.
Over time, these phonetic symbols were simplified and became the phonetic alphabet [78, p. 1].
The first known phonetic alphabet was created by the Phoenicians [91, p. 30]. This alphabet is
composed of just 22 consonants, which represented the phonemes of the spoken language. Due
to the Phoenician economy was based on fishing and trading, their alphabet was disseminated
through the Eastern Mediterranean [51, p. 53].

The Phoenician alphabet has given rise to the Greek alphabet. In about 800 B. C.,
another alphabet called Aramaic was developed in the cities of modern Syria (then called Aram)
[51, p. 51, 53]. The Hebrew, Arabic, and Indian alphabets arose due to the evolution of Aramaic
alphabet [14, p. 10]. The Greek alphabet is composed of 24 letters, in which some of them are
vowels [78, p. 2]. The word alphabet has origin of the two first letters of the Greek alphabet,
alpha and beta [87, p. 7]. Subsequently, the Greek alphabet gave origin to the Cyrillic alphabet,
that is used by Russia and the countries of Eastern Europe [78, p. 3]. It is believed that the Greek
alphabet also gave origin to the angular Runic alphabet that was used by nations that lived in
North Europe, Great-Britain, Scandinavia, and Iceland [7, p. 58].

The Greek alphabet has given rise to the Etruscan alphabet, which is the precursor of
the Latin alphabet used by the Romans. This alphabet started with 21 letters [7, p. 58-60]. Due
to the expansion of the Roman empire, the Latin alphabet disseminated and developed itself to
use 26 letters [87, p. 9]. Each letter of the Latin alphabet is named according to the alphabet used
in nowadays [78, p. 2].
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In the 5th century, during the Roman empire weakening, the Teutons started to invade
the Roman territory. Since Teutons did not have their own alphabet and the Latin alphabet
covered the diversity of sounds in the Teuton language, they adopted the Latin alphabet. Some of
Teutons were settled in the Grain-Britain and in the north Europe giving rise to the German and
English. Others were settled in the region of France and Gaul giving rise to the French. Some of
the them were settled in the region of Spain giving rise to the Spanish [7, p. 66-67]. Others were
settled in the region of Portugal giving rise to the Portuguese [27, p. 34-42] [7, p. 67-68].

The words were written without space until the end of the 5th century. The people
realized that the words should be separated when the silence reading developed. When Emperor
Charlemagne unified Eastern Europe, between the centuries 8th and 9th, the lowercase and
uppercase letters began to be used in the Latin manuscripts [87, p. 10-11]. Subsequently, the
written became slightly inclined to the right side, the lowercase case letters became more rounded,
and some of them began to connect each other [46, p. 13]. The simplification of the letter form
turned the copy of manuscripts simpler and faster [78, p. 2].

Between the centuries 7th and 8th, the Gothic handwritten style emerged in the Northwest
Europe [87, p. 11-12] [26, p. 475]. Due to its clear and compact aspect, it was widely used by the
book copyists between the centuries 7th and 15th. This style spread through several European
countries such as Germany, France, England, Spain, and Switzerland [46, p. 14] [91, p. 128-297]
[45, p. 151-152, 251, 274, 279]. The first font styles of the western printed books have been
inspired in this letter style [46, p. 14].

Little by little the Gothic style was losing popularity in Europe and a new style began to
replace it [45, p. 279]. Around 1400, the Humanist writing style [64] appeared in Italy. France,
Spain, and part of Switzerland quickly adopted this new style. England only adopted the new
style at the end of the 17th century. The Gothic style remained strong in Germany until the 20th
century, with the fall of the Nazi regime [46][45, p. 281-282].

Between the 14th and 15th centuries, a variation of the Humanist writing style, the Italic
style, was created. The creation of this style is attributed to the Italian scholar, Niccolo Niccoli
[87, p. 12]. However, it was only in 1522 that the Vatican clerk Ludovico Arrighi popularized
this style of writing [78, p. 2]. In the 16th century, Italic writing already had many characteristics
similar to the current cursive writing [87, p. 12]. Due to this fact, the Italic style is considered the
precursor of the cursive writing [78, p. 2].

Between the 15th and 17th centuries, in the great navigations time, the European
explorers have disseminated their writing systems in the Americas. The Germanic and Latin
writing systems influenced the Americas. While the English system influenced the United States,
most of Canada, and Guyana, the French system influenced the province of Quebec in Canada
and French Guyana. The Dutch system influenced Suriname. While the Spanish influenced most
countries in Latin America, the Portuguese writing system influenced only Brazil [78, p. 3].

The handwriting has been studied for more than 400 years. However, Camilo Baldi
(1622) is considered the first person to perform methodological observations about handwriting.
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In 1897, the French Abb Jean-Hippolyte Michon created the term graphology to refer to the
study of handwriting. He also founded the Graphology Society, and he is considered the first
person to provide a scientific basis for handwriting analysis. Continuing the work of Michon,
J. Crépieus-Jamin divided the handwriting into seven fundamental elements: speed, pressure,
shape, dimension, continuity, direction, and order [96].

Graphology can be used to identify some diseases and chemicals in the body of an
individual [69]. It can also be used for educational purposes, to study historical documents,
and to analyze handwritten forensic documents [96]. The graphology concepts can be used to
identify the writer using handwritten passages [61] [9] [1] or handwritten signatures. However,
they are generally used to attest the authenticity of a document [96] [21] [56] [136] [22].

2.3 SIGNATURE

The term signature is derived from the Latin word signare which means to sign or put a
mark [93, p. 309]. The signature is considered a special type of handwriting. Normally, the
signature is the handwritten representation of a person’s name. It can be presented in several
forms, from full names to abbreviations. It can also be presented from a legible to a flourished
form [3, p. 87] [92]. Moreover, the signature shows the approval and agreement with the content
of a document. For some writers, the signature is the most used form of writing along their lives.
Due to the importance related to the signatures, they have been the main form of writing to be
falsified [3] [93].

The signatures can be classified into genuine signatures, simulated signatures, and
forgeries. The authentic or genuine signatures are naturally written by the individual. When
the individual tries to imitate their signatures to make it looks like a forgery, it is named as a
simulated signature. Despite the individual wrote their signatures, it is a result of an unnatural
behavior. The falsification is made when a forger tries to mimic the signature of an individual to
gain something in exchange. It is necessary to determine what is the natural variability of the
individual who provided the signature to classify it in one of these kinds [103].

2.3.1 Intrapersonal and Interpersonal Variability

Since the handwritten signature is resulting of an individual behavior when signing, the
signatures that were written by the same individual never have exactly the same visual appearance
[78, p. 7]. This is known as intrapersonal variability or writer variability (Figure 2.2). Moreover,
two individuals do not have the same signature. This is called interpersonal variability [63,
p. 4-6]. It is very hard to determine the writer variability using only one or few signature samples.
Due to this natural variability, several samples are necessary to analyze offline signatures. Several
factors, such as handwriting skill, age [50], posture, dominant hand [127], environment, health
[69], and the physical [124] and psychological state [69] can influence the writer behavior.
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Figura 2.2: Offline Signatures of the Same Writer (Source: Adapted from Harralson, 2013 [63])

Cultural factors can also influence the writer variability [67]. One of these factors is the
handwriting system used to write the signatures. The handwriting systems based on ideograms
present a smaller variability than the systems based on the Latin alphabet. For example, the
signatures of the Japanese citizens tend to have a small variability among them. Since their
childhood Japanese people learn to sign using printed form characters. Consequently, it decreases
the variability between signatures of different writers. Due to that, the Japanese government
decreed in 1883 the use of red stamps as an official form of authentication [88].

Due to the small signature variability and security, the Indonesian government allows
the periodically changing of individual signature register. However, the small variability is not
restrict to only handwriting systems based on ideograms. Besides that, some writers can have
more than one signature, since each signature belongs to a different alphabet system. This factor
increases the difficult in analyzing the signatures and determining the individual variability [88].

2.3.2 Forgery

A forgery is made when a forger tries to mimic the signature of an individual to gain
something in exchange [63, p. 6-8]. Forgeries can be divided into random, simple, and skilled.
When the forger does not know the victim’s name and they use their own signature, it is considered
a random forgery. When the forger only knows the victim’s name, it is considered a simple
forgery. A skilled forgery is created when the forger has access to the victim’s signature and
trains to reproduce it. To reproduce a signature, the forgers try to replicate its speed, pressure,
trajectory, and visual aspect. Basically, they try to mimic the victim’s behavior. Depending the
forger’s skill, the skilled forgery can be hard to identify [140, p. 204] [92].

Due to the falsification possibility, the handwriting signature verification was created.
Some factors such as line discontinuity, irregular line quality, blunt ending, lack of smooth
pressure change patterns, pencil traces, and carbon tracings can contribute to detect forgeries.
If the signature sample that will be analyzed is exactly alike the writer signature, it can be a
forgery or a copy of the original one. On the other hand, if the signature sample that will be
analyzed is quite different from a set of the writer signatures, it can be considered as a forgery
as well [63, p. 7-8]. Afterwards the automatic signature verification systems were developed to
automatize the verification process considering these and another factors [92]. These systems try
to determine where the intrapersonal variability ends and the interpersonal variability begins
[72]. Despite of the advances of the last decades, it remains a challenging issue [104] [68] [103]
[72] [57] [22].
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3 OFFLINE HANDWRITTEN SIGNATURE VERIFICATION

Since the signature is a behavioral biometric trait, it cannot be lost, stolen, or forgotten
[72]. Furthermore, the signature is widely used and accepted in daily tasks such as closing of
deals, wills, bank transactions, credit card receipt authentication, and others [21] [58]. Despite
that, the signatures can be falsified [78, p. 55]. Due to increased concerns about the security
of systems based on signatures [59] [36], several types of research about handwritten signature
verification have been conducted [22].

The signature verification systems (SVS) can be divide into online (dynamic) and offline
(static) signature verification systems [63]. In the online SVSs, generally, the writer signs using
a digitizing tablet, a touch screen, or a special pen. These devices provide the signature over
time. They also get data on the traced path, pressure, and speed. Using this set of data, the
system determines if an input signature belongs to a writer or not [88]. In the offline SVSs, the
writer signs a piece of paper that is digitized using a camera or scanner. Subsequently, the system
determines if the signature belongs to the writer using its image features [140]. Unlike online
SVSs, the offline SVSs only have the signature image, increasing the difficulty of this task [88].
In this work, I will only focus on offline signature verification systems.

An offline signature verification system is composed of several steps: signature ac-
quisition (Section 3.1), preprocessing (Section 3.2), feature extraction (Section 3.3), classifier
training (Section 3.4), and signature verification (Section 3.5) [68]. Due to its advances and
challenges, each step has been attracting the interest of the scientific community [57]. The
following subsections detail and show how each one of these steps is treated in the literature.

3.1 SIGNATURE ACQUISITION

Generally, the writer signs a piece of paper using a pen, pencil, or another tool to write.
Then, the signature sample is digitized using a sensor such as a scanner or a camera [57]. Some
perturbations can affect the quality of the signature sample. These perturbations can be caused by
the sensor limitations, the tool used to write, quality of the paper, and posture of the writer [22].

Several researches used private offline signature databases [25] [65] [48] [97] [8] due
to the lack of public ones. The use of private databases makes it difficult to compare the
performance of different SVSs. Several factors such as complexity and size of a database
can affect the performance of a SVS [57]. In the last decades, these constraints motivated
the scientific community to create public offline signature databases [47] [44] [75] [127] [99].
However, there is a small number offline signature databases available for use. It may be due
to the fact that signature acquisition process is time consuming and expensive, and it requires
several legal, bureaucratic, and security measures [122]. Furthermore, due to the availability of
some handwritten signature databases, the signature acquisition process has been disregarded by
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several works [82] [138] [128] [4] [40] [84] [83] [53] [145] [137] [17] [23] [54] [55] [21] [56]
[11] [136] [58] [146].

The most of public offline signature databases use a similar acquisition protocol. Each
writer receives a form with several cells that are filled with the corresponding signatures.
Generally, these cells have the same size as the real applications like bank checks or credit card
receipts. Regarding the forgeries acquisition, each individual receive genuine signature samples
and they are asked to imitate the signatures once or more times. Subsequently, the forms are
collected, scanned with a resolution of 300 dpi (dots per inch) or 600 dpi, and preprocessed [57].

Table 3.1 summarizes the offline handwritten signature databases presenting the database
name, number of writers, number of genuine signatures per writer, and the number of forgeries per
writer. The following subsections describe the western databases: Brazilian PUC-PR, CEDAR,
GPDS-960, and MCYT-75.

Tabela 3.1: Offline Handwritten Signature Databases Where #W, #G, #F, dpi, IF, C, CS Stand for the Number
of Writers, Number of Genuine Signatures per Writer, Number of Forgeries per Writer, Resolution in dpi, Image
Format, Color, and Cell Size in 𝑐𝑚 × 𝑐𝑚, Respectively

Database #W #G #F dpi IF C CS
Brazilian PUCPR 60 40 10 simple, 10 skilled 300 BMP Gray 3.00 x 10.00

108 40 0
CEDAR 55 24 24 skilled 300 PNG Gray 5.08 x 5.08
MCYT-75 75 15 15 skilled 600 - Gray 1.75 x 3.75
GPDS-960 881 24 30 skilled 300 BMP Gray 5.00 x 3.50

5.50 x 2.50

3.1.1 Brazilian PUC-PR

Brazilian PUCPR consists of 168 Brazilian writers. For each writer, there are 40 genuine
signature samples. For the first 60 writers, they also acquired 10 simple forgery samples and 10
skilled forgery samples per writer. The signatures were acquired in cells of 3.00 𝑐𝑚 x 10.00 𝑐𝑚,
in 8-bit gray scale, at 300 dpi and stored in Bitmap (BMP) format [145].

3.1.2 CEDAR

CEDAR dataset consists of 55 writers. For each writer, there are 24 genuine signature
samples and 24 skilled forgery samples. The signature images were acquired in cells of 5.08 𝑐𝑚
x 5.08 𝑐𝑚, in 8-bit gray scale, at 300 dpi and stored in Portable Network Graphics (PNG) format
[75].

3.1.3 MCYT-75

MCYT-75 consists of 75 writers of four different Spanish universities [20]. For each
writer, there are 15 genuine signature samples and 15 skilled forgery samples. The signatures
were acquired in cells of 1.75 𝑐𝑚 x 3.75 𝑐𝑚, in 8-bit gray scale, at 600 dpi.
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3.1.4 GPDS-960

GPDS-960 consists of 881 writers. For each writer, there are 24 genuine signature
samples and 30 skilled forgery samples. Forgeries were produced based on the image of the
genuine signatures. Each forger was able to practice for as long as they want. The signatures
were acquired in cells of 5.00 𝑐𝑚 x 3.50 𝑐𝑚 and 5.50 𝑐𝑚 x 2.50 𝑐𝑚, in 8-bit gray scale, at 300
dpi and stored in BMP format [127].

3.2 PREPROCESSING

Signature images can present several types of variability such as background, inclination,
angle, size, stroke width, noise, etc [57]. Therefore, it is necessary to use some kind of
preprocessing to prepare the images to next steps [52, p. 41]. In this step, generally, segmentation,
noise removal, normalization, and representation algorithms are used [57] [68].

3.2.1 Signature Segmentation

Segmentation is responsible by the search and extraction of the signature from a
document [57]. Like the most of pattern recognition problems, the signature segmentation is a
complex and challenging process [52, p. 42-43]. Mainly, when it is necessary to extract signatures
of bank checks. Bank checks have colorful backgrounds with several logos and preprinted lines
increasing the complexity of the segmentation process [68].

Otsu’s algorithm is one of the most used algorithms for signature segmentation [40]
[84] [102] [83] [56]. Otsu’s algorithm try to find best threshold that segment the signature of the
background using statistical properties of the image. However, this algorithm does not present a
good performance when the background or the illumination are not uniform [52, p. 744,747-751].

Posterization algorithm is another algorithm used for signature segmentation. It reduces
the number of colors in the image fo a fixed number. After that, a thresholding algorithm is used
to create a binary (black and white) image. Finally, the binary image is used to split the signature
from background [128]. Several works consider the signatures already were segmented before
the verification process, disregarding this step. Due to that, signature datasets containing the
previously extracted signatures are normally used [57].

3.2.2 Noise Reduction

During the acquisition of offline signature images there are some noise. The noise can
be produced by bad sensor working, irregular surface where the sensor is located, paper or ink
reflectance, absorption capability of the paper, roughness of the paper, etc [72]. Therefore, noise
reduction filters such as median [83] [70] [102] and mean [21] filters can be used. Despite these
filters remove the noise, they also can hamper the contour of the signatures. Therefore, it is
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important to determine the filter intensity to remove the noise and keep the contour information
of the signatures [52, p. 18, 174-177].

Besides that, the morphological operations are also used to correct unconnected
components in the signatures [40] [84] [21]. Generally, the operation of dilation is used to
group poor defined strokes and the operation of erosion is used to remove small unconnected
components [21].

3.2.3 Normalization

During the signature acquisition or the signature writing, the signature can be inclined
and further affect the feature extraction process. Therefore, the inclination correction of the
signatures is widely adopted by several signature verification system [138] [84] [83] [136]. The
size also can affect the signature verification systems. Therefore, the signatures can be resized
to a fixed size [102] [83] [136], or they can be cropped and put in the center of a window of
fixed size [21] [56]. Another factor that can affect the performance of SVS is the position of
the signature. Like the size normalization, the signature images are previously cropped and
centralized in window of fixed size. This process tries to guarantee that the center of the signature
is in the same region [138] [102] [136].

Several researches use the normalization as just an step or a prerequisite of the verification
system, and they do not show the real influence of this process in the performance [138] [84]
[102] [21] [136]. On the other hand, other researches show the real importance in determining
the normalization effects in the offline signature verification. For example, Hafemann et al.
(2016b) [55] shown that the normalization affect the performance of the SVSs. When they used
the signature normalization, they improved the performance of their SVS decreasing the EER in
about 4%.

3.2.4 Representation

Signature image in gray scale has being used for the extraction of texture features
[128] [138] [40] [17] [23] [21] and for the extraction of Convolutional Neural Networks (CNNs)
features [56] [58]. Besides the gray scale, the signature can be represented by a binary image
[80] [70] [102] [136]. The signature image can have several representations, it depends on the
binarization algorithm used to binarize it. Like the signature segmentation, the Otsu’s algorithm
is the most used to binarize signature images [70] [102].

The signature also can be represent by a skeleton [80] [84] [145] [21]. A skeleton is the
structure that represents the approximation of the strokes’ medial axis [52]. The skeleton is use
represent the signatures when the features are sensible to the strokes width. However, the use of
this kind representation can lead to the lost of important signature information [137]. The binary
and skeleton images are normally used when it is necessary to extract some kind of structural or
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geometric feature [80] [128] [4] [70] [102] [53] [145] [17] [11]. Besides that, the binary images
are also used to extract CNNs features [136].

Another form to represent the signature is using its contour. Kumar and Puhan (2014)
[83] used the upper and lower envelope to represent the signatures. Basically, the envelope
represents the contour that surround all the writer signature. Like the skeleton, this representation
is associated to the extraction of some structural or geometric feature.

3.3 FEATURE EXTRACTION

The feature extraction is one of the fundamental steps in a signature verification system
[83]. The features can be classified into global and local features. While the global features
describe the whole signature image [8] [80] [84] [83], the local features describe some parts of
the signature image. The local features can be extracted using image segments [90] [137] [11] or
using a grid overlapping the image [8] [138] [70] [40] [84] [57].

There is a constant search for the best features that better generalize and describe
the handwritten signatures. Several kinds of features have been used with this purpose, from
structural to the features extracted using CNNs [136]. Due to this diversity, the features can be
divided into handcrafted features and representation learning.

3.3.1 Handcrafted Features

Geometric features are used to the describe the signature shapes [96] [8] [80]. Among
them, there are height, width, caliber (ratio between height and width), and the signature area.
Despite these features are generally used as global descriptors, they can also be used as local
descriptors dividing the signature in regions, and extracting the features in each region [57].

Graphometric features have been the object of significant handwritten signature analysis
specialists interest. Bertolini et al. (2010) [8] selected the stroke width, the stroke distribution,
inclination, and the signature curvature to describe signatures. Oliveira et al. (2005) [96] select
other graphometric features such as caliber, proportion, inclination, and the signature spacing
during the signature verification. Like the geometric features, the graphometric features also
need that the signatures are normalized following some criteria.

Features based on texture are also used for offline signature verification [128] [138] [40]
[84] [137] [117] [17] [23] [21]. Among the texture features, the Local Binary Patterns (LBP)
descriptor [128] [40] [137] [17] [23] and its variants [40] [115] [116] [117] [23] [21] are widely
used. The LBP histogram is used to describe the local patterns of a image. Another texture
descriptor is the Gray Level Co-occurrence Matrix (GLCM) [128]. This descriptor uses the
relative frequency of the neighborhood pixels [57]. One of the main problems in using texture
descriptors is the complexity, or heterogeneity of the background image. When the image has a
complex or heterogeneous background, it can change the gray levels of the image. Therefore, the
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image background is removed using some segmentation algorithm before the feature extraction
[40].

Ferrer et al. (2012) [40] compared the performance of three texture descriptors for
signature verification: LBP, Local Directional Patterns (LDP), and Local Derivative Patterns
(LDerivP). Among these texture descriptors, the LDerivP achieved the best performance during
the verification. However, this descriptor took 15 times more time to extract the features than the
another descriptors.

Yilmaz et al. (2011) [138] used the combination of the Histogram of Oriented Gradients
(HOG) [15] and LBP for signature verification. They considered Cartesian and polar coordinates
systems to dived the signature images into region and to extract the HOG features. When the
features were individually compared, the HOG with polar coordinates presented the best results.
However, when the combinations were included, the combination between the LBP, and HOG
with polar and Cartesian coordinates presented the best results. This shows that the different
descriptors extracted complementary features from signatures.

The combination of geometric and texture features was also explored. Kumar et al.
(2012) [84] proposed a new descriptor combining the structural and textural properties of the
image. The descriptor is represented by an histogram of distribution of black pixels in the
neighborhood, according to several distances between the central pixel and their neighbors. It
presents a vector with 24 elements and has lower computational complexity than other descriptors.
However, this descriptor is sensible to rotation. Therefore, before use it, the inclination of the
signature images must be normalized.

The directional features try to describe the image using the orientation of the signature
strokes [57]. Eskander et al. (2013) [33], Rivard et al. (2013) [106] e Diaz et al. (2017a) [21]
extracted the Directional Probability Density Function (DPDF) of the signature gradients using
grids of several sizes. This kind of features is translation and scale invariant. However, it is
sensible to rotation and noise [30]. Zhang (2010) [139] investigated the Pyramid Histogram of
Oriented Gradients (PHOG) to describe signatures. Like HOG, this descriptor represents the
signature using an histogram of contour orientations. Moreover, it also represents the histogram
in several sizes [57].

Beside the directional features, the features based on the signature stroke distribution
are also used. Eskander et al. (2013) [33], Rivard et al. (2013) [106] e Diaz et al. (2017a) [21]
used the descriptor Extended Shadow Code (ESC) to verify signatures. For a binary signature,
the descriptor uses a grid overlaid to the image to compute the horizontal, vertical, and diagonal
histogram projection of the pixels in the signature. Since the descriptor uses binary images to
extract the features, it depends on binarization algorithm. Furthermore, it is sensible to scale,
translation, and rotation [111].

The Run Length Distribution (RLD) descriptor is also used for signature verification.
For a binary image, the descriptor computes the number of connected pixels with the same
intensity and determines their orientation. This descriptor is used to compute the number of
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black and white pixels horizontally, vertically, and right and left diagonally. Like ESC descriptor,
this descriptor depends on binarization algorithm [11].

Another descriptor based on signature stroke distribution is the partially ordered sets
or posets. Zois et al. (2016) [145], Diaz et al. (2017) [21], and Zois et al. (2019) [146]
investigated the application of this descriptor in signature verification systems. First, the image is
binarized and thinned. The thinning process provides the signature skeleton or the medial axis
approximation of the signature strokes. This descriptor needs specifically an one-width skeleton.
The posets features describe the skeleton transitions between binary patterns considering a
window of 5x5 pixels [145].

The researchers have been using mathematical transformations to extract signature
features [148] [53] [60] [98]. Zouari et al. (2014) [148] investigated the use of Fractal
transformations. Soleimani et al. (2016) [121] and Ooi et al. (2016) [98] used Discrete Radon
Transform (DRT) to represent signatures. While Guerbai et al. (2015) [53] used Curvelet
transformations, Hamadene et al. (2016) [60] used the Contourlet transformations to extract
features from the signature contours.

Features based on corresponding points of interest are also used to verify offline
signatures [90] [137]. Among them, there are Scale-Invariant Feature Transform (SIFT) and
Speeded Up Robust Features (SURF) [57]. Ruiz-del-Solar et al. (2008) [110], and Yilmaz and
Yanikoğlu (2016) [137] used the SIFT descriptor to extract the frequency of the points of interest
to compare the query signatures with reference signatures.

According to studies using eye-gaze tracking technology, the Forensic Document
Examiners (FDEs) do not typically look at a signature as a whole [31] [32] [101] [95]. FDEs
use a bottom-up search strategy to find areas in the signature that are resulting of pen movement
changes. These areas of interest can present features that help to distinguish more easily between
genuine signatures and forgeries [31] [95]. Okawa (2018a) [95] proposed the incorporation
of these FDEs’ behavior in automatic offline signature verification systems, using a feature
extraction approach based on a Fisher vector (FV) with KAZE features from both the foreground
and background signature images. FV can provide a more precise spatial distribution of the
characteristics for each writer. Despite of that, it encodes the KAZE features in high-dimensional
feature vectors. Therefore, Okawa used Principal Component Analysis (PCA) to generate more
compact vectors without a significant performance loss [95].

KAZE is a Japanese word that means wind. The wind is natural phenomena that is
defined by the flow of air on large scale and normally this flow can be described by a set of
nonlinear processes. Based on the concept that the multiscale features of the images are ruled
by nonlinear processes as well, Alcantarilla et al. (2012) proposed the KAZE features. These
features provide a descriptor that is scale- and rotation-invariant in nonlinear scale spaces. Despite
these features have a higher computational complexity than SIFT and SURF, Alcantarilla et
al. showed that the KAZE features presented a better performance than them in detection and
description tasks [2].
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Besides to describe the signatures, the features also can be used to determine the writer
variability [80] [102] [70] [83] [90]. Malik et al. (2014) [90] used the SURF descriptor to
extract the points of interest to evaluate the variability of the signatures. They used the stability
to evaluate it. When the several signature samples are compared, the stability measures the
number of alterations between these samples. Just the points of interest that have a great stability
were considered as matching points during the verification. The number of points of interest in
the input signature and number of matching points were used to compute the probability of a
signature be genuine [57].

Kovari and Charaf (2010) [80] modeled the writer variability using the statistical
properties of local features. They used the position features of signatures such as: start position,
end position, length, and the inclination angle. They also used geometrical features such as:
perimeter, area, maximum diameter, maximum diameter angle, inscribed diameter, roundness,
centroid, bounding circle, bounding box, extend, modification ratio, compactness, formfactor,
moment axis angle convexity, solidity, and the aspect ratio.

Impedovo et al. (2012) [70] modeled the writer variability measuring the stability of
signatures. They used binary images with regions of black pixels with five parallel segments
equally spaced in four directions (vertical, horizontal, main diagonal, and secondary diagonal).
Each intersection between the black pixels of the image and the segments of each direction were
computed. For each writer, they computed the average cosine similarity in each region. Lower
is the similarity, greater is the writer variability. Greater is the similarity, lower is the writer
variability.

Subsequently, Pirlo and Impedovo (2013) [102] used the stability to verify signatures.
The signature images were divided into regions. Each region of the test signature were compared
with the region of the train signature. Like the stability, the comparison was performed computing
the cosine similarity for each region. If the similarity was lower than or equal to the region
stability, the region of the test signature was considered similar to the region of the train signature.
The decision of all the signature regions were combined using the majority vote. If the writer has
signature regions with a small variability, and it is presented a forgery with slightest different
regions, the system is capable to identify the forgeries. However, for writers with a great
variability in several regions, this approach cannot be enough to solve the problem. Moreover,
this approach is sensitive to the signature rotation, inclination, and position. Therefore, it is
necessary to apply a normalization before the comparison of the signature regions.

Kumar and Puhan (2014) [83] modeled the writer variability using geometrical features.
For that purpose, they extracted the chord moments Each chord is a segment that connect two
points of envelope of a signature. When it was compared with other structural features and the
black-pixel distribution, it achieved the lowest FRRs and FARs, and the great accuracy. Besides
this approach is stroke width and translation invariant, it is sensitive to rotation and signature
scale. Therefore, a scale and inclination normalization needs to be applied before the feature
extraction.
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3.3.2 Representation Learning

The Convolutional Neural Networks (CNNs) have stood out due to their outstanding
performance in several image classification tasks. Inspired by the behavior of the brain, this kind
of network is composed of layers of artificial neurons. These layers learn to recognize patterns
such as contours, textures, and the relation between image pixels [37]. Due to the capability of
learning patterns, the CNNs can be used to automatically extract features of signature images
[58]. However, the CNN training process is computationally costly and needs a great number of
signature samples [136]. Besides that, several CNNs need that the input image has a fixed size.
Consequently, the images need to be resized before forward them to the CNN. Therefore, some
important features can be lost during this resizing process [58].

Hafemann et al. (2016b) [55] proposed a method to extract features of offline handwritten
signatures using CNNs. Furthermore, they evaluated the impact of the normalization in the
feature extraction. The authors shown that CNN features described better the signature images
that were normalized. Hafemann et al. (2016a) [54] evaluated four different CNN architectures,
and the respective feature extraction layers. Among the evaluated architectures, the simplified
AlexNet shown promising results.

Hafemann et al. (2017a) [56] proposed a new CNN architecture for offline signature
feature extraction. The architecture was trained considering two different scenarios. One, when
the CNN was trained using only samples of genuine signatures, and it was named as SigNet.
And the another one, when the CNN was trained using samples of genuine signatures and skilled
forgeries, and it was named as SigNet-F. The features learned by the CNNs showed to be robust
enough to generalize the features of different signatures based on the Latin alphabet. However, the
authors did not performed experiments to show the generalization capability of the representation
learning for different writing systems.

Later Hafemann et al. (2018) [58] proposed alterations in the SigNet architecture
to enable the use of images with different sizes as input. Moreover, they evaluated the new
architecture using signatures with resolutions of 100 dpi, 300 dpi, and 600 dpi. Using forgeries
during the training of the CNN, for larger resolutions like 600 dpi the CNN achieved better
performance than lower resolutions. However, when just genuine signatures were used for training,
lower resolutions like 100 dpi showed better performance than larger resolutions. Furthermore,
the authors showed the generalization capability of the representation learning using two more
writing systems: Bengali and Devanagari.

Yilmaz et al. (2018) [136] proposed a new architecture of CNN with two input channels
for feature extraction. According to Yilmaz et al. (2018) [136], this kind of architecture is less
costly than other CNNs architectures during the training process. However, it is more costly than
other architectures during the testing phase. The authors compared the performance of a signature
verification system using the features extracted using their architecture with the SigNet-F features.
The SigNet-F features showed a better performance than their CNN features. When the both kinds
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of features were combined, they achieved better results than the features individually. This may
indicate that both architectures provide complementary features to describe signatures. Besides
that, the authors did not evaluate their architecture in different databases based on the Latin
alphabet or another writing systems. Therefore, the generalization capability of their architecture
was not proven.

The spatial information can help to identify small differences between the same strokes
of the signatures and some common habits of different writers. Consequently, it can be used to
distinguish genuine signatures from skilled forgeries. However, during the feature extraction the
traditional CNN loses the spatial information about the signature strokes [144]. Exploring this
limitation, Zheng et al. (2021) [144] proposed a method to keep some spatial information during
the feature extraction. The authors combined two CNNs to perform the verification. While one
of the CNNs discriminates different writers, the another one was used to distinguish the genuine
signatures from skilled forgeries. Despite keeping the spatial information of the signatures,
training two CNNs is computationally costly.

The Generative Adversarial Networks (GANs) are composed by two networks. One
of them is the generator G(z) and another one is the discriminator D(y). During the training,
both networks are trained simultaneously. For an input image, the network D(y) returns a value
indicating if the signature is a genuine signature or a forgery. For a forgery, D(y) returns a value
close to zero. Otherwise, D(y) returns a positive value. For an input vector z, the network G(z)
tries to generate a signature image that is used to train the network D(y). Therefore, D(y) tries
to maximize the returned value, while G(z) tries to generate signatures that are similar to the
genuine ones. Consequently, G(z) tries to deceive D(y) and minimize the returned value [142].

Zhang et al. (2016) [142] proposed the use of GANs for feature learning of signatures.
After the training, the authors used the features of all convolutional layers present in discriminator
network. As CNNs, the GANs require a great number of signature samples for training to achieve
an acceptable performance. However, the GANs do not need the labeled samples for training.

Another strategy is the use of metric learning. The methods based on metric learning try
to automatically find a good distance metric. A good distance metric considers that two similar
samples have a distance close to zero, while two different samples have a great distance between
them [121]. Rantzsch et al. (2016) [105] proposed a signature verification method based on
metric learning. Three kinds of signatures were used during the training phase: the reference
signatures, genuine signatures, and forgeries. This method tries to find the metric that minimize
the distance between the reference and the genuine signature, and maximize the distance between
the reference and the forgery. Like a real scenario, the authors used the random forgeries for
training. Besides learning the distance metric, the CNN VGG-16 was used to learn the signature
features.
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3.4 CLASSIFIER TRAINING

A classifier is trained using a learning or a training subset L containing genuine
signatures of the writers. Each classifier is used to verify the signatures. When it is necessary to
verify a signature 𝑋𝑄 belongs to a writer, a classifier is used to classify it in a genuine signature
or a forgery. To assess the performance of a verification system, it is used a testing subset T
with genuine signatures and forgeries. If one classifier is trained for each writer of the system, it
is called a writer-dependent system (WD). On the other hand, if only one classifier is trained
to verify the signatures of all writers of the system, it is called a writer-independent system
(WI). For WI systems, it is common to train and test the system using different sets of writers.
Therefore, a development subset D is used to train the WI classifier, and a exploiting subset E is
subdivided into the previous subsets (L and T ) [57].

A writer-independent system learns to compare the signature that will be verified 𝑋𝑄
with a reference signature 𝑋𝑅 [57]. During the test phase, the system compares the signature 𝑋𝑄
with the references 𝑋𝑅 of the supposed writer to determine with it is a genuine signature or a
forgery. One of the most used approaches to compare the signatures is using the dissimilarity
representation [8] [138] [84] [33] [106] [60] [137] [146] [123]. Dissimilarity 𝑍 is calculated
through difference between the reference signature feature vector 𝑉𝑅 and the feature vector of the
signature that will be verified 𝑉𝑄 [8].

Unlike WD systems, WI systems are scalable and can manage new writers without
retraining or updating the model. Since the dissimilarity representation uses a pairwise
combination of signatures, it increase the number of samples available for training. On the other
hand, many of these samples have redundant information that do not help to improve the model
during the training [123]. Furthermore, the WD systems generally present a better performance
than WI systems [22] [89].

Hidden Markov Model (HMM) already have been widely used to verify handwritten
signatures. It reproduces the writing sequence of the handwritten signature. Due to that, this
classifier is ideal for online signature verification [56]. Despite that, HMMs are also used in
offline signature verification [96] [4] [17] [21]. When they are used with offline signatures, each
writing sequence is represented by a segment of the signature, and each segment represents a
state. The transition between these states indicates the signature change along the time. During
the verification, HMMs calculate the probability of each signature segment belong to some writer
[16].

Since HMMs depend on the state sequence, they also depend on the writing system
used to generate de signatures. The writing system based on Latin are the most used ones [96]
[131] [4] [17] [21], occurring from left to right. Therefore, the most used state transitions is from
left to right [57]. Due the nature of it, this classifier is sensible to the writing system used to
sign. Consequently, this classifier is not suited to signatures that follow different writing systems.
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Furthermore, like other classifier, the HMMs need a great number of signature samples to achieve
an acceptable performance [10].

Support Vector Machine (SVM) is one of the most used classifiers for offline signature
verification [138] [128] [4] [40] [83] [53] [145] [137] [17] [23] [21] [56] [11] [95] [147] [123]
[144]. The popularity of this kind of classifier may be due to its performance during the
verification. On the other hand, the SVM training may be computationally costly when there are
several signature examples available [10].

When the SVM classifier is used, it is possible to use a kernel to improve the performance
of it. A kernel is a function that transform the feature vector in a feature vector of a higher
dimensionality. For classification problems that are not linearly separable, the kernel can help to
solve this problem [10]. Among the kernels available, the most used ones are: linear [40] [83]
[56], Radial Basis Function (RBF) or Gaussian [138] [128] [4] [40] [53] [145] [137] [17] [56]
[11], and the 𝜒2 [40] [23] [21] kernels.

Depending on the set of features, one kernel can present better or worse performance
than other kernels. Hafemman et al. (2017a) [56] achieved their best results using the RBF
kernel and the features extracted using CNNs, while Diaz et al. (2017a) [21] achieved their best
results using the 𝜒2 kernel and the LDerivP descriptor. The use of a kernel also implies in a
increase of the computational cost according to the complexity of the chosen function [10].

A simple distance calculus between the feature vectors of signatures that will be verified
and the reference signatures can also be used. Some distances such as Euclidean [117] [17],
Mahalanobis [131], and Canberra [60] distance are used to verify offline signatures. Wen et
al. (2009) [131], and Hamadene and Chibani (2016) [60] defined a threshold to determine if
a signature belongs to a writer or it is a forgery. If the smallest distance is smaller than the
threshold, the signature is considered as a genuine signature. Otherwise, it is considered as a
forgery.

Serdouk et al. (2016) [117] used the K-NN classifier to calculate the distance between
the feature vectors of the signature 𝑋𝑄 and the reference signatures. It also was used to calculate
the distance between the vectors of 𝑋𝑄 and the forgery references. If 𝑋𝑄 is closer to a genuine
signature, it is considered as a genuine signature. Otherwise, it was considered as a forgery.

Liu et al. (2021) [89] proposed the Mutual Signature DenseNet (MSDN) to extract the
signature features and to learn a similarity metric from regions of the signature images. Liu et al.
showed that the MSDN can be used as a WI and a WD classifier. Despite this architecture can
be used as a WI classifier, it showed a better performance as a WD classifier to verify offline
signatures.

Unlike Rantzsch et al. (2016) [105] and Liu et al. (2021) [89], Soleimani et al. (2016)
[121] do not use a CNN to learn the signature features with the dissimilarity metric. Soleimani
et al. (2016) [121] extract the features using HOG and DRT descriptors to train, and test their
method. Besides the distance metric, their method depends on the representation capability of
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the chosen features. If the chosen features do not describe the signatures well, the verification
system will present unsatisfying results.

Another strategy is the use of the one-class models [53] [11]. The one-class models use
the genuine signatures of the writer as examples. Guerbai et al. (2015) [53] and Bouamra et al.
(2018) [11] used the one-class support vector machine (OC-SVM) classifier to try to solve the
signature verification problem. According to Bouamra et al. (2018) [11], the main advantage
of using one-class classifiers is that these classifiers can differentiate the genuine signatures of
forgeries without using forgery examples. Besides that, this kind of classifier has shown good
performance on unbalanced problems [6].

Despite the strong points of the one-class classifier, it cannot determine the writer
variability when there is a unique sample or few signature samples per writer [57]. Therefore,
more samples are needed for training of this type of classifier. Moreover, the ideal number of
samples for training of one-class classifiers was not widely investigated [53] [11].

The CNNs can be used to extract features and to classify as classifiers. As previously
exposed, the CNN training is computationally costly and require a great number of signature
samples. Besides that, the great number of layers and the size of the architecture also influence
in the computational cost of the CNN [58] [136]. According to Domany et al. (1996) [29]
the CNNs are recommended to extract features, but they are not necessarily recommended to
classify. The traditional classifiers may be more suited to verify offline signatures than the last
layer of the CNNs. Hafemann et al. (2017a) [56] showed experimentally this behavior. Despite
the architecture proposed by them achieved a good performance during the signature feature
extraction, the same architecture did not achieve a good performance as a classifier. Therefore, it
is important to identify the weak and the strong points of each architecture when a CNN is being
chosen or developed.

Another approach is the combination of several classifiers. Bertolini et al. (2010) [8]
trained several SVM classifiers with different graphometric features. A genetic algorithm was
used to select and combine a subset of classifiers. Besides combining classifiers of the same
type, it is possible to combine different types of classifier to verify signatures [4].

Yilmaz and Yanikoğlu (2016) [137] showed that is possible to combine a writer-
independent with a writer-dependent system. In the WI system, they used a SVM classifier with
dissimilarity vectors. In the WD system, they trained a SVM for each writer using the HOG
and LBP feature vectors. Each system provided a probability of the signature be genuine. The
probabilities were combined using the mean rule.

3.5 SIGNATURE VERIFICATION

To show the performance of the verification systems, the researches that used at least
one of the datasets were selected: GPDS-960 (Table 3.2), MCYT (Table 3.3) e CEDAR (Table
3.4). It is important to highlight that each research uses a different experimental protocol. One
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of these experimental protocol factors is the number of writers used for training of the SVS.
Therefore, the researches were grouped considering the databases used without restricting the
number of writers used in the experiments.

Some experimental details such as the type of the system (Writer-Dependent or Writer-
Independent), feature descriptors, classifier algorithms, and the number of reference signatures
per writer used for training are summarized in the following Tables 3.2, 3.3, and 3.4. Regarding
the performance of the system, some metrics such as FARskilled (percentage of skilled forgeries
that were accept as genuine signatures), FRR (percentage of genuine signatures that were reject
by the system), AER (average between FARskilled and FRR), and the EER (Equal Error Rate)
[57] are also summarized. Since the researches have different experimental protocols, a direct
comparison among them is not possible [92].

Tabela 3.2: Performance of the signature verification methods using GPDS database

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
WD [118] HOT (AIRSV) 10 5.91 12.80 8.76 9.30
WD [139] PHOG (GLM) 19 17.77 29.03 - -

PHOG (FLD) 19 3.90 6.06 - -
PHOG (KNN) 19 2.64 8.57 - -
PHOG (MLP) 19 4.09 7.26 - -
PHOG (SVM) 19 3.25 4.50 - -

WD [138] HOG, LBP (SVM) 5 - - - 17.53
12 - - - 15.03

WD [137] HOG, LBP (SVM) 5 - - - 7.98
12 - - - 6.97

WD [40] LBP (SVM) 10 - - - 23.03
WD [43] LBP (SVM) 2 - - - 3.14

5 - - - 1.46
10 - - - 0.76

WD [17] LBP (SVM) 5 - - - 18.80
WD [116] LBP (SVM) 16 9.61 8.29 9.14 -
WD [116] LBPriu (SVM) 16 10.19 7.83 9.34 -
WD [116] OC-LBP (SVM) 16 9.76 8.29 9.23 -
WD [116] OC-LBP, LBPriu 16 9.11 6.70 8.25 -

(SVM)
WD [128] LBP, GLCM, 5 4.79 23.09 - 12.88

Contour (SVM) 10 13.13 7.46 - 11.04
WD [42] LBP, LDP (SVM) 10 - - - 15.90
WD [40] LDP (SVM) 10 - - - 21.52
WD [117] GLBP, LRF (AIRS) 16 13.16 11.38 12.52 -
WD [115] OC-LBP, LRF (SVM) 16 9.11 7.70 8.61 -

OC-LBP (SVM) 16 9.76 8.29 9.23 -
WD [21] LDerivP (SVM) 2 - - - 21.63

5 - - - 17.19
8 - - - 14.58

WD [40] LDerivP (SVM) 10 - - - 15.35
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Tabela 3.2: Performance of the signature verification methods using GPDS database (continuation)

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
WD [115] LRF (SVM) 16 11.80 15.41 13.13 -
WD [11] RLD (SVM) 1 8.13 5.73 - -

4 9.66 3.88 - -
8 7.77 3.65 - -
12 6.64 3.63 - -

WD [21] ESC, DPDF (BFS) 2 - - - 28.55
5 - - - 24.04
8 - - - 20.39

WD [33] ESC, DPDF (BFS) 12 18.17 27.25 15.24 -
14 22.71 18.06 13.96 -

WD [21] Posets (SVM) 2 - - - 25.01
5 - - - 21.68
8 - - - 18.66

WD [145] Posets (SVM) 5 18.79 4.65 4.86 5.48
10 9.31 2.91 2.94 3.53
12 8.68 6.72 2.59 3.24

WD [4] Segmentation 4 48.69 19.44 26.92 -
Grid (SVM, HMM) 8 49.00 14.88 25.10 -

12 47.25 19.19 25.42 -
WD [53] Curvelet 4 - - 16.92 -

Transform (SVM) 8 - - 15.95 -
12 - - 15.07 -

WD [17] Geometrical (HMM) 5 - - - 22.50
WD [21] Geometrical (HMM) 2 - - - 32.01

5 - - - 27.86
8 - - - 26.60

WD [102] Stability (Cosine 12 - - - 7.2
Similarity)

WD [17] Zernike Moments 5 - - - 35.16
(Distance)

WD [54] AlexNet (SVM) 5 1.87 31.48 - 5.41
12 4.73 10.42 - 4.17

Reduced AlexNet 5 1.74 26.33 - 4.53
(SVM) 12 5.13 6.55 - 3.47

WD [56] SigNet (SVM) 5 - - - 3.92
12 - - - 3.15

SigNet-F (SVM) 5 4.68 6.03 - 2.42
12 3.53 3.94 - 1.69

WD [136] SigNet-F (SVM) 5 - - - 2.66
12 - - - 2.08

WD [58] SigNet-SPP-300dpi 12 - - - 3.15
(SVM)
SigNet-SPP-300dpi-F 12 - - - 0.41
(SVM)

WD+WI CNN with 2 channels, 5 - - - 1.16
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Tabela 3.2: Performance of the signature verification methods using GPDS database (continuation)

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
[136] SigNet-F (SVM) 12 - - - 0.88
WD+WI DCGANs (Adaboost) 14 - - 16.08 -
[142]
WI [84] Surroundness (MLP) 24 13.76 13.76 - -
WI [33] ESC, DPDF (BFS) 14 27.04 26.42 17.82 -
WI [60] Contourlet 3 18.92 24.56 21.74 -

Transformation 4 20.67 17.00 18.83 -
(Distance) 5 21.10 15.73 18.42 -

WI [136] CNN with 2 channels 5 - - - 4.72
(SVM) 12 - - - 2.88

WI [146] Asymmetric P2AD 5 - - - 3.06
(DSC-BFS)

WI [147] K-SVD/OMP 𝐹3 12 - - - 0.70
(SVM)

WI [123] SigNet (SVM) 12 - - - 3.69
Condensed Nearest 12 - - - 3.47
Neighbors SigNet
(SVM)

Through the Tables 3.2, 3.3, and 3.4, it is evident that the writer-dependent systems
are the most used. This may be related to the performance of this kind of system and its
implementation simplicity. Furthermore, several researches use the GPDS-960 database. It is
may be associated to the robustness of the databases. Among the GPDS, MCYT, and CEDAR
databases, the GPDS has the greatest number of writers and signatures.

Tabela 3.3: Performance of the signature verification methods using MCYT database

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
WD [17] Zernike Moments 5 - - - 35.51

(Distance)
WD [131] RPF (Distance) 5 - - - 15.30
WD [131] RPF (HMM) 5 - - - 15.02
WD [17] LBP (SVM) 5 - - - 16.07
WD [42] LBP, LDP (SVM) 10 - - - 23.42
WD [40] LBP (SVM) 10 - - - 11.28
WD [43] LBP (SVM) 2 - - - 2.28

5 - - - 0.35
10 - - - 0.26

WD [128] LBP, GLCM, 5 2.71 24.13 - 11.28
Contour (SVM) 10 6.77 8.59 - 7.23

WD [21] LDerivP (SVM) 2 - - - 16.06
5 - - - 11.90
8 - - - 9.12
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Tabela 3.3: Performance of the signature verification methods using MCYT database (continuation)

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
WD [40] LDerivP (SVM) 10 - - - 18.16
WD [40] LDP (SVM) 10 - - - 10.15
WD [23] Texture (SVM) 2 - - - 16.59

5 - - - 11.67
WD [21] Geometrical 2 - - - 19.03

(HMM) 5 - - - 15.27
8 - - - 12.02

WD [17] Geometrical (HMM) 5 - - - 19.98
WD [21] ESC, DPDF (BFS) 2 - - - 23.67

5 - - - 16.58
8 - - - 15.26

WD [21] Posets (SVM) 2 - - - 16.50
5 - - - 14.02
8 - - - 11.57

WD [145] Posets (SVM) 5 25.19 4.48 5.62 6.02
10 17.21 4.96 3.45 4.01

WD [98] DRT (PNN) 5 - - - 13.86
10 - - - 9.87

WD [118] HOT (AIRSV) 10 2.40 12.80 7.60 10.60
WD [56] SigNet (SVM) 5 - - - 3.58

10 - - - 2.87
SigNet-F (SVM) 5 - - - 3.70

10 - - - 3.00
WD [58] SigNet-SPP-600dpi 10 - - - 3.64

(SVM)
SigNet-SPP-600dpi 10 - - - 3.40
Fine-tuned (SVM)

WD [95] KAZE/FV (SVM) 10 - - - 5.47
KAZE/BoVW (SVM) 10 - - - 8.40
KAZE/VLAD (SVM) 10 - - - 6.90

WD+WI CapsNet 5 5.33 7.32 6.32 8.95
[135] 10 2.66 1.33 1.99 2.58
WI [146] P2AD Asymmetric 5 - - - 3.50

(DSC-BFS)
WI [147] K-SVD/OMP 𝐹3 10 - - - 1.37

(SVM)
WI [123] Condensed Nearest 10 - - - 2.89

Neighbors SigNet
(SVM)

The features based on texture were the most used ones to describe offline signatures. In
addition, it is possible to observe the crescent interest of the scientific community in using CNNs
to learn features. Among the classifiers used in SVS, the most used one was the Support Vector
Machine. Despite this classifier is computationally costly, it also presents a better performance



41

Tabela 3.4: Performance of the signature verification methods using CEDAR database

Type Features #R FARskilled (%) FRR (%) AER (%) EER (%)and Classifier
WD [83] Envelope (SVM) 4 21.72 10.54 - -

8 13.98 9.32 - -
12 7.42 13.18 - -
18 5.68 6.36 - -

WD [53] Curvelet 4 - - 8.70 -
Transformation 8 - - 7.83 -
(SVM) 12 - - 5.60 -

WD [116] LBP (SVM) 16 1.36 2.04 1.71 -
WD [116] LBPriu (SVM) 16 3.18 0.68 1.94 -
WD [116] OC-LBP (SVM) 16 2.27 1.81 2.05 -
WD [116] OC-LBP, LBPriu 16 2.04 1.13 1.60 -

(SVM)
WD [117] GLBP, LRF 16 2.12 4.93 3.54 -

(AIRS)
WD [115] OC-LBP, LRF 16 2.04 0.45 1.25 -

(SVM)
WD [115] OC-LBP (SVM) 16 3.18 1.36 2.28 -
WD [115] LRF (SVM) 16 9.77 9.09 9.44 -
WD [56] SigNet (SVM) 4 - - - 5.87

8 - - - 5.03
12 - - - 4.76

WD [56] SigNet-F (SVM) 4 - - - 5.92
8 - - - 4.77
12 - - - 4.63

WD [58] SigNet-SPP-600dpi 10 - - - 3.60
(SVM)

WD [58] SigNet-SPP-600dpi 10 - - - 2.33
Fine-tuned (SVM)

WD [144] Micro Deformation 5 - - - 3.89
CNN (SVM) 10 - - - 2.95

12 - - - 2.76
WD [89] MSDN 12 - - - 1.67
WI [82] Morphological 24 11.59 11.59 - -

Features (SVM)
WI [84] Surroundness (MLP) 24 8.33 8.33 - -
WI [60] Contourlet 3 0.0 6.24 3.12 -

Transformation 4 0.0 5.11 2.55 -
(Distance) 5 0.0 4.21 2.10 -

WI [146] Asymmetric P2AD 5 - - - 2.90
(DSC-BFS)

WI [147] K-SVD/OMP 𝐹3 10 - - - 0.79
(SVM)

WI [123] Condensed Nearest 12 - - - 3.32
Neighbors SigNet
(SVM)

WI [89] MSDN 1 - - - 6.74
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than other classifiers [139] [57]. Another interesting factor is the number of references per
writer to train the SVS. Several researches use a lot of signature references to achieve a better
performance. However, in a real-world scenario there are few references per writer available to
train such systems.

3.6 FEW SIGNATURE EXAMPLES FOR TRAINING

One of the main problems of offline signature verification is the amount of signature
samples available for training of the signature verification system [11]. Most of the offline
signature verification systems need a great amount of signature examples to achieve an acceptable
performance. However, in a real scenario, only a few signature samples per individual are
provided to train the system [122]. Some applications use only a single sample per individual, it
increases the difficult in determine the writer variability [48].

There are some well established commercial signature databases, but the sharing and
using of this data is very restrict due to legal, privacy and bureaucratic concerns. One solution is
the creation of own robust database. However, the writers can be concerned about the sharing
of their personal information. Moreover, this process is costly and takes time. Besides that, it
is a repetitive and exhaustive process to the writers, compromising the quality of the provided
signatures [122].

Table 3.5 summarizes the main works that used few signature samples per individual
during the training of offline signature verification systems. For each work, Table 3.5 presents
the bibliographic reference, kind of features, classifier, database, number of writers, number of
signature references per writer for training, and the performance achieved. Due to the widely
diversity of adopted protocols to evaluate the SVSs, a direct comparison is not possible. Despite
this widely diversity of SVSs, few of them consider up to three examples of signatures per writer
to train their systems [43] [60] [19] [21] [11] [89]. Therefore, the works that also use up to five
examples of signature per writer during the training were considered [128] [138] [4] [83] [53]
[98] [145] [137] [17] [56] [136] [146] [144].

Tabela 3.5: Offline Signature Verification with Few Examples per Writer for Training

Reference Features Database #W #R Performance (%)
and Classifier FAR FRR AER EER

Wen et al., RPF (Mahalanobis MCYT 100 5 - - - 15.30
2009 [131] Distance)

RPF (HMM) 5 - - - 15.02
Vargas et al., Contour, GLCM, GPDS 100 5 4.79 23.09 - 12.88
2011 [128] LBP (SVM) 10 13.13 7.46 - 11.04

MCYT 75 5 2.71 24.13 - 11.28
10 6.77 8.59 - 7.23

Yilmaz et al., HOG, LBP (SVM) GPDS 160 5 - - - 17.53
2011 [138] 12 - - - 15.03
Batista et al., Segmentation Grid Brazilian 60 4 35.17 26.17 20.38 -
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Tabela 3.5: Offline Signature Verification with Few Examples per Writer for Training (continuation)

Reference Features Database #W #R Performance (%)
and Classifier FAR FRR AER EER

2012 [4] (SVM, HMM) 8 38.83 16.00 18.71 -
12 34.33 13.50 15.08 -
20 30.00 4.67 9.71 -

GPDS 160 4 48.69 19.44 26.92 -
8 49.00 14.88 25.10 -
12 47.25 19.19 25.42 -

Ferrer et al., LBP (SVM) GPDS 75 2 - - - 2.20
2013b [43] 5 - - - 1.00

10 - - - 0.47
GPDS 350 2 - - - 3.14

5 - - - 1.46
10 - - - 0.76

MCYT 75 2 - - - 2.28
5 - - - 0.35
10 - - - 0.26

Kumar & Envelope (SVM) CEDAR 55 4 21.72 10.54 - -
Puhan, 2014 8 13.98 9.32 - -
[83] 12 7.42 13.18 - -

18 5.68 6.36 - -

Guerbai et al., Curvelet CEDAR 30 4 - - 8.70 -
2015 [53] Transformation 8 - - 7.83 -

(OC-SVM) 12 - - 5.60 -
GPDS 160 4 - - 16.92 -

8 - - 15.95 -
12 - - 15.07 -

Ooi et al., DRT (PNN) MCYT 5 - - - 13.86
2016 [98] 10 - - - 9.87
Zois et al., Posets (SVM) CEDAR 55 5 15.91 4.44 3.64 4.12
2016 [145] 10 11.52 5.83 2.74 3.02

GPDS 300 5 18.79 4.65 4.86 5.48
10 9.31 2.91 2.94 3.53
12 8.68 6.72 2.59 3.24

MCYT 75 5 25.19 4.48 5.62 6.02
10 17.21 4.96 3.45 4.01

Yilmaz & HOG, LBP (SVM) GPDS 140 5 - - - 7.98
Yanikoğlu, 12 - - - 6.97
2016 [137]
Hamadene & Contourlet CEDAR 45 3 0 6.24 3.12 -
Chibani, 2016 Transformation 4 0 5.11 2.55 -
[60] (Canberra Distance) 5 0 4.21 2.10 -

GPDS 290 3 18.92 24.56 21.74 -
4 20.67 17.00 18.83 -
5 21.10 15.73 18.42 -

GPDS 462 3 16.60 31.06 23.83 -
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Tabela 3.5: Offline Signature Verification with Few Examples per Writer for Training (continuation)

Reference Features Database #W #R Performance (%)
and Classifier FAR FRR AER EER

4 18.41 18.86 18.63 -
5 18.39 18.07 18.23 -

Das et al., Zernike Moments GPDS 100 5 - - - 35.16
2016 [17] (Euclidean Distance)

Geometrical (HMM) 5 - - - 22.50
LBP (SVM) 5 - - - 18.80
Zernike Moments MCYT 100 5 - - - 35.51
(Euclidean Distance)
Geometrical (HMM) 5 - - - 19.98
LBP (SVM) 5 - - - 16.07

Diaz et al., Texture MCYT 75 2 - - - 16.59
2016b [23] 5 - - - 11.67

Bengali 100 2 - - - 10.67
5 - - - 6.06

Devanagari 100 2 - - - 11.88
5 - - - 9.01

Hafemann AlexNet (SVM) GPDS 160 5 0.89 32.12 - 4.25
et al., 2016a 14 2.77 10.41 - 3.37
[54] Reduced AlexNet 5 1.03 26.56 - 3.83

(SVM) 14 2.77 6.75 - 2.74
AlexNet (SVM) GPDS 300 5 1.87 31.48 - 5.41

14 4.73 10.42 - 4.17
Reduced AlexNet 5 1.74 26.33 - 4.53
(SVM) 14 5.13 6.55 - 3.47

Diaz et al., Geometrical (HMM) GPDS 300 2 - - - 32.01
2017a [21] 5 - - - 27.86

8 - - - 26.60
ESC, DPDF (BFS) 2 - - - 28.55

5 - - - 24.04
8 - - - 20.39

LDerivP (SVM) 2 - - - 21.63
5 - - - 17.19
8 - - - 14.58

Posets (SVM) 2 - - - 25.01
5 - - - 21.68
8 - - - 18.66

Geometrical (HMM) MCYT 75 2 - - - 19.03
5 - - - 15.27
8 - - - 12.02

ESC, DPDF (BFS) 2 - - - 23.67
5 - - - 16.58
8 - - - 15.26

LDerivP (SVM) 2 - - - 16.06
5 - - - 11.90
8 - - - 9.12
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Tabela 3.5: Offline Signature Verification with Few Examples per Writer for Training (continuation)

Reference Features Database #W #R Performance (%)
and Classifier FAR FRR AER EER
Posets (SVM) 2 - - - 16.50

5 - - - 14.02
8 - - - 11.57

Hafemann SigNet (SVM) Brazilian 60 5 7.17 4.63 5.90 2.92
et al., 2017a 10 10.70 1.22 5.96 2.07
[56] 15 12.62 0.23 6.42 2.01

SigNet-F (SVM) 5 2.72 17.17 9.94 5.11
10 6.55 9.25 7.90 4.03
15 8.80 5.47 7.13 3.44

SigNet (SVM) CEDAR 55 4 - - - 5.87
8 - - - 5.03
12 - - - 4.76

SigNet-F (SVM) 4 - - - 5.92
8 - - - 4.77
12 - - - 4.63

SigNet (SVM) GPDS 160 5 - - - 3.23
12 - - - 2.63

SigNet-F (SVM) 5 5.17 5.16 - 2.41
12 3.66 3.59 - 1.72

SigNet (SVM) GPDS 300 5 - - - 3.92
12 - - - 3.15

SigNet-F (SVM) 5 4.68 6.03 - 2.42
12 3.53 3.94 - 1.69

SigNet (SVM) MCYT 75 5 - - - 3.58
10 - - - 2.87

SigNet-F (SVM) 5 - - - 3.70
10 - - - 3.00

Bouamra et RLD (OC-SVM) GPDS 281 1 8.13 5.73 - -
al., 2018 [11] 4 9.66 3.88 - -

8 7.77 3.65 - -
12 6.64 3.63 - -

Yilmaz et al., SigNet-F (SVM) GPDS 160 5 - - - 2.66
2018 [136] 12 - - - 2.08

CNN with 2 channels 5 - - - 4.72
(SVM) 12 - - - 2.88
CNN with 2 channels, 5 - - - 1.16
SigNet-F (SVM) 12 - - - 0.88

Zois et al., Asymmetric P2AD CEDAR 35 5 - - - 2.90
2019a [146] (DSC-BFS) GPDS 195 5 - - - 3.06

MCYT 48 5 - - - 3.50
Yapıcı et al., CapsNet MCYT - 5 5.33 7.32 6.32 8.95
2020 [135] 10 2.66 1.33 1.99 2.58
Zheng et al., Micro Deformation CEDAR 55 5 - - - 3.89
2021 [144] CNN (SVM) 10 - - - 2.95

12 - - - 2.76
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Tabela 3.5: Offline Signature Verification with Few Examples per Writer for Training (continuation)

Reference Features Database #W #R Performance (%)
and Classifier FAR FRR AER EER

Liu et al., MSDN CEDAR 55 1 - - - 6.74
2021 [89]

Among the used databases, GPDS is used in almost all of the works with few signature
examples per writers. It may be due the GPDS is one of the most robust signature datasets
present in the literature [47] [44] [75] [127] [99]. Features based on texture are the most used to
describe signatures in works with few examples per writer [128] [138] [43] [137] [17] [23] [21].
Since the texture descriptors are easy to implement and showed promising results in describing
offline handwritten signatures, it may explain this behavior [57] [22]. Despite the features learned
by deep learning models are not widely used to describe few signature samples, they showed
promising results [54] [56] [136] [135].

Like the other works, SVM is the most used classifier [128] [138] [4] [43] [83] [145]
[17] [23] [54] [21] [56] [136], its variations [53] [11], and combinations [137]. Despite its
computational cost, this kind of classifier has been showing promising results with few signature
samples per writer [137]. Regarding the approaches used to solve this kind of problem, the use
of one-class classifiers [53] [11], the search for the best features to describe signatures [54] [56]
[136] [135], and the offline signature augmentation techniques [43] [23] [21] can be highlighted.

3.7 OFFLINE SIGNATURE AUGMENTATION

Offline signature augmentation techniques are used to create synthetic signature samples
to train a signature verification system [65] [35] [41] [42] [19] [23] [39] [21] [38] [109] [135].
It can be done modifying real signatures [65] [35] [41] [42] [19] [23] [39] [21] [38] [135] or
creating pure synthetic signatures [109]. When the real signatures are used to create new signature
samples, it can be called signature duplication [21]. On the other hand, if the real signatures
are not used to create new samples, it can be called signature composition [73]. Despite the
compositional techniques do not use real data to create new signatures, they can provide new
information to improve the performance of SVSs [109]. Unlike compositional techniques, the
duplication techniques apply some transformation on the real signatures that introduces some
kind of writer variability. Furthermore, the duplication techniques modeling the writer variability
proved to create realistic samples that resemble the real signatures [41] [42] [19] [23] [39] [21]
[38]. Duplication methods can be classified according to the approach used by them, that can be
based on geometrical transformations or be bio-inspired. Figure 3.1 depicts the taxonomy of the
offline signature augmentation techniques [92].

Normally, compositional methods use a set of elements with a particular order to
compose a new synthetic text sample [73]. Ruiz et al. (2020) [109] proposed a compositional
method combining some geometrical figures such as lines, triangles, crosses, semi-ellipses,
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Figura 3.1: Taxonomy of the Offline Signature Augmentation Techniques

ellipses, circles, semi-circles, and cycloids. Despite the proposed composition method did not
produced realistic signatures, the synthetic signatures helped a Siamese Neural Network to learn
some basic geometrical features from signatures.

In the last decades, duplication techniques have evolved from simple geometrical
transformations [65] [35] [48] to behavioral models [41] [42] [19] [23] [39] [21] [38]. Geometrical
transformations such as rotation [65] [48], scale [65] [48], perspective [65], and displacement
[35] [48] are applied to increase the number of signature samples. These kind of transformations
can add some natural and unnatural distortions. Normally, the natural distortions may be used
to generate synthetic genuine signatures [65] [35] [48]. Huang and Yang (1997) [65] also used
unnatural distortions to generate synthetic signature forgeries. Despite of that, skilled forgeries
may present natural distortions that resemble the genuine signatures [140] [39]. Therefore, forgery
duplicates with unnatural distortions can decrease the performance of a signature verification
system.

Most methods based on geometrical transformations use several parameters to represent
the duplicate variability. However, the most of researches using these methods do not detail
how each parameter was determined. Besides that, the geometrical transformations can generate
duplicates that are not necessarily similar to the genuine signatures [21]. Despite these methods
increase the performance of SVSs, they do not consider the behavior of each writer to generate the
duplicates [65] [35] [48]. Since the most of methods based on geometrical transformations do not
consider the writer’s behavior, several bio-inspired methods were developed. The bio-inspired
methods can be divided into Deep Learning and Behavioral approaches [92].

Besides feature learning and classification, deep learning can also be used in data
augmentation tasks like offline signature augmentation. Yapıcı et al. (2020) [135] proposed the
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use of Cycle-Generative Adversarial Network (Cycle-GAN) to duplicate signatures. Cycle-GAN
learns how the offline signatures are generated using pairs of signatures. The model tries to
learn the transformations that convert a signature A in a signature B and vice-versa. Yapıcı et al.
(2020) compared their duplication method with traditional data augmentation techniques such as
rotation, flipping and mirroring. They showed that their method achieved better results than the
traditional techniques. Despite the network generated unrealistic duplicates, the performance of
authors’ signature verification system was improved when the duplicates were used to train the
system.

The handwriting is a complex process that develops since the childhood until the
adulthood. First, the shape and sequence of the strokes are learned. Later, the movements to
reproduce the shape and the sequence are trained [42]. As this process improves, the writing
becomes a repetitive and customary task [78]. Even the handwriting process is still not fully
understood, some methods try to model the human’s behavior when they are signing [92] [41]
[42] [19] [23] [39] [21] [38]. These behavioral techniques can take in account different strategies
such as muscular and neuromotor approaches. The approaches based on muscular models [41]
try to recreate the trajectory of signature strokes and the effect of the speed during the movement
of the writer’s muscles. Since these methods are designed to duplicate flourished signatures, they
can present not human-like duplicates when legible signatures are used [92].

Some behavioral methods are based on neuromotor theory [42] [19] [23] [39] [21] [38].
Instead of just considering the muscles, these methods also consider a set of skeleton parts, eyes,
and the central nervous system to generate signatures. First, the brain creates and stores the
signature generation plan. The central nervous system sends electric impulses to the eyes and
to the muscles responsible by the writing. Consequently, the plan is executed by a series of
muscular contractions and joint movements producing the desired signature [42].

Normally, the neuromotor inspired methods do not consider the sequence of the signature
strokes. On the other hand, there are some of them that are mainly concerned about the signature
trajectory plan [42] [39] [38]. This plan specifies the position and the sequence of strokes used
to generate the signature. Despite the sequence information is only present in online signatures,
it can also be extracted from offline signatures. Ferrer et al. (2015) [42] used the model proposed
by Djioua and Plamondon (2009) [28] to extract the speed information from offline signatures,
and created a signature trajectory plan. Moreover, Ferrer et al. (2018) [38] showed that the
trajectory plan and the method complexity is related to the alphabet used to sign [92].

Like the muscular methods, the neuromotor-based methods try to model the desired
motor effects presented in the signatures. These methods use a deformable grid which maps
the distribution of the signature strokes and characters on the written surface [21]. To map such
surface, some grid architectures such as hexagonal [39] [38], quadrangular [42], and sinusoidal
[23] [21] are used. Ferrer et al. (2018) [38] showed that the grid density is associated to the
character spacing and size of the different alphabets used to sign. While more sparse grids are
indicated for western alphabets like Latin, dense grids are indicated for eastern alphabets like
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Bengali and Devanagari [38]. However, Diaz et al. ([23, 21]) showed that the sinusoidal grid can
be used for both kind of alphabets like Latin, Devanagari, and Bengali [92].

Besides the signatures depend on the human’s behavior, they also depends on paper [41],
ink [41] [24] [42] [23] [21], and the instrument used to write [78, p. 7-21, 27-29]. The paper and
ink models are used to duplicate offline signatures and generate more realistic synthetic samples.
While the paper models try to mimic the roughness of the written surface, the ink models try to
mimic the deposition process of the ink on the paper surface [43].

Similar to geometrical methods, the behavioral methods use several parameters to
control the writer variability. These kind of methods determine these parameters empirically
or manually. These approaches may be time-consuming, complex, and may select parameters
that does not describe the real writer variability [92]. Besides that, the reproduction of these
approaches may be unfeasible. As consequence of the wrong definition of parameters, these
approaches may present unnatural signatures, reducing the performance of signature verification
systems [35] [21]. Table 3.6 summarizes the offline signature augmentation methods presented
in the literature with their reference, strategy used by the method, if the methods considers the
writer variability, and the writing alphabet, respectively.

Tabela 3.6: Offline signature augmentation methods (If the method considers the writer variability, it is marked with
a X.)

Reference Method Writer AlphabetVariability
Huang and Yan, 1997 [65] Affine\ - Latin\Chinese

Geometrical Transformations
Fang et al, 2002 [35] Elastic Matching - Latin
Frias et al., 2006 [48] Affine\ X Latin

Geometrical Transformations
Ferrer et al., 2013a [41] Active Shape Model\ X Latin

Muscular Model\
Paper Model\Ink Model

Ferrer et al., 2015 [42] Neuromotor Inspired Model\ X Latin
Ink Model

Diaz et al., 2016a [19] Neuromotor Inspired Model\ X Bengali
Ink Model

Diaz et al., 2016b [23] Neuromotor Inspired Model\ X Bengali\Devanagari
Ink Model

Diaz et al., 2017a [21] Neuromotor Inspired Model\ X Latin
Ink Model

Ferrer et al., 2016 [39] Neuromotor Inspired Model X Latin\Chinese
Ferrer et al., 2018 [38] Neuromotor Inspired Model\ X Bengali\Devanagari

Ink Model
Ruiz et al., 2020 [109] Morphological\Geometrical - Latin

Transformations\
Noise Addition

Yapıcı et al., 2020 [135] Deep Learning Model X Latin
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According to the results presented in the literature, the neuromotor inspired theory
methods generate more realistic duplicates than compositional methods and geometrical trans-
formations [24] [21] [39] [38]. Among the neuromotor-inspired methods, the method proposed
by Diaz et al. (2017) [21] can be highlighted. This method uses a neuromotor inspired model
combined with a ink model to produce realistic duplicates. Diaz et al. trained a SVS with
duplicates generated by their method and compared with the same SVS trained with the ones
generated by geometrical transformations proposed in [48]. The SVS trained with duplicates
generated by their method outperformed the other one trained with geometrical duplicates.
Furthermore, they also showed that their method can be used to create synthetic signatures
of different writing systems such as Latin [21], Bengali, and Devanagari [19] [23]. Despite
of the advantages of the method, the parameters used to generate the signature duplicates are
empirically defined. Therefore, a method to automatically optimize the parameters based on the
writer variability is proposed in this work.
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4 THE PROPOSED METHOD

As previously exposed, one of the main problems of offline signature verification is
the number of signature samples available to train a signature verification system [22]. Despite
the duplication techniques based on neuromotor theories provide realistic signature samples,
they assume the writer variability, empirically determining the parameters that model it [21].
Therefore, a method to automatically optimize the writer variability parameters based on real
data is proposed in this work. Figure 4.1 illustrates a signature verification system using the
proposed method, from the parameter optimization to the final verification.

Parameter Optimization

Training

Verification

Optimization
Database

Optimize
Parameters

Compute Average
Parameter Vector

Training A
(Image Space Augmentation)

Training B
(Feature Space Augmentation)

Train
Classifier

Input Signature (XQ)

Extract
Features

CNN SigNet-F (φ)

Verification

Decision
Genuine/Forgery

Optimization Signatures (Xo)

Parameter Vector (πω)

Parameter Vectors (πω)

Average Parameter
Vector (πavg)

Classifier (f)

Feature Vectors
(φ(XQ))

f(φ(XQ))

Figura 4.1: The proposed method being used in an offline signature verification system. While the Training A is only
used for the signature augmentation in the image domain, the Training B is only used for the signature augmentation
in the feature domain.

Taking into account a discriminant feature descriptor, the main hypothesis of this work
is that the writer variability observed in the image space can be reflected in the feature space.
Therefore, the method tries to model the writer variability only using the feature space. The visual
aspect of the signatures is not directly assessed. The Convolutional Neural Network Signet-F (𝜙)
is used to extract the feature vector 𝜙(𝑋) from each signature image 𝑋 . Considering a set of
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writers, 𝜙(𝑋𝑂) is used to optimize the parameters which describe the variability of a writer 𝜔.
As result of the optimization, there is a parameter vector 𝜋𝜔 for each writer 𝜔 that represents their
variability. Subsequently, the average parameter vector 𝜋𝑎𝑣𝑔 is calculated using all the available
parameter vectors in the optimization database [92].

The proposed method consider three kinds of signature augmentation techniques, one in
the image space using Duplicator [21], and other two in the feature space using a Gaussian filter
[85] and a variation of the Knop’s method [77]. For the image space augmentation, Duplicator
uses the average parameter vector 𝜋𝑎𝑣𝑔 and the signature 𝑋 of the training set to generate
duplicates 𝑋𝐷 , respecting the writer variability. With the signatures 𝑋 and duplicates 𝑋𝐷 , the
CNN 𝜙 is used to extract the feature vectors 𝜙(𝑋) and 𝜙(𝑋𝐷), respectively (Figure 4.2). For
the feature space augmentation, the Gaussian filter (Figure 4.3) or the variation of the Knop’s
method (Figure 4.4) uses the average parameter vector 𝜋𝑎𝑣𝑔 and the signature feature vectors
𝜙(𝑋) to generate new feature vectors 𝜙(𝑋𝐷) respecting the writer variability [92].

Training A (Image Space Augmentation)

Signature
Database

Duplicator

Average Parameter
Vector (πavg)

Extract
Features

CNN SigNet-F (φ)

Train Classifier

Signatures (X)

Signatures (X)

Duplicates (XD)

Feature Vectors
(φ(X), φ(XD))

Figura 4.2: Training A is only used when the duplicates are generated in the image domain to train the classifiers.

Training B1 (Feature Space Augmentation)

Signature
Database

Extract
Features

CNN SigNet-F (φ)

Apply
Gaussian Filter

Average Parameter
Vector (πavg)

Train Classifier

Signatures (X)

Feature Vectors
(φ(X))

Feature Vectors
(φ(X), φ(XD))

Figura 4.3: Training B1 is only used when the duplicates are generated using the Gaussian filter to train the classifiers.

For each writer of the system, the feature vectors 𝜙(𝑋) and 𝜙(𝑋𝐷) are used to train a
classifier 𝑓 . For a signature that will be verified 𝑋𝑄 , the CNN 𝜙 extracts feature vector 𝜙(𝑋𝑄)
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Training B2 (Feature Space Augmentation)

Signature
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Figura 4.4: Training B2 is only used when the duplicates are generated using the variation of the Knop’s method to
train the classifiers.

and submits it to the previously trained classifier 𝑓 . The classifier 𝑓 use the feature vector 𝜙(𝑋𝑄)
to decide if the signature 𝑋𝑄 is a genuine signature or a forgery [92]. Each component of the
signature verification system depicted in Figure 4.1 is detailed in the next subsections.

4.1 OFFLINE SIGNATURE DATASETS

To perform the experiments, the offline handwritten signature datasets GPDS-960,
MCYT-75, and CEDAR were used. To compare the results with Hafemann et al. (2017a) [56], a
similar experimental protocol was adopted, including for the datasets partitioning. Development
dataset D is composed of the last 581 writers, which is subdivided into DL , DT , and DV
subsets. While subset DL is used to a Convolutional Neural Network learn the features of the
offline signatures,DT is used to monitor the evolution of the CNN learning. Both subsets contain
the same 531 writers with different proportions of signature samples from each writer. While
DL has 90% of the samples, DT has 10% of the samples. The optimization method uses some
of the writers present in subset DL . The remaining 50 writers compose subset DV , which is
used to make all the choices regarding the CNN model, hyperparameters of the classifiers, and
the initial range used to optimize the parameter vectors [92].

The first 300 writers (GPDS-300) belong to exploitation subset E. They are use to train
and test the SVM classifiers used in the signature verification system. While subset EL contains
samples that are used to train the classifiers, subset ET contains those that are used to test them.
The MCYT-75 and CEDAR datasets were used to show generalization capability of the proposed
method.
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4.2 NORMALIZATION

Since a CNN of a fixed input size is being used in this work, signature images are
normalized following the protocol adopted by [56]. Otsu’s algorithm is used to remove the
background of the original signature images and convert it to white (255). Subsequently, the
center of mass of the signature is placed into the center of a window of height x width pixels. To
keep the same proportion of the signature images, each dataset has its own window size (Table
4.1). Due to the different signature image sizes for different datasets, this process is needed. The
color of all pixels is inverted and resized to 170× 242 pixels. Afterward, the central region of the
image with 150 × 220 pixels is cropped [92].

Tabela 4.1: Window Sizes Used in the Signature Normalization.

Dataset Window Size
GPDS-960 952 × 1360
MCYT-75 600 × 850
CEDAR 730 × 1042

4.3 CONVOLUTIONAL NEURAL NETWORKS SIGNET AND SIGNET-F

As previously exposed, the CNN SigNet (Table 4.2) was proposed by Hafemann et al.
(2017a) [56] to learn offline handwritten signature features. This architecture was based on CNN
AlexNet that achieved outstanding results in classifying high-resolution images into 1,000 classes
[81]. SigNet is composed of five convolutional (C1, C2, C3, C4, and C5), three max-pooling (P1,
P2, and P3), and two fully connected layers ((𝑃(𝑦 |𝑋)) and (𝑃( 𝑓 |𝑋))). The main advantage of
using a CNN is it can learn translation invariant features and hierarchies of features [13, p. 123].

Tabela 4.2: Architecture of CNN SigNet-F

Layer Size Parameters
Input 1 × 150 × 220
Convolution (C1) 96 × 11 × 11 Stride=4, pad=0
Pooling (P1) 96 × 3 × 3 Stride=2
Convolution (C2) 256 × 5 × 5 Stride=1, pad=2
Pooling (P2) 256 × 3 × 3 Stride=2
Convolution (C3) 384 × 3 × 3 Stride=1, pad=1
Convolution (C4) 384 × 3 × 3 Stride=1, pad=1
Convolution (C5) 256 × 3 × 3 Stride=1, pad=1
Pooling (P3) 256 × 3 × 3 Stride=2
Fully Connected (FC6) 2048
Fully Connected (FC7) 2048
Fully Connected + Softmax (𝑷(𝒚 |𝑿)) M
Fully Connected + Sigmoid (𝑷( 𝒇 |𝑿)) 1
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Among the SigNet layers, the convolutional and fully connected layers have learnable
parameters that are optimized during the CNN training [56]. Except for the last layer, for each
one of the learnable layers a batch normalization followed by the Rectified Linear Units (ReLU)
non-linearity operations are applied. Both operations are used to speed up the CNN training
process. While the batch normalization stabilizes the distribution of the learnable parameters
and reduces the influence of the parameter initialization [71], ReLU models the neuron’s output
allowing it to represent more color intensities than other kind of models [94] [81].

The convolutional layers are used to learn a set of local signature features, while the
max-pooling layers are used to merge the most similar ones [86]. Subsequently, the fully
connected layers establish the relationship between the features learned in the previous layers
[133] [56]. The fully connected layers represent this relationship in a 2048-dimensional space.
When a fully connected layer is used after one layer of the same kind, it enables the CNN to learn
more complex hierarchies of features [13, p. 123]. The last two layers are used to classify the
signatures. While the Fully Connected + Softmax (𝑃(𝑦 |𝑋)) layer is used to identify the owner of
the signature, the Fully Connected + Sigmoid (𝑃( 𝑓 |𝑋)) layer is used to verify if the signature is
genuine or a forgery [56].

Due to the outstanding results provided on well known benchmarks and high discrimi-
nation capability of this approach, SigNet-F is used as a signature feature descriptor model in
this work. It adopts a writer-independent feature learning strategy to learn a representation 𝜙(𝑋)
from a development subset DL . As the CNN learns, the discrimination of writers present in DL
increases. When SigNet is trained using genuine and skilled forgeries, it is called SigNet-F. Since
the CNN Signet-F use both kinds of signatures, it also learns to discriminate between genuine
signatures and forgeries [92] [56].

While GPDS subset DL was used to a Convolutional Neural Network learn the features
of the offline signatures, DT was used to monitor the evolution of the CNN learning. The CNN
was trained during 60 epochs, with a initial learning rate of 0.001. After every 20 epochs, the
learning rate was divided by 10. Since the deep learning model needs a great amount of data,
random patches of 150× 220 pixel were extracted from the normalized 170× 242 pixel signatures.
In the feature extraction phase, the CNN layer FC7 was used to extract the feature vectors with
2048 elements [92].

Each feature vector 𝜙(𝑋) was normalized using the function described in the Equation
4.1. The mean of the feature vectors is denoted by 𝑢, while the standard deviation vector is
denoted by 𝑠 [126]. The normalization tries to reduce the influence of features with great values
over the features with small values [134]. Since this kind of normalization tries to keep the
same Gaussian distribution for every feature vector, it helps to speed up the RBF SVM classifier
training [126]. It also tries to improve the generalization capability of the features [130].

𝜙(𝑋)𝑛𝑜𝑟𝑚 =
𝜙(𝑋) − 𝑢

𝑠
(4.1)
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4.4 DUPLICATOR

Diaz et al. (2017a) [21] proposed a method called Duplicator to generate synthetic
offline signatures based on neuromotor theory and an ink model. It defines a set of 30 parameters
to control the signature variability. The first 6 parameters (𝑎𝑚𝑖𝑛𝐴 , 𝑎𝑚𝑎𝑥𝐴 , 𝑎𝑚𝑖𝑛𝑃 , 𝑎𝑚𝑎𝑥𝑃 , 𝑎𝑚𝑖𝑛𝑆 , and 𝑎𝑚𝑎𝑥𝑆 )
are mainly responsible for describing the writer variability. To represent this writer variability, a
sinusoidal transformation is adopted. To apply the sinusoidal transformation, these parameters
are used to determine three values: 𝛼𝐴, 𝛼𝑃, and 𝛼𝑆. While the sine amplitude is determined by
𝛼𝐴, the 𝛼𝑃 determines the sine period. Finally, the sine phase is delimited by 𝛼𝑆 [92]. Each
one of these values is determined randomly selecting a value of a uniform distribution from the
minimum value to the maximum value. Equations 4.2, 4.3, and 4.4 show how each value is
determined.

𝛼𝐴 = Urand
(
𝛼𝑚𝑖𝑛𝐴 , 𝛼𝑚𝑎𝑥𝐴

)
(4.2)

𝛼𝑃 = Urand
(
𝛼𝑚𝑖𝑛𝑃 , 𝛼𝑚𝑎𝑥𝑃

)
(4.3)

𝛼𝑆 = Urand
(
𝛼𝑚𝑖𝑛𝑆 , 𝛼𝑚𝑎𝑥𝑆

)
(4.4)

The Equation 4.5 controls the distortion of the image in the x axis, while the Equation
4.6 controls the same effect in the the y axis. It is possible to see how each parameter affect the
signature image. M is determined by the image width, while N is determined by the image height.

𝑥𝑆 = 𝑥 + 𝑀
𝛼𝐴

sin
[
2𝜋

(𝛼𝑃
𝑀
𝑥 + 𝛼𝑆

)]
(4.5)

𝑦𝑆 = 𝑦 + 𝑁

𝛼𝐴
sin

[
2𝜋

(𝛼𝑃
𝑁
𝑦 + 𝛼𝑆

)]
(4.6)

As shown in the Equations 4.5 and 4.6, the 𝛼𝐴 is inversely proportional to the distortion
applied to the signature image. Lower is the parameter 𝛼𝐴, higher is the distortion applied to the
signature image. Therefore, the magnitude of 𝛼𝐴 is related to the signature image dimensions. If
we have signatures with large dimensions, we need large 𝛼𝐴 values to reduce the distortion effect.
To see the distortion effects caused by the parameters 𝛼𝑚𝑖𝑛𝐴 and 𝛼𝑚𝑎𝑥𝐴 , just the values of these
parameters were changed. The other parameters were kept with the values presented in Table
4.3. The arrows show the distortion effect of 𝛼𝐴 on Figure 4.5. When the 𝛼𝐴 decreases, the
upper and right border of the signature are compressed. In addition to the upper and right border
compression, the lower and left border of the duplicate are stretched out. Figure 4.6 shows this
behavior on real duplicates.

As shown in the Equations 4.5 and 4.6, the 𝛼𝑃 is directly proportional to the distortion
applied to the signature image. Higher is the parameter 𝛼𝑃, higher is the distortion applied to
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Tabela 4.3: Default parameter values proposed by Diaz et al. (2017a) [21] to duplicate offline handwritten signatures.

Description Parameter Default Values
Intra-class 𝜶𝒎𝒊𝒏

𝑨 5
Variability 𝜶𝒎𝒂𝒙

𝑨
30

𝜶𝒎𝒊𝒏
𝑷 0.5

𝜶𝒎𝒂𝒙
𝑷 1

𝜶𝒎𝒊𝒏
𝑺 0

𝜶𝒎𝒂𝒙
𝑺

1
Displacement {𝝃1

𝒙 , 𝝈1
𝒙 , 𝝁1

𝒙} {−0.5, 20, 2 ∗ 𝜎1
𝑥}

{𝝃2
𝒙 , 𝝈2

𝒙 , 𝝁2
𝒙} {−0.5, 1.4 ∗ 𝜎1

𝑥 , 2 ∗ 1.4 ∗ 𝜎1
𝑥}

{𝝃3
𝒙 , 𝝈3

𝒙 , 𝝁3
𝒙} {−0.5, 1.8 ∗ 𝜎1

𝑥 , 2 ∗ 1.8 ∗ 𝜎1
𝑥}

{𝝃1
𝒚 , 𝝈1

𝒚 , 𝝁1
𝒚} {−0.5, 8, 𝜎1

𝑦 }
{𝝃2

𝒚 , 𝝈2
𝒚 , 𝝁2

𝒚} {−0.5, 1.2 ∗ 𝜎1
𝑦, 1.2 ∗ 𝜎1

𝑦}
{𝝃3

𝒚 , 𝝈3
𝒚 , 𝝁3

𝒚} {−0.5, 1.5 ∗ 𝜎1
𝑦, 1.5 ∗ 𝜎1

𝑦}
𝒌1 0.33
𝒌2 0.67

Ink Deposition 𝝍 0.8
Inclination 𝝃𝑺 -0.19

𝝈𝑺 3.28
𝝁𝑺 -1.30

(a) Normal surface (b) Distortion effect of 𝛼𝐴

Figura 4.5: Scheme of the distortion effect with 𝛼𝐴 on the duplicate image.

the signature image. When the 𝛼𝑃 decreases, the lower and upper border of the signature are
stretched. The center of the signature is stretched as well. When the 𝛼𝑃 increases, the lower and
upper border of the signature are compressed. The center of the signature is compressed as well.
The arrows show the distortion effect of 𝛼𝑃 on Figure 4.7. Figure 4.8 shows the distortion effects
of 𝛼𝑃 on real duplicates.

After applying the intra-component distortions, a binary mask is created using the
distorted image. First, a dilation operation with a rectangular kernel of 5×5 is applied in a copy
of the image. Subsequently, the Equation 4.7 is applied in the resulting image. The pixels
greater than 0 are considered as signature, the remaining pixels are considered as background.
The unconnected strokes of the mask are labeled using the Efficient Run-Length Algorithm
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(a) Original Signature (b) 𝛼𝑚𝑖𝑛𝐴 =1000, 𝛼𝑚𝑎𝑥𝐴 =1000 (c) 𝛼𝑚𝑖𝑛𝐴 =100, 𝛼𝑚𝑎𝑥𝐴 =100

(d) 𝛼𝑚𝑖𝑛𝐴 =30, 𝛼𝑚𝑎𝑥𝐴 =30 (e) 𝛼𝑚𝑖𝑛𝐴 =25, 𝛼𝑚𝑎𝑥𝐴 =25 (f) 𝛼𝑚𝑖𝑛𝐴 =20, 𝛼𝑚𝑎𝑥𝐴 =20

(g) 𝛼𝑚𝑖𝑛𝐴 =15, 𝛼𝑚𝑎𝑥𝐴 =15 (h) 𝛼𝑚𝑖𝑛𝐴 =10, 𝛼𝑚𝑎𝑥𝐴 =10 (i) 𝛼𝑚𝑖𝑛𝐴 =5, 𝛼𝑚𝑎𝑥𝐴 =5

Figura 4.6: Distortion effect of 𝛼𝐴 on real duplicate images.

(a) Normal surface (b) Distortion effect when 𝛼𝑃 decreases

(c) Distortion effect when 𝛼𝑃 decreases

Figura 4.7: Scheme of the distortion effect with 𝛼𝑃 on the duplicate image.

[62, p. 37-48]. The image background is numbered with zeros, while the signature strokes are
numbered with one or greater numbers.

𝐼𝑝 (𝑥, 𝑦) = round
(
round

(
𝐼 (𝑥, 𝑦) × 𝑛𝐿

255

)
× 255
𝑛𝐿

)
(4.7)



59

(a) Original Signature (b) 𝛼𝑚𝑖𝑛𝑃 =0.00, 𝛼𝑚𝑎𝑥𝑃 =0.00 (c) 𝛼𝑚𝑖𝑛𝑃 =0.10, 𝛼𝑚𝑎𝑥𝑃 =0.10

(d) 𝛼𝑚𝑖𝑛𝑃 =0.20, 𝛼𝑚𝑎𝑥𝑃 =0.20 (e) 𝛼𝑚𝑖𝑛𝑃 =0.30, 𝛼𝑚𝑎𝑥𝑃 =0.30 (f) 𝛼𝑚𝑖𝑛𝑃 =0.40, 𝛼𝑚𝑎𝑥𝑃 =0.40

(g) 𝛼𝑚𝑖𝑛𝑃 =0.50, 𝛼𝑚𝑎𝑥𝑃 =0.50 (h) 𝛼𝑚𝑖𝑛𝑃 =0.60, 𝛼𝑚𝑎𝑥𝑃 =0.60 (i) 𝛼𝑚𝑖𝑛𝑃 =0.70, 𝛼𝑚𝑎𝑥𝑃 =0.70

(j) 𝛼𝑚𝑖𝑛𝑃 =0.80, 𝛼𝑚𝑎𝑥𝑃 =0.80 (k) 𝛼𝑚𝑖𝑛𝑃 =0.90, 𝛼𝑚𝑎𝑥𝑃 =0.90 (l) 𝛼𝑚𝑖𝑛𝑃 =1.00, 𝛼𝑚𝑎𝑥𝑃 =1.00

Figura 4.8: Distortion effect for different 𝛼𝑃 values.

The position of unconnected strokes are changed using a Generalized Extreme Value
(GEV) distribution [79]. This kind of distribution is usually used to model the extreme behaviors
of the natural phenomena such as temperatures, winds, floods, waves, earthquakes, etc [21]. For
a random variable 𝑥, the GEV density function can be computed using the Equation 4.8.

𝑓 (𝑥; 𝜉, 𝜎, 𝜇) = 1
𝜎

[
1 + 𝜉

(𝑥 − 𝜇
𝜎

)]− 1
𝜉 −1

𝑒[1+𝜉( 𝑥−𝜇𝜎 )]−
1
𝜉 (4.8)

The unconnected strokes are displaced taking into account how big they are. First,
the total number of signature pixels 𝛾𝑇 and the number of the unconnected stroke pixels 𝛾𝑖 are
computed. Finally the proportion of the unconnected stroke pixels Γ that belongs to the signature
is computed (Equation 4.9). The proportion Γ can be classified in three groups: the group that
Γ is lower than 𝑘1; the group that Γ is equals to or greater than 𝑘1, and lower than 𝑘2; and the
group that Γ is equals to or greater than 𝑘2. If the stroke is in one of these groups 𝑟 , 6 parameters
(𝜎𝑟𝑥 , 𝜇𝑟𝑥 , 𝜉𝑟𝑥 , 𝜎𝑟𝑦 , 𝜇𝑟𝑦, and 𝜉𝑟𝑦) are used to change the position of the unconnected stroke. Therefore,
Duplicator has 20 parameters (𝜉1

𝑥 , 𝜎1
𝑥 , 𝜇1

𝑥 , 𝜉2
𝑥 , 𝜎2

𝑥 , 𝜇2
𝑥 , 𝜉3

𝑥 , 𝜎3
𝑥 , 𝜇3

𝑥 , 𝜉1
𝑦 , 𝜎1

𝑦 , 𝜇1
𝑦, 𝜉2

𝑦 , 𝜎2
𝑦 , 𝜇2

𝑦, 𝜉3
𝑦 , 𝜎3

𝑦 ,
𝜇3
𝑦, 𝑘1, and 𝑘2) that control the distribution of unconnected strokes in the image.
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Γ =
𝛾𝑖
𝛾𝑇

(4.9)

The coordinates of each unconnected component is changed using the random values
generated by the GEV distribution (Equations 4.10 and 4.11). The signal of the operation (+ or
−) is randomly determined. For different writers, the three groups of proportion 𝑟 can change.
However, when Diaz et al. (2017a) [21] fixed the values of 𝑘1 and 𝑘2, they considered that these
groups of proportions are the same for all writers.

𝑥𝑛𝑒𝑤 = 𝑥 ± 𝛿𝑥 (4.10)

𝑦𝑛𝑒𝑤 = 𝑦 ± 𝛿𝑦 (4.11)

The ink deposition effect is determined by 𝜓. When Duplicator superpose the strokes,
this parameter regulates how dark they are. The last 3 parameters (𝜉𝑆, 𝜎𝑆, 𝜇𝑆) are used to
control the signature inclination. As the strokes displacement, the signature inclination uses
a Generalized Extreme Value (GEV) distribution to choose a range of values. These values
represent the inclination angles in degrees used to rotate the signature images [21].

4.5 GAUSSIAN FILTER

The One-dimensioal Gaussian filter is widely used to feature space augmentation
(Equation 4.12). The Gaussian filter is defined by the mean 𝜇 and the standard deviation
𝜎. Replacing the mean 𝜇 by zero in Equation 4.12, it results in Equation 4.13. Due to the
simplicity of the Gaussian filter with 𝜇 = 0, it is used to generate duplicates in the feature space
[18] [114] [85].

𝐺 (𝑥, 𝜇, 𝜎) = 1√
2𝜋𝜎

𝑒
− (𝑥−𝜇)2

2𝜎2 (4.12)

𝐺 (𝑥, 𝜎) = 1√
2𝜋𝜎

𝑒
− 𝑥2

2𝜎2 (4.13)

Despite the low complexity of this filter, a parameter 𝜎 is still needed to control its
intensity. The same 𝜎 is used to apply the transformation in all the elements 𝑥 of the same feature
vector 𝜙(𝑋). The standard deviation 𝜎 is randomly selected, considering a uniform distribution
from 𝜎𝑚𝑖𝑛 to 𝜎𝑚𝑎𝑥 (Equation 4.14). Based on the same idea as in Duplicator, this interval is used
to represent the writer variability, and thus optimized the parameters that determine this interval
using the optimization process described in Section 4.7 [92].

𝜎 = Urand (𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥) (4.14)
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4.6 VARIATION OF THE KNOP’S METHOD

Paley and Wiener (1934) [100, p. 146-153], and Box and Muller (1958) [12] proposed
a method to generate random variables considering a Gaussian distribution and polar coordinates.
Instead of using the sine and cosine operations of the Box-Muller method, Bell (1968) [5]
used an approximation of these functions with a von Neumann rejection [129]. It reduced
the computational complexity of the generation process. Later, Knop (1968) [77] simplified
some equations of the algorithm to speed up the generation process. A variation of the Knop’s
algorithm is implemented in the numpy library by the method numpy.random.normal(), which
is used in the experiments. Algorithm 1 presents the pseudo-code of this Knop’s algorithm
variation.

Algorithm 1 normal
Input:

𝑙𝑜𝑐: location
𝑠𝑐𝑎𝑙𝑒: scale
𝑁: number of new samples

Output:
𝑠𝑎𝑚𝑝𝑙𝑒𝑠: new samples following a Gaussian distribution

1: 𝑛← 0
2: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠← ∅
3: while 𝑛 < 𝑁 do
4: 𝑢 ← 0
5: 𝑣 ← 0
6: 𝑅2← 0
7: 𝐿 ← 0
8: ⊲ Chooses a random angle 𝜃 with von Neumann rejection
9: do

10: 𝑢 ← 2 ×U𝑟𝑎𝑛𝑑 (0, 1) − 1
11: 𝑣 ← 2 ×U𝑟𝑎𝑛𝑑 (0, 1) − 1
12: 𝑅2← 𝑢2 + 𝑣2

13: while 𝑅2 >= 1 or 𝑅2 = 0
14: ⊲ Chooses 𝐿 randomly from a chi-squared distribution and normalizes it using 𝑅2
15: 𝐿 ←

√︃
−2×ln 𝑅2

𝑅2
16: ⊲ Generates a new sample
17: if 𝑛%2 = 0 then
18: 𝑠← 𝑙𝑜𝑐 + 𝑢 × 𝐿 × 𝑠𝑐𝑎𝑙𝑒
19: else
20: 𝑠← 𝑙𝑜𝑐 + 𝑣 × 𝐿 × 𝑠𝑐𝑎𝑙𝑒
21: end if
22: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠← 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝑠
23: 𝑛← 𝑛 + 1
24: end while

Since the algorithm works with polar coordinates, it defines the position of the new
sample in terms of an angle 𝜃 and a radius 𝐿. To define the angle 𝜃, the algorithm considers
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the mean 𝜇 of the Gaussian distribution as the center of a circle with unitary radius. It also
considers that the angles of the circle from 0 to 2𝜋 are uniformly distributed. Thus, the generated
samples have the same probability to assume any angle 𝜃 in the circle [12]. Instead of computing
𝜃 using sine and cosine operations, it computes 𝜃 indirectly with von Neumann rejection [129]. It
basically uses the trigonometric equation of Pythagoras. The square of the radius 𝑅2 is equivalent
to the sum of the squares of two random uniformly distributed variables (𝑢 and 𝑣) (Equation 4.15
and Figure 4.9). These two independent variables are uniformly distributed in the range (0, 1).
To assure that 𝑢 and 𝑣 are inside the circle with unitary radius, the algorithm considers that the
squared radius must be greater than 0 and smaller than 1. If this condition is not met, the von
Neumann rejection is computed again for new values of 𝑢 and 𝑣 [5].

𝑅2 = 𝑢2 + 𝑣2 (4.15)

After computing the angle 𝜃, the algorithm computes 𝐿. It determines the distance
between the center of distribution 𝜇 and the sample that will be generated. Due to the Gaussian
distribution, the probability of the samples being generated close to the center is higher than
the probability of they being generated in the borders of the same circle. 𝐿 can be determined
selecting a random number of a chi-squared distribution [5]. It also can be expressed as a negative
logarithmic distribution in terms of 𝑅2 [77] [5] (Equation 4.16).

𝐿 =

√︂
−2 × ln 𝑅2

𝑅2 (4.16)

Subsequently, the distribution is scaled using a variable 𝑠𝑐𝑎𝑙𝑒. Then, the center of the
distribution is translated to a predefined location 𝑙𝑜𝑐. At the end of the process, the 𝑙𝑜𝑐 will be
surrounded by the generated samples following a Gaussian distribution. If we want to generate
the synthetic samples surrounding a genuine sample, we can use the location of the genuine
sample as the predefined location 𝑙𝑜𝑐. Figure 4.10a shows the scaling of the distribution using
𝑠𝑐𝑎𝑙𝑒 = 0.375, and Figure 4.10b shows the translation of the distribution to 𝑙𝑜𝑐 = (1, 1).

The variation of the Knop’s method [77] is used to generate duplicates in the feature
space. Considering a genuine signature in the feature space as input, it generates the duplicates
surrounding this signature following a Gaussian distribution. While the genuine sample represents
the center of a hypersphere in the feature space, the duplicates represent the region covered by
this hypersphere [12]. Since the variation of the Knop’s method uses a Gaussian distribution to
generate the duplicates, the probability of the duplicates being generated close to the center is
higher than the probability of they being generated in the borders of the same hypersphere [5]. To
regulates how sparse this hypersphere can be, it uses a 𝑠𝑐𝑎𝑙𝑒 [77]. The 𝑠𝑐𝑎𝑙𝑒 is defined randomly
selecting a value of a uniform distribution ranging from 𝑠𝑐𝑎𝑙𝑒𝑚𝑖𝑛 to 𝑠𝑐𝑎𝑙𝑒𝑚𝑎𝑥 . Both parameters
also were optimized using the method proposed Section 4.7. They are used to represent the
writer variability.
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Figura 4.9: Generation process of the synthetic samples following a Gaussian distribution.
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Figura 4.10: Scaling and Translation of the Gaussian Distribution
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4.7 PARAMETER OPTIMIZATION

Two or more writers show a different behavior when they are signing. Consequently,
they have different writer variabilities. At the same time, they can share some of these behaviors
along the writing process [78, p. 7-30]. Therefore, a global set of parameters can be used to
describe these common writer variability traits. The first six parameters of the duplicator were
optimized because they are mainly responsible for describing the intra-personal variability of
writer’s signatures [21], and the optimization process is a time-consuming task [142]. For the
Gaussian filter, the parameters 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 are used to represent the writer variability traits
[92].

Parameter optimization tries to find the best set of parameters for signature augmentation
methods, which allows them to generate synthetic samples respecting the writer variability. In this
work, a variation of the Particle Swarm Optimization (PSO) [143] algorithm is used to find the
first six variability parameters used by duplicator, and the two parameters used by Gaussian filter.
Kennedy and Eberhart [76] proposed the original version of the PSO to optimize continuous
nonlinear functions. This algorithm is inspired by the flock of birds or school of fish looking
for places with plenty of food. The PSO [143] algorithm was chosen due to its implementation
simplicity [141] and efficiency solving several kinds of problems [92] [66] [112] [34].

In a optimization problem, there is a search space of 𝑑 dimensions in which the solution
or solutions are located. Each particle 𝜋 with index 𝑖 represents a possible solution and its
position in the search space. During the optimization process, each particle moves with a velocity
𝑣 with index 𝑖 in this space. For each iteration 𝑛 of the algorithm, the velocity of the next iteration
𝑣𝑛+1𝑖𝑑 (Equation 4.17) is updated considering the current particle velocity 𝑣𝑛𝑖𝑑 , and the values
of the local minima particle 𝑝𝑛𝑖𝑑 and the global minima particle 𝜋𝑛𝜔𝑑 . While the local minima
particle 𝑝𝑛𝑖𝑑 represents the particle that is the nearest one to the desired solution only in the current
iteration 𝑛, the global minima 𝜋𝑛𝜔𝑑 represents the particle that is the nearest one to the desired
solution among all particles. The velocity update process can increase or decrease the velocity of
the particle in the search space. Despite of a particle with high velocity can cover a large area of
the search space, it also can pass by a possible solution without considering it. On the other hand,
a particle with low velocity cover a small area but if the solution is present in that area, it also has
a higher chance to find it [92] [143].

𝑣𝑛+1𝑖𝑑 = (1 − 𝜒𝑜)𝑣𝑛𝑖𝑑 + 𝜒𝑜𝑐𝑜1𝛾𝑜𝑟
𝑛
1𝑖𝑑 (𝑝𝑛𝑖𝑑 − 𝜋𝑛𝑖𝑑)

+𝜒𝑜𝑐𝑜2𝛾𝑜𝑟
𝑛
2𝑖𝑑 (𝜋𝑛𝜔𝑑 − 𝜋𝑛𝑖𝑑) (4.17)

The 𝑣𝑛+1𝑖𝑑 is also calculated using two uniformly distributed variables within [0,1], 𝑟𝑛1𝑖𝑑
and 𝑟𝑛2𝑖𝑑 . These variables help to diversify the places where the search will happen. The constant
1 − 𝜒𝑜 regulates this diversification. The constant 𝜒𝑜 itself regulates the intensity of the search to
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find the best solution, in a specific place of the search space [143]. The constant 𝑐𝑜1 controls the
trend of the particles to approach from their local minima particle, while 𝑐𝑜2 controls the trend of
the particles to approach from their global minima particle [34]. The perturbation constant 𝛾𝑜
regulates the stability of the algorithm controlling the effect of both constants 𝑐𝑜1 and 𝑐𝑜2 at the
same time [92].

In this work, the variation of the PSO proposed by Zhao (2016) [143] is used. It was
implemented using the constants (1− 𝜒𝑜) = (3−

√
5)/2, 𝜒𝑜𝑐𝑜1𝛾𝑜 = (1+

√
5)/2, and 𝜒𝑜𝑐𝑜2𝛾𝑜 = 1.

He showed that his variation of the PSO is more accurate, efficient, and stable than the traditional
PSO. Replacing the constants of Equation 4.17 by the Zhao’s constants results in Equation 4.18.
Consequently, the position of the particle of the next iteration 𝜋𝑛+1𝑖𝑑 in the search space is updated
considering its velocity 𝑣𝑛+1𝑖𝑑 (Equation 4.19) [92].

𝑣𝑛+1𝑖𝑑 =
(3 −
√

5)
2

𝑣𝑛𝑖𝑑 +
(1 +
√

5)
2

𝑟𝑛1𝑖𝑑 (𝑝𝑛𝑖𝑑 − 𝜋𝑛𝑖𝑑)
+𝑟𝑛2𝑖𝑑 (𝜋𝑛𝜔𝑑 − 𝜋𝑛𝑖𝑑) (4.18)

𝜋𝑛+1𝑖𝑑 = 𝜋𝑛𝑖𝑑 + 𝑣𝑛+1𝑖𝑑 (4.19)

Each parameter of the parameter vector represent one of the 𝑑 dimensions. For the
image space augmentation, a particle 𝜋 of 6 dimensions represents the parameter vector. For
the feature space augmentation, a particle 𝜋 of 2 dimensions the parameter vector. A random
uniform distribution with low and high limits was used to initialize the parameter values. These
low and high limits were defined using the D𝑉 and considering the constraints of each data
augmentation technique used in this work. The limits used during the optimization process are
presented in Table 4.4. The low limits of the 𝑚𝑎𝑥 parameters are determined using the value
assigned to the 𝑚𝑖𝑛 parameters. For example, when 𝛼𝑚𝑖𝑛𝐴 is equals to 15, the low limit of the
parameter 𝛼𝑚𝑖𝑛𝐴 has the same value.

The limits of the duplicator parameters reported in Table 4.4 were chosen taking into
account the extreme values of the default parameters proposed by Diaz et al. (2017a) [21]. As
previously exposed in Section 4.4, if both 𝛼𝑚𝑖𝑛𝐴 and 𝛼𝑚𝑎𝑥𝐴 have values equal to 10 or lower than it,
the duplicator provide duplicates with higher distortions than when these values are higher than
10. On the other hand, if 𝛼𝐴 has large values, the duplicates will be equal to the signature used as
input. Therefore, the limits of 𝛼𝑚𝑖𝑛𝐴 were defined from 10 to 100. Diaz et al. (2017a) [21] argue
that the values of 𝛼𝑚𝑖𝑛𝑃 , 𝛼𝑚𝑎𝑥𝑃 , 𝛼𝑚𝑖𝑛𝑆 , and 𝛼𝑚𝑎𝑥𝑆 should be between 0 and 1. When the duplicator
uses these extreme values, it generates duplicates with an unnatural and unrealistic aspect [92].

For the Gaussian filter, the limits were chosen considering its mathematical constraints.
For 𝜎 equals to 0, the Gaussian filter function presents a mathematical indetermination. Besides
that, an important aspect is the degree of perturbation applied in feature space by the Gaussian
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Tabela 4.4: Parameter Initialization Range During the Parameter Optimization

Parameter Parameter Initialization Range
Low Limit High Limit

𝜶𝒎𝒊𝒏
𝑨 10.00 100.00

𝜶𝒎𝒂𝒙
𝑨

𝛼𝑚𝑖𝑛𝐴 100.00
𝜶𝒎𝒊𝒏
𝑷 0.00 1.00

𝜶𝒎𝒂𝒙
𝑷 𝛼𝑚𝑖𝑛𝑃 1.00

𝜶𝒎𝒊𝒏
𝑺 0.00 1.00

𝜶𝒎𝒂𝒙
𝑺

𝛼𝑚𝑖𝑛𝑆 1.00
𝝈𝒎𝒊𝒏 0.01 1.00
𝝈𝒎𝒂𝒙 𝜎𝑚𝑖𝑛 1.00

𝒔𝒄𝒂𝒍𝒆𝒎𝒊𝒏 0.00001 1.00
𝒔𝒄𝒂𝒍𝒆𝒎𝒂𝒙 𝑠𝑐𝑎𝑙𝑒𝑚𝑖𝑛 1.00

filter function. If a great perturbation is applied in the original signature feature vector, the
Gaussian filter can generate a synthetic feature vector that does not resemble the original signature
anymore. With that in mind, the limits were defined from 0.01 to 1.00. The Gaussian filter’s
behavior and its parameter intervals are explored in the experiments of the Chapter 5 [92].

For the variation of the Knop’s method, the limits also were chosen considering its
mathematical constraints. For 𝑠𝑐𝑎𝑙𝑒 equals to 0, the variation of the Knop’s method does not
apply any transformation on the genuine signatures in the feature space. The 𝑠𝑐𝑎𝑙𝑒 controls
the sparsity of the duplicates considering a genuine sample as the center of the distribution. If
𝑠𝑐𝑎𝑙𝑒 is great, the duplicates will be placed far from the genuine samples. Consequently, these
duplicates will not resemble the genuine signatures in the feature space. With these constraints
in mind, the limits were defined from 0.00001 to 1.

Following a similar idea to the parameter initialization, Table 4.5 presents the limits
used to initialize the velocities during the optimization process. For each parameter or dimension
𝑑, there is a corresponding velocity 𝑣𝑑 that is used during the optimization. The velocities of each
particle are randomly initialized considering a uniform distribution from the low limit to the high
limit. Since the parameters 𝛼𝑚𝑖𝑛𝐴 and 𝛼𝑚𝑎𝑥𝐴 are greater than other parameters, their velocities 𝑣1

and 𝑣2 also are greater than other ones. Furthermore, the 𝛼𝑚𝑖𝑛𝐴 and 𝛼𝑚𝑎𝑥𝐴 have a greater influence
than other parameters. Therefore, it is important that the particle moves in the search space with
a non-zero velocity. The negative and positive velocities allow the optimization process to move
in different directions of the search space. Moreover, it can reduce the velocity of the particles to
search for solutions in promising areas of the search space [143].

The parameter and velocity ranges were determined using 50DV . It was considered
the number of iterations that the PSO took to converge. For the most writers, it took up to
10 iterations to converge. However, for some of them, it took up to 20 iterations to converge.
Therefore, the velocity ranges that converged in 20 iterations were used.

Besides defining the values related to the particles, PSO needs an objective function that
guides the optimization process. In this work, a variation of the silhouette index is used as an
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Tabela 4.5: Velocity Initialization Range During the Parameter Optimization

Velocity Velocity Initialization Range
Low Limit High Limit

𝒗1 (𝜶𝒎𝒊𝒏
𝑨 ) -3.00 -1.00

𝒗2 (𝜶𝒎𝒂𝒙
𝑨

) 1.00 3.00
𝒗3 (𝜶𝒎𝒊𝒏

𝑷 ) -0.10 0.10
𝒗4 (𝜶𝒎𝒂𝒙

𝑷 ) 𝑣3 0.10
𝒗5 (𝜶𝒎𝒊𝒏

𝑺 ) -0.10 0.10
𝒗6 (𝜶𝒎𝒂𝒙

𝑺
) 𝑣5 0.10

𝒗1 (𝝈𝒎𝒊𝒏) -0.10 0.10
𝒗2 (𝝈𝒎𝒂𝒙) 𝑣1 0.10

𝒗1 (𝒔𝒄𝒂𝒍𝒆𝒎𝒊𝒏) -0.10 0.10
𝒗2 (𝒔𝒄𝒂𝒍𝒆𝒎𝒂𝒙) 𝑣1 0.10

objective function. Normally, the traditional silhouette index [108] is used to show how good are
two or more clusters. When the silhouette index assumes the 1 value, the clusters are compact
and are far from each other. In terms of variability, they have as small intraclass variability and a
large interclass variability. When the silhouette index assumes the -1 value, it means that the
data does not belong to the current clusters. Finally, when the silhouette index assumes the 0
value, the cluster are perfectly overlaid. In terms of variability, the clusters have exactly the same
intraclass and interclass variability. Therefore, this last case is the goal of the whole optimization
process. Basically, the optimization process tries to find the parameter vector that brings the
silhouette index value close to 0 [92].

As previously exposed, the silhouette index evaluates the sparsity of each clusters and
the distance between them at the same time. To perform this task, the silhouette index uses a
dissimilarity function 𝑑 (.). Despite several functions can be used to calculate the dissimilarity
between the elements of the clusters, Rousseeuw (1987) [108] recommends the use of the
Euclidean distance as a dissimilarity function. To measure the sparsity inside each cluster
Equation 4.20 is used. It calculates the average dissimilarity between the 𝑖𝑡ℎ element and the
elements of the same cluster 𝐶𝑠 (Figure 4.11).

𝑎(𝜙(𝑋𝑖)) =

𝑛𝐶𝑠∑
𝑗=1
𝑑 (𝜙(𝑋𝑖); 𝜙(𝑋 𝑗 ))

𝑛𝐶𝑠 − 1
(4.20)

To measure how far the clusters are from each other, the average dissimilarity between
the 𝑖𝑡ℎ element and the elements of other cluster 𝐶𝑟 is calculated using Equation 4.21. Afterward,
Equation 4.21 is used in Equation 4.22 to calculate the minimum distance between the border of
the clusters 𝐶𝑠 and 𝐶𝑟 . This indicates the interclass variability of the clusters. It is important to
highlight that the clusters 𝐶𝑠 and 𝐶𝑟 are different from each other [92].
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Figura 4.11: Distances between the 𝑖𝑡ℎ element of the cluster 𝐶𝑠 and the other elements, including the elements of
the cluster 𝐶𝑟 .

𝑑 (𝜙(𝑋𝑖);𝐶𝑟) =

𝑛𝐶𝑟∑
𝑗=1
𝑑 (𝜙(𝑋𝑖); 𝜙(𝑋 𝑗 ))

𝑛𝐶𝑟
(4.21)

𝑏(𝜙(𝑋𝑖)) = min {𝑑 (𝜙(𝑋𝑖);𝐶𝑟)} (4.22)

Since Equation 4.20 evaluates the intraclass variability and Equation 4.22 evaluates
the interclass variability, they are combined in Equation 4.23 to evaluate both variabilities
concurrently. It is done using an arbitrary feature vector 𝜙(𝑋𝑖) as reference. To normalize
the resulting value, it is divided by the maximum value between the intraclass and interclass
variability [92].

𝛿(𝜙(𝑋𝑖)) = 𝑏(𝜙(𝑋𝑖)) − 𝑎(𝜙(𝑋𝑖))
max {𝑏(𝜙(𝑋𝑖)); 𝑎(𝜙(𝑋𝑖))} (4.23)

To evaluate all clusters at the same time, it is necessary to calculate 𝛿(𝜙(𝑋𝑖)) for all the
cluster elements. The 𝛿(𝜙(𝑋𝑖))s are summed and divided by the total number of elements 𝑛𝐶 in
all clusters. As result, the silhouette index Δ (Equation 4.24) function ranges from -1 to 1 (Figure
4.12).

Δ =

𝑛𝐶∑
𝑖=1
𝛿(𝜙(𝑋𝑖))
𝑛𝐶

,Δ ∈ [−1, 1] (4.24)

+∆

+10-1

−∆

Figura 4.12: Range of the Silhouette Index function.

As previously exposed, the PSO needs to minimize the silhouette index function to find
the parameter vector that best describe the writer variability. However, the minimum value of
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this function is -1 and the objective value is 0. Since the silhouette index is a symmetric function
and the objective value is located in the middle of the range, a modulus operation can be applied
to this function to use only the positive side of it (Figure 4.13). Consequently, Equation 4.25
simplifies the minimization of the silhouette index function during the optimization process. The
absolute silhouette index |Δ| is used as the objective function of the Particle Swarm Optimization
algorithm.

+∆

+10-1

−∆

Figura 4.13: Range of the Absolute Silhouette Index function.

|Δ| =

��������
𝑛𝐶∑
𝑖=1
𝛿(𝜙(𝑋𝑖))
𝑛𝐶

�������� , |Δ| ∈ [0, 1] (4.25)

First, the PSO generates a set of particles in the search space. These particles represent
the parameter vectors used to generate the synthetic samples, in the image or feature space domain.
Considering only the image space domain, the duplicator generates a duplicate 𝑋𝐷 for each
signature 𝑋𝑜 of the writer. After normalizing the signatures and duplicates, the feature vectors
𝜙(𝑋𝑜) and 𝜙(𝑋𝐷) are extracted from them. Considering only the feature space domain, the
signatures of the writer are normalized and the feature vectors 𝜙(𝑋𝑜) are extracted. The Gaussian
filter generates a new synthetic feature vector 𝜙(𝑋𝐷) for each original feature vector 𝜙(𝑋𝑜). The
absolute silhouette index |Δ| is calculated using the feature vectors of the genuine signatures
𝜙(𝑋𝑜) and the synthetic samples 𝜙(𝑋𝐷). If the clusters of genuine and synthetic samples have a
similar or equal variability, the |Δ| is equals to 0 or close to it. For each writer, the parameter
vectors with the lowest absolute silhouette indices are chosen and saved. The parameter vectors
are updated using the Equations 4.18 and 4.19. This process is repeated until the stop criteria is
achieved. At the end of the process, there is optimized parameter vector 𝜋𝜔 for each one of the
writers present in the optimization database. Subsequently, the average parameter vector (𝜋𝑎𝑣𝑔)
is calculated with these parameter vectors. The 𝜋𝑎𝑣𝑔 describes the common behavioral biometric
traits shared by these writers in the optimization database [92].

Despite this work does not consider the visual quality of the synthetic samples directly,
it is possible to evaluate them using their feature vectors 𝜙(𝑋𝐷). Therefore, the quality of the
duplicates generated by the proposed method and the duplicator with the default parameters 𝜋𝑑𝑒 𝑓
was assessed using the absolute silhouette index. Section 5.1 details how the synthetic samples
were assessed.
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4.8 TRAINING

After optimizing the parameter vectors, they can be used to generate synthetic samples
to train the Writer-Dependent classifiers. These classifiers were trained taking into account
four different scenarios. In the first scenario that is used as baseline, only the original genuine
signatures are used to train the SVMs. In the second one, the original genuine signatures and the
duplicates generated using the default parameter vector 𝜋𝑑𝑒 𝑓 presented in Table 4.3 are used. In
the third one, the duplicates are generated with the parameters found by the optimization process.
Finally, in the last scenario, the synthetic feature vectors are generated using the Gaussian filter
and the parameters found by the optimization process [92].

The same signature verification system proposed by Hafemann et al. (2017a) [56] is
adopted in this work. It is used to assess the impacts of the proposed optimization method and
to fairly compare this work with their work. The CNN SigNet-F is used to extract the feature
vectors of the normalized genuine and the random forgery signatures. A Support Vector Machine
(SVM) classifier with a RBF kernel was trained for each writer with these feature vectors. The
genuine signatures of other writer are used as random forgeries. When the proportion of positive
and negative examples for training is different, it can create models that tend to select one class
more frequently than other. One way to avoid this problem is using different 𝐶 weights for
positive and negative classes. For the negative class, 𝐶− is equal to 1. Before computing the 𝐶+,
it is necessary to calculate the skew 𝜓. The skew was calculated using the number of positive
examples 𝑃 (genuine signatures) and the number of negative examples 𝑁 (random forgeries)
used for training (Equation 4.26). Finally, the weight for the positive class 𝐶+ was calculated
multiplying 𝐶− by 𝜓 (Equation 4.27) [92] [56].

𝜓 =
𝑁

𝑃
(4.26)

𝐶+ = 𝜓𝐶− (4.27)

4.9 VERIFICATION

With the Writer-Dependent classifiers trained, the signature verification system is ready
to be used. After normalizing each query signature image 𝑋𝑄 and extracting the feature vector
𝜙(𝑋𝑄) with the SigNet-F, this feature vector is sent to an SVM classifier 𝑓 . The classifier decides
𝑓 (𝜙(𝑋𝑄)) whether the signature 𝑋𝑄 is classified as genuine or a forgery sample. The mean Equal
Error Rate (EER), mean False Rejection Rate (𝐹𝑅𝑅), mean False Acceptance Rate of random
forgeries (𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚), and the mean False Acceptance Rate of skilled forgeries (𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑)
were used to assess the performance of the offline signature verification system [92]. The system
was assessed taking into account the four previously exposed scenarios.
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5 EXPERIMENTS

Solving an optimization problem is a time-consuming task and depends on several
factors. The number of writers used to optimize the parameter vectors is one of them. Instead of
using all writers of subset DL , 20 writers of them were randomly selected (writers 431, 490,
503, 525, 588, 611, 631, 641, 643, 654, 673, 676, 701, 716, 797, 825, 897, 912, 935, and 945) to
compose the optimization dataset. As previously exposed in Section 4.7, a PSO algorithm is used
to optimize the parameter vectors. They are optimized using 100 particles during 20 iterations.

After the optimization process, there is an optimized parameter vector for each writer,
which represents the writer’s variability. These parameter vectors are used to calculate the
average parameter vector (𝜋𝑎𝑣𝑔). The duplicator’s average parameter vector is denoted by 𝜋𝑑𝑢𝑝,
the Gaussian filter’s one is denoted by 𝜋𝑔𝑎𝑢𝑠𝑠, and the variation of the Knop’s method one is
denoted by 𝜋𝑘𝑛𝑜𝑝. The global parameter vector proposed by Diaz et al. (2017a) [21] is denoted
by 𝜋𝑑𝑒 𝑓 . To expose the difference among these parameter vectors, they were used to compute the
average absolute silhouette index |Δ|𝑎𝑣𝑔 using the optimization dataset 20DL .

For each writer of 20DL , the first 12 genuine signatures are used to build a genuine
cluster in the 2048 dimensional SigNet-F feature space. Similarly, four clusters with 12 feature
vectors were created: one with duplicates generated using the optimized parameter vector 𝜋𝑑𝑢𝑝,
one with duplicates generated using the optimized parameter vector 𝜋𝑔𝑎𝑢𝑠𝑠, one with duplicates
generated using the optimized parameter vector 𝜋𝑘𝑛𝑜𝑝, and one with duplicates generated using
the default parameter vector 𝜋𝑑𝑒 𝑓 . For each writer, four absolute silhouette indices were computed:
one between the genuine cluster and the duplicates generated with 𝜋𝑑𝑢𝑝, one between the genuine
cluster and the duplicates generated with 𝜋𝑑𝑒 𝑓 , one between the genuine cluster and the duplicates
generated with 𝜋𝑘𝑛𝑜𝑝, and one between the genuine cluster and the duplicates generated with
𝜋𝑔𝑎𝑢𝑠𝑠. For each of these parameter vectors (𝜋𝑑𝑢𝑝, 𝜋𝑑𝑒 𝑓 , 𝜋𝑘𝑛𝑜𝑝, and 𝜋𝑔𝑎𝑢𝑠𝑠), an average of absolute
silhouette index |Δ|𝑎𝑣𝑔 was computed.

Table 5.1 presents the parameter vectors 𝜋𝑑𝑒 𝑓 , 𝜋𝑑𝑢𝑝, 𝜋𝑘𝑛𝑜𝑝, and 𝜋𝑔𝑎𝑢𝑠𝑠, and their
respective |Δ|𝑎𝑣𝑔s. As can be seen, the average parameter vector 𝜋𝑑𝑢𝑝 is very different from the
parameter vector 𝜋𝑑𝑒 𝑓 proposed by Diaz et al. (2017a) [21]. Especially, the parameters 𝛼𝑚𝑖𝑛𝐴 and
𝛼𝑚𝑎𝑥𝐴 have greater values than those determined in 𝜋𝑑𝑒 𝑓 . As previously explained in Section 4.4,
the parameters 𝛼𝑚𝑖𝑛𝐴 and 𝛼𝑚𝑎𝑥𝐴 control the distortion on the upper and right side of the signature
images. When these parameters values decrease, the distortion applied in the signature images
increases. Moreover, the average absolute silhouette index |Δ|𝑎𝑣𝑔 from 𝜋𝑑𝑢𝑝 is lower than the
|Δ|𝑎𝑣𝑔 from 𝜋𝑑𝑒 𝑓 . It means that the parameter vector 𝜋𝑑𝑢𝑝 better models the writers’ variability
present in 20DL than 𝜋𝑑𝑒 𝑓 does.

For the signature augmentation in the feature space, the Gaussian filter with the parameter
vector 𝜋𝑔𝑎𝑢𝑠𝑠 presented an |Δ|𝑎𝑣𝑔 lower than the duplicator’s |Δ|𝑎𝑣𝑔 with 𝜋𝑑𝑢𝑝. It suggests that
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Tabela 5.1: Average parameter vectors optimized using subset 20DL and their average absolute silhouette indices
(|Δ|𝑎𝑣𝑔).

Parameters Parameter Vectors
𝝅𝒅𝒆 𝒇 𝝅𝒅𝒖 𝒑 𝝅𝒈𝒂𝒖𝒔𝒔 𝝅𝒌𝒏𝒐 𝒑

𝜶𝒎𝒊𝒏
𝑨 5.000 69.300 - -

𝜶𝒎𝒂𝒙
𝑨

30.000 88.700 - -
𝜶𝒎𝒊𝒏
𝑷 0.500 0.320 - -

𝜶𝒎𝒂𝒙
𝑷 1.000 0.530 - -

𝜶𝒎𝒊𝒏
𝑺 0.000 0.470 - -

𝜶𝒎𝒂𝒙
𝑺

1.000 0.740 - -
𝝈𝒎𝒊𝒏 - - 0.290 -
𝝈𝒎𝒂𝒙 - - 0.720 -

𝒔𝒄𝒂𝒍𝒆𝒎𝒊𝒏 - - - 0.827
𝒔𝒄𝒂𝒍𝒆𝒎𝒂𝒙 - - - 0.932
|𝚫|𝒂𝒗𝒈 0.0153 0.047 0.040 0.004

the Gaussian filter with 𝜋𝑔𝑎𝑢𝑠𝑠 may better represent the writers’ variability than the duplicator
with 𝜋𝑑𝑢𝑝 and 𝜋𝑑𝑒 𝑓 . As in duplicator, the distortions applied by the Gaussian filter depends on
its parameter values. As previously explained in the Section 4.5, the Gaussian filter uses 𝜎𝑚𝑖𝑛
and 𝜎𝑚𝑎𝑥 to model the writer variability in the feature space. These parameters are used to
determine 𝜎, which is effectively used by the Gaussian filter to generate duplicates. Figure 5.1
shows the effect of the 𝜎 values in the quality of the duplicates for each writer of 20DL . It can
be seen that the concavities represent the ideal intervals of 𝜎 for each writer. These intervals can
change from one writer to another. After analyzing the information from Table 5.1 and Figure
5.1, it is evident that the optimization process combines the 𝜎 intervals of different writers to
determine the average parameter vector 𝜋𝑔𝑎𝑢𝑠𝑠. Furthermore, despite the Gaussian filter is a
simple technique, it needs optimized parameters to generate more realistic duplicates.
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Figura 5.1: Effect of the Gaussian filter’s parameter 𝜎 in the quality of the dupĺicates |Δ| for each writer of 20DL .
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The proposed method was assessed considering the quality of the duplicates in the
feature space (Section 5.1), and considering the performance achieved by the signature verification
system when the duplicates were used for training (Sections 5.2 and 5.3). The limitations and
advantages of the duplicator, and the Gaussian filter also were addressed (Section 5.5). All the
experiments were carried out using at least one of the datasets exposed in Section 4.1.

5.1 QUALITY OF DUPLICATES IN THE FEATURE SPACE

As previously exposed, the main hypothesis of this work is that the writer variability
observed in the image space can be reflected in the feature space. Unlike other works that
assess the quality of duplicates considering the image space [21] [38], this work assesses the
quality of duplicates considering the feature domain. It is expected that the original signatures
and their duplicates will have similar characteristics for the same writer, and consequently, the
signature and duplicate feature vectors should be similar as well. Furthermore, the duplicates
should also preserve the original writer variability. However, this is only valid when a sufficiently
discriminant feature descriptor is used to measure the dissimilarity between the signatures and
the duplicates [56]. If the feature descriptor is weak, then the discrimination between them will
be weak as well [123] [92]. This will be explored in the experiments of the Section 5.5.

As previously explained, the absolute silhouette index |Δ|𝑎𝑣𝑔 measures how close the
duplicates are to the genuine signatures in the feature space. If the duplicates have a similar writer
variability to the genuine signatures, then |Δ| → 0. Therefore, the three datasets GPDS-300,
CEDAR, and MCYT-75 were used to assess the quality of the duplicates. For each writer of
the dataset, the first 12 genuine signatures were used to build a genuine cluster in the 2048
dimensional SigNet-F feature space. Similarly, four clusters with 12 feature vectors were created:
one with duplicates generated using the optimized parameter vector 𝜋𝑑𝑢𝑝, one with duplicates
generated using the optimized parameter vector 𝜋𝑔𝑎𝑢𝑠𝑠, one with duplicates generated using the
optimized parameter vector 𝜋𝑘𝑛𝑜𝑝, and one with duplicates generated using the default parameter
vector 𝜋𝑑𝑒 𝑓 . For each writer, four absolute silhouette indices were computed: one between the
genuine cluster and the duplicates generated with 𝜋𝑑𝑢𝑝, one between the genuine cluster and the
duplicates generated with 𝜋𝑑𝑒 𝑓 , one between the genuine cluster and the duplicates generated
with 𝜋𝑘𝑛𝑜𝑝, and one between the genuine cluster and the duplicates generated with 𝜋𝑔𝑎𝑢𝑠𝑠. For
each of these parameter vectors (𝜋𝑑𝑢𝑝, 𝜋𝑑𝑒 𝑓 , 𝜋𝑘𝑛𝑜𝑝, and 𝜋𝑔𝑎𝑢𝑠𝑠), the average of absolute silhouette
index |Δ|𝑎𝑣𝑔 and the standard deviation were computed.

To show how big is the writer variability of each dataset in the feature space, the average
cohesion 𝑐𝑜𝑎𝑣𝑔 of all writers was computed for each one of them. The cohesion measures the
sparsity between all elements 𝜙(𝑋𝑖) of cluster in the feature space and its centroid 𝜇 (Figure
5.2). It is calculated using the squared differences between all 𝜙(𝑋𝑖) and 𝜇 (Equation 5.1) [125,
p. 578]. The cohesions of all genuine clusters, their average 𝑐𝑜𝑎𝑣𝑔, and their standard deviations



75

were computed for the three datasets: GPDS-300, MCYT-75, and CEDAR. Table 5.2 presents
the |Δ|𝑎𝑣𝑔, the 𝑐𝑜𝑎𝑣𝑔, and the standard devations of the three datasets.

µ

Figura 5.2: Graphical representation of the cluster’s cohesion or cluster’s sparsity.

𝑐𝑜 =
𝑛∑︁
𝑖=1
(𝜙(𝑋𝑖) − 𝜇)2 (5.1)

Tabela 5.2: Average Absolute Silhouette Indices, Average Sparsity of Genuine Clusters, and Standard Deviations for
GPDS-300, CEDAR, and MCYT-75.

Metric Parameter Dataset
Vector GPDS-300 MCYT-75 CEDAR

|𝚫|𝒂𝒗𝒈 𝝅𝒅𝒆 𝒇 0.140 ± 0.100 0.370 ± 0.120 0.700 ± 0.140
𝝅𝒅𝒖 𝒑 0.040 ± 0.050 0.150 ± 0.100 0.560 ± 0.180
𝝅𝒈𝒂𝒖𝒔𝒔 0.040 ± 0.040 0.100 ± 0.060 0.280 ± 0.130
𝝅𝒌𝒏𝒐 𝒑 0.005 ± 0.003 0.011 ± 0.003 0.010 ± 0.003

𝒄𝒐𝒂𝒗𝒈 - 18860.60 ± 1854.13 15900.48 ± 945.49 13788.87 ± 804.96

Despite the average parameter vector 𝜋𝑑𝑢𝑝 only represents the most common writer
variability traits shared by a group of writers, it models the writer variability better than the 𝜋𝑑𝑒 𝑓 .
Furthermore, as it can be seen in Figure 5.3, duplicates generated using the average parameter
vector 𝜋𝑑𝑒 𝑓 may present some distortions that do not resemble the original signatures anymore.
Consequently, these distortions are transferred to the feature space and increase the silhouette
index values (Table 5.2). On the other hand, for the average parameter vectors 𝜋𝑑𝑢𝑝 and 𝜋𝑔𝑎𝑢𝑠𝑠,
the lower silhouette indices show duplicates with a better quality in the feature space. Since both
average parameter vectors 𝜋𝑑𝑢𝑝 and 𝜋𝑔𝑎𝑢𝑠𝑠 were optimized using a subset of GPDS-960, these
parameter vectors present the lowest |Δ|𝑎𝑣𝑔 for GPDS-300. Even the proposed method used a
small number of writers (20 writers), it was able to model the writer variability of 300 different
writers. Moreover, it also was able to transfer the writer variability modeled in GPDS 20DL to
CEDAR and MCYT-75 datasets.

The parameter vectors 𝜋𝑑𝑒 𝑓 , 𝜋𝑑𝑢𝑝, 𝜋𝑘𝑛𝑜𝑝, and 𝜋𝑔𝑎𝑢𝑠𝑠 have difficulty to model the writer
variability of CEDAR dataset. Since the parameter vectors 𝜋𝑑𝑢𝑝, 𝜋𝑘𝑛𝑜𝑝, and 𝜋𝑔𝑎𝑢𝑠𝑠 were optimized
using the GPDS dataset with highly sparse signatures in the feature space, it is expected that these
parameter vectors represent the sparsity (𝑐𝑜𝑎𝑣𝑔) of similar signatures. However, the CEDAR



76

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figura 5.3: Examples of genuine signatures (a,d,g), duplicates (b,e,h) generated using Duplicator with the default
parameter vector 𝜋𝑑𝑒 𝑓 , and duplicates (c,f,i) generated using Duplicator with the average parameter vector 𝜋𝑑𝑢𝑝 .

dataset presents signatures in the feature space with a smaller sparsity than those in the other
datasets. Therefore, the parameter vectors 𝜋𝑑𝑢𝑝, 𝜋𝑘𝑛𝑜𝑝 and 𝜋𝑔𝑎𝑢𝑠𝑠 may not represent the writer
variability of the CEDAR dataset so well as the other datasets. Despite of that, these parameter
vectors represent the writer variability of the CEDAR dataset better than 𝜋𝑑𝑒 𝑓 does.

Another aspect that may contribute to the quality of the duplicates is the nature of the
transformations applied to generate them. While the duplicator applies sinusoidal transformations
in the image space and indirectly transfers them to the feature space, the Gaussian filter applies
normal transformations directly in the feature space. As can be seen in Table 5.2, the variation of
the Knop’s method presents better duplicates for the three datasets, specially for GPDS dataset.
The Gaussian filter presents better duplicates for two of three datasets, specially for CEDAR
dataset. Furthermore, the |Δ|𝑎𝑣𝑔 and 𝑐𝑜𝑎𝑣𝑔 values suggest that the signature augmentation
methods have more difficult to generate duplicates for low-sparsity signature clusters than for
high-sparsity ones.

5.2 PERFORMANCE OF THE VERIFICATION SYSTEM USING DUPLICATOR

To compare the performance achieved by Hafemann et al. (2017a) [56] and the
duplicates generated by the Duplicator, a similar experimental protocol was adopted in this
work. Furthermore, to reproduce the limitation of the number of signatures in the real-world
scenario, no more than three signatures per writer were used to train the classifiers of the signature
verification system detailed in Chapter 4. While the genuine signatures of the writer and the
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corresponding duplicates were used as a positive class to train classifiers, the genuine signatures
of the other writers and the corresponding duplicates were used as a negative class (random
forgeries) to train them. The genuine signatures and random forgeries were randomly selected for
training and testing. For each genuine signature, the duplicator generated up to 22 duplicates
to assess the effects of the number of duplicates in the EER, 𝐹𝑅𝑅, and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 . For each
number of duplicates, the experiment was carried out 10 times, and the average EER, average
𝐹𝑅𝑅, average 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 , and standard deviations were calculated for GPDS-300, MCYT-75,
and CEDAR datasets. This set of experiments only considers the duplicates generated in the
image space. Therefore, the duplicator using the parameter vector 𝜋𝑑𝑒 𝑓 and 𝜋𝑑𝑢𝑝 was used to
generate the duplicates [92].

Table 5.3 presents the number of signature samples and duplicates used for training, and
testing of each dataset. For GPDS, 14 genuine signatures of the other 581 writers (DL and DV)
and their duplicates were used as random forgeries. If for each one of the 14 genuine signatures
there are 22 duplicates for 581 writers, there are a total of 187,082 random forgeries for training
(14 × 581 genuine signatures plus 14 × 581 × 22 corresponding duplicates for training). The
SVM classifiers were tested with 10 genuine signatures, 10 random forgeries, and 10 skilled
forgeries per writer from ET . Since MCYT-75 does not have a development subset, 10 genuine
signatures of other 74 writers and their duplicates were used as random forgeries. The SVMs
were tested using 5 genuine signatures and 15 skilled forgeries. In CEDAR dataset, 12 genuine
signatures of other 54 writers and their duplicates were used as random forgeries. The SVMs
were tested using 10 genuine signatures, 10 random forgeries, and 10 skilled forgeries [92].

Tabela 5.3: Number of samples used for training and testing. The number of genuine signatures G, random forgeries
R, and skilled forgeries S are specified. The number of duplicates used for training also is specified.

Dataset Training subset Testing subset
G R G R S

GPDS-300 r ∈ {1, ..., 3} + r × (d ∈ {0, ..., 22}) (14 × 581) + (14 × 581 × d) 10 10 10
MCYT-75 r ∈ {1, ..., 3} + r × (d ∈ {0, ..., 22}) (10 × 74) + (10 × 74 × d) 5 - 15
CEDAR r ∈ {1, ..., 3} + r × (d ∈ {0, ..., 22}) (12 × 54) + (12 × 54 × d) 10 - 10

Due to the limited number of signatures for test, only the GPDS-300 was used to asses
the False Acceptance Rate of random forgeries (𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚). Figure 5.4 presents the 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚
for GPDS-300 dataset. As can be seen, for any number of duplicates and genuine samples,
the 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚 is lower than 0.10 %. Moreover, the greater the number of genuine samples,
the greater the 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚. It may indicate that some signatures of different writer may be
considered of the same writer in the feature space, when a greater writer variability is used.

Figure 5.5 presents the 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 for GPDS-300, MCYT-75, and CEDAR
datasets, respectively. The greater the number of duplicates, the smaller the 𝐹𝑅𝑅. In another
words, when the number of duplicates increase, there is more information about the signatures of
a specific writer to distinguish them of the other signatures. On the other hand, when the numbers
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Figura 5.4: Average 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚 achieved using GPDS-300 dataset with the proposed method.

of duplicates increase, there is more information that can increase the confusion between genuine
signatures and skilled forgeries. Consequently, it increases the 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 .

As previously explained in Section 2.1.2, there is a trade off between the False Rejection
Rate (𝐹𝑅𝑅) and the False Acceptance Rate (𝐹𝐴𝑅) [107, p. 12]. Despite that, the trade off
between the 𝐹𝑅𝑅 and the 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 is not directly proportional. With the number of duplicates
increasing, while the 𝐹𝑅𝑅 decreases subtly, the 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 increases discretely. Furthermore,
the number of genuine samples also affects the 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 . For only one genuine
signature, there is less information about the writer variability. Therefore, the 𝐹𝑅𝑅 is higher.
On the other hand, there are less duplicates to confuse the classifiers as well. Consequently, the
𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 is lower. Moreover, the duplicates generated with the parameter vector 𝜋𝑑𝑢𝑝 achieved
lower 𝐹𝑅𝑅s and 𝐹𝐴𝑅s than did the ones generated using the 𝜋𝑑𝑒 𝑓 . It is an indicator that the
duplicator generates more realistic duplicates with the optimized parameter vector 𝜋𝑑𝑢𝑝 than
with the one proposed by Diaz et al. (2017a) [21]. Besides providing new information about the
writer’s signatures, 𝜋𝑑𝑢𝑝 also provides new information to distinguish between genuine signatures
and skilled forgeries.

As can be observed, the duplicates are mainly responsible by decreasing the probability
of the system consider the writer’s signatures as forgeries. However, the new information
introduced by the duplicates also increases the probability of the system consider skilled forgeries
as genuine signatures. This behavior becomes more evident when the writer variability decreases,
specially for CEDAR dataset. Due to small writer variability of the CEDAR dataset, the duplicates
make it easy to distinguish between the signatures of different writers. However, they also make
it difficult to distinguish between the skilled forgeries and genuine signatures. It strengths the
hypothesis that is harder to generate duplicates with a small writer variability than with a great
writer variability.

The Equal Error Rate (EER) summarizes the performance of False Rejection Rate and
False Acceptance Rate [49]. Figure 5.6 shows the average EER achieved in GPDS dataset for each
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(a) GPDS-300: 𝐹𝑅𝑅

0 2 4 6 8 10 12 14 16 18 20 220

5

10

15

20

25

30

35

40

45

50

Number of duplicates per sample

Av
er

ag
e
𝐹
𝐴
𝑅
𝑠𝑘
𝑖𝑙
𝑙𝑒
𝑑

(%
)

1 Genuine Samples, 𝜋𝑑𝑒 𝑓
2 Genuine Samples, 𝜋𝑑𝑒 𝑓
3 Genuine Samples, 𝜋𝑑𝑒 𝑓
1 Genuine Samples, 𝜋𝑑𝑢𝑝
2 Genuine Samples, 𝜋𝑑𝑢𝑝
3 Genuine Samples, 𝜋𝑑𝑢𝑝

(b) GPDS-300: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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(c) MCYT-75: 𝐹𝑅𝑅
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(d) MCYT-75: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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(e) CEDAR: 𝐹𝑅𝑅
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Figura 5.5: Average False Acceptance Rates and Average False Rejection Rates achieved with the proposed method.
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number of duplicates. As can be seen, the number of duplicates is inversely proportional to the
the average EER. Even using synthetic samples (duplicates) to train the classifiers, they provide
additional information about the original signatures of the writers. Moreover, for the same number
of genuine samples, the SVSs that used duplicates generated using 𝜋𝑑𝑢𝑝 outperforms the ones that
used the duplicates generated using 𝜋𝑑𝑒 𝑓 . As previously exposed, the optimized parameter vector
𝜋𝑑𝑢𝑝 generates more realistic samples than those generated by 𝜋𝑑𝑒 𝑓 . Consequently, the samples
generated by 𝜋𝑑𝑢𝑝 contributes to increase the performance of the signature verification system.
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Figura 5.6: Average EER achieved using GPDS-300 dataset with the proposed method.

Figure 5.7 shows the performance achieved in MCYT-75 dataset for each number of
duplicates. As observed in GPDS, the number of duplicates is inversely proportional to the the
average EER in MCYT-75. Despite the average parameter vector 𝜋𝑑𝑢𝑝 was optimized using
a subet of GPDS-960, it was able to model the writer variability present in MCYT-75. Since
GPDS and MCYT-75 datasets present high-sparsity signature clusters in the feature space, it
is expected that the proposed method generates high-quality duplicates for MCYT-75 as well.
Consequently, when these duplicates are used for training, they increase the performance of
the signature verification system. This behavior illustrates the generalization capability of the
proposed method.

Figure 5.8 shows the performance achieved in CEDAR dataset for each number of
duplicates. As in previous datasets, the greater the number of duplicates, the smaller the average
EER. However, this trend is more subtle for CEDAR dataset. As previously exposed in Section
5.1, the duplicates for CEDAR dataset are less realistic than for other datasets. Consequently,
these duplicates provide less information to distinguish between genuine signatures and skilled
forgeries. Therefore, this negatively affect the performance of the verification system. It
strengths the hypothesis that is hard to model the writer variability of the CEDAR dataset due
the difference between its intrapersonal variability and the optimization dataset. Nevertheless,
in terms of performance, the optimized parameter vector 𝜋𝑑𝑢𝑝 was able to better represent the
writer variability present in CEDAR dataset than 𝜋𝑑𝑒 𝑓 .
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Figura 5.7: Average EER achieved using MCYT-75 dataset with the proposed method.
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Figura 5.8: Average EER achieved using CEDAR dataset with the proposed method.

5.3 PERFORMANCE OF THE VERIFICATION SYSTEM USING THE GAUSSIAN FILTER

As explained before, the main hypothesis of this work is that the intrapersonal variability
observed in the image space induces an intrapersonal variability in the feature space as well.
Therefore, it enables the quality assessment of the duplicates in the feature space. To show the
proof of this concept, the Gaussian filter [85] also is used to generate duplicates in the feature
space. It includes new samples in the feature space by perturbing the genuine feature vectors [92].

A experimental protocol similar to the adopted in Section 5.2 was adopted here. Instead
of using the duplicator to generate duplicates, the Gaussian filter was used to generate them with
the average parameter vector 𝜋𝑔𝑎𝑢𝑠𝑠. Subsequently, they were used to train the SVM classifiers.
As for the Duplicator, only the GPDS-300 was used to assess the False Acceptance Rate of
random forgeries (𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚) with the Gaussian filter. Figure 5.9 presents the 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚 for
GPDS-300 dataset. As can be observed, the system trained with duplicates generated by the
Gaussian filter achieved even lower 𝐹𝐴𝑅s than the one trained with the duplicator’s duplicates.
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In both cases, the signature verification system almost does not have problems with random
forgeries.
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Figura 5.9: Average 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚 achieved using GPDS-300 dataset with the Gaussian filter.

Figure 5.10 shows the average False Rejection Rates (𝐹𝑅𝑅) and average False Acceptance
Rates for skilled forgeries (𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑). The 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 present the same trend of the
duplicates generated by the duplicator with the optimized parameter vector (Section 5.2). For the
three datasets, the duplicates generated by the Gaussian filter achieved lower 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑s than
did the duplicates generated by duplicator. It may indicate that it is easier for the Gaussian filter
to generate duplicates with a small intrapersonal variability than duplicator.

Figures 5.11 presents the average EERs achieved in GPDS-300, MCYT-75, and CEDAR
datasets, respectively. Except for the CEDAR dataset, the average EERs achieved by the classifiers
are similar to those reported in Section 5.2. For the CEDAR dataset, the duplicates generated
by the Gaussian filter achieved a better performance than did the duplicates generated by the
duplicator. Even using the Gaussian filter, the performance achieved in the CEDAR dataset is
still inferior to other datasets. It strengthen the hypothesis that is harder to generate duplicates for
writers with small intrapersonal variabilities than with great ones.

As observed in Figure 5.1, the sigma interval controls the intensity of the transformation
applied in the feature vectors. If the sigma interval is great, it will provide synthetic feature
vectors that are far from the original feature vectors. Therefore, the synthetic feature vectors will
not resemble the original feature vectors anymore. As consequence, the average ERR will be
higher for the synthetic samples using a great interval than using a small one [92].
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(a) GPDS-300: 𝐹𝑅𝑅
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(b) GPDS-300: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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(c) MCYT-75: 𝐹𝑅𝑅
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(d) MCYT-75: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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Figura 5.10: Average False Acceptance Rates and Average False Rejection Rates achieved with the Gaussian filter.
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Figura 5.11: Average EER achieved using duplicates generated by the Gaussian filter.
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5.4 PERFORMANCE OF THE VERIFICATION SYSTEM USING THE VARIATION OF
THE KNOP’S METHOD

A experimental protocol similar to the adopted in Section 5.3 was adopted here. Instead
of using the Gaussian filter to generate duplicates, a variation of the Knop’s method [77] was
used to generate them with the average parameter vector 𝜋𝑘𝑛𝑜𝑝. Subsequently, they were used
to train the SVM classifiers. Since the variation of the Knop’s method generates duplicates
surrounding the genuine signatures in the feature space, it is expected that this method can cover
a greater region of the feature space than the Gaussian filter. Consequently, the variation of the
Knop’s method may represent the writer’s signatures better than the Gaussian filter does.

False Rejection Rate (𝐹𝑅𝑅) and the False Acceptance Rate for skilled forgeries
(𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑) were analyzed. Figure 5.12 presents the 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 achieved on the three
datasets for the Gaussian filter and the variation of the Knop’s method. As can be observed, the
information provided by the duplicates of the variation of the Knop’s method is not so good as
the Gaussian filter’s duplicates. The duplicates generated by both methods change the balance
between the 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 . When new duplicates are used for training, the 𝐹𝑅𝑅 decreases
and the 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 increases. It means that the duplicates provides more information about the
genuine signatures. On the other hand, this information also increases the confusion between the
genuine signatures and skilled forgeries.

Figure 5.13 presents the average Equal Error Rate for each number of duplicates achieved
on each of the three datasets: GPDS-300, MCYT-75, and CEDAR. As can be observed, the
duplicates generated by the Gaussian filter achieved lower average EERs than did the ones
generated by the variation of the Knop’s method. For GPDS-300 dataset, when the number of
the duplicates used for training increases, the EER increases well. It is more evident when we
use 1 or 2 genuine samples per writer for training. On the other hand, the duplicates generated by
the variation of the Knop’s method help to decrease the average EER in MCYT-75 and CEDAR
datasets.

Figure 5.14 shows the 3 examples of issues that the signature augmentation methods
can present in a two dimensional feature space. In a 2D space, the circles and ellipses represent
the regions that the duplicates can cover in the feature space. As can be observed in Figure
Figure 5.14a, the Gaussian filter does not cover so well the feature space. The Gaussian filter
generates duplicates that are aligned in the feature space. Since the Gaussian filter uses a uniform
distribution to select the 𝜎 value, the duplicates have the same probability of being close to the
genuine signature or far of it. Therefore, even generating few duplicates, the Gaussian filter can
generate some duplicates that are close to the genuine samples and another ones that far from
them. With the duplicates covering a restrict region of the feature space, it is possible to define a
clearer boundary between genuine signatures and skilled forgeries. Despite of that, some skilled
forgeries can be located close to the duplicates.
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(a) GPDS-300: 𝐹𝑅𝑅
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(b) GPDS-300: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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(c) MCYT-75: 𝐹𝑅𝑅
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(d) MCYT-75: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑
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(e) CEDAR: 𝐹𝑅𝑅
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(f) CEDAR: 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑

Figura 5.12: Average 𝐹𝑅𝑅 and Average 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑 achieved with the Gaussian filter and the variation of Knop’s
method.

The variation of the Knop’s method assumes that the data has a Gaussian distribution in
the feature space [77]. Furthermore, it tries to fill a set of hyperspheres with duplicates in the
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(a) GPDS-300: Gaussian filter
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(b) GPDS-300: variation of the Knop’s method
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(c) MCYT-75: Gaussian filter
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(d) MCYT-75: variation of the Knop’s method
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(e) CEDAR: Gaussian filter
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(f) CEDAR: variation of the Knop’s method

Figura 5.13: Average EER achieved using duplicates generated by the Feature Space Augmentation methods.

feature space. Since the distribution of the genuine signatures can assume several forms, these
hyperspheres may be not enough to cover all the regions of the genuine signatures (Figure 5.14b).
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Moreover, the genuine samples are used as the mean point of a Gaussian distribution. Therefore,
there is a greater probability of the duplicates being generated close to the mean point than far
from it. Consequently, it can create duplicates that are almost like the genuine signatures in the
feature space (Figure 5.14d). Therefore, these duplicates may not provide enough information
to improve the description of the genuine signatures. This behavior can be observed when few
duplicates are generated (Figure 5.12 and Figure 5.14b). This particular behavior may explain
the small |Δ|𝑎𝑣𝑔 using the three datasets (Table 5.2).

Furthermore, the hyperspheres generated by the variation of the Knop’s method can
cover regions that are out of the distribution of the genuine signatures. Particularly, when these
hyperspheres cover the boundaries between the genuine signatures and the skilled forgeries
simultaneously, the skilled forgeries can be considered as genuine signatures (Figure 5.14f).

Tables 5.4, 5.5, and 5.6 summarize the average EERs achieved in each experiment
and in some state-of-the-art researches [21] [56] [147] in GPDS, MCYT, and CEDAR datasets,
respectively. While Hafemann et al. [56] used up to 12 genuine signatures in their signature
verification system, Zois et al. [147] used 10 and 12 genuine signatures. It is important to
highlight that the results presented in [21] and [147] use other experimental protocols and
signature features. Therefore, it is not possible to compare directly the results. As can be
observed, the proposed method achieved state-of-the-art results using up to 3 genuine signatures.
Despite the writer variability being modeled using GPDS dataset, the proposed method was able
to generate more realistic duplicates for MCYT-75 and CEDAR datasets as well. Moreover, it
was able to improve the quality of duplicates in the image (duplicator) and the feature space
(Gaussian filter). These duplicates provide additional information about the writers, enabling the
verification system distinguish one from another.

Besides the variation of the Knop’s method achieved the lowest performance among the
offline signature augmentation techniques, it achieved better results than not using duplicates
(Baseline) in MCYT-75 and CEDAR datasets. As can be observed, the duplicates generated by
this method also provide additional information about the genuine signatures. On the other hand,
they also increase the confusion between the genuine samples and the skilled forgeries.
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Tabela 5.4: Summary of the experimental results using GPDS dataset, where #W, #S, and #D stand for the number
of writers used for training, the number of genuine samples used for training, and the number of duplicates per
sample used for training, respectively.

Reference Feature Classifier #W #S #D Performance (%)
EER FRR 𝑭𝑨𝑹𝒔𝒌𝒊𝒍 𝒍𝒆𝒅

Diaz et al., LDerivP SVM 300 2 20 21.63 - -
2017 [21] 5 20 17.19 - -

8 20 14.58 - -
Hafemann et SigNet-F SVM 300 5 0 2.42 - -
al., 2017 [56] 12 0 1.69 - -
Zois et al. KSVD/ SVM 300 12 0 0.70 - -
2019 [147] OMP (𝐹3)
Baseline SigNet-F SVM 300 1 0 5.71 96.31 0.02
(Without 2 0 4.01 78.30 0.06
Duplicates) 3 0 3.38 52.83 0.22
Duplicator SigNet-F SVM 300 1 22 1.79 9.50 2.05
𝝅𝒅𝒆 𝒇 2 22 1.14 2.25 3.96

3 22 0.92 0.88 5.40
Proposed SigNet-F SVM 300 1 22 1.08 5.02 1.54
Method 20DL 2 22 0.47 1.15 2.30
𝝅𝒅𝒖 𝒑 3 22 0.24 0.17 4.42
Proposed SigNet-F SVM 300 1 22 1.04 7.57 0.81
Method 20DL 2 22 0.48 2.04 1.21
𝝅𝒈𝒂𝒖𝒔𝒔 3 22 0.20 0.74 1.42
Proposed SigNet-F SVM 300 1 22
Method 20DL 2 22
𝝅𝒌𝒏𝒐 𝒑 3 22
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Tabela 5.5: Summary of the experimental results using MCYT-75 dataset, where #W, #S, and #D stand for the
number of writers used for training, the number of genuine samples used for training, and the number of duplicates
per sample used for training, respectively.

Reference Feature Classifier #W #S #D Performance (%)
EER FRR 𝑭𝑨𝑹𝒔𝒌𝒊𝒍 𝒍𝒆𝒅

Diaz et al., LDerivP SVM 75 2 20 16.06 - -
2017 [21] 5 20 11.90 - -

8 20 9.12 - -
Hafemann et SigNet-F SVM 75 5 0 3.70 - -
al., 2017 [56] 10 0 3.00 - -
Zois et al. KSVD/ SVM 75 10 0 1.37 - -
2019 [147] OMP (𝐹3)
Baseline SigNet-F SVM 75 1 0 9.63 96.61 0.00
(Without 2 0 6.96 76.75 0.28
Duplicates) 3 0 5.66 51.84 0.61
Duplicator SigNet-F SVM 75 1 22 1.55 2.40 7.94
𝝅𝒅𝒆 𝒇 2 22 0.91 0.35 13.89

3 22 1.04 0.13 17.08
Proposed SigNet-F SVM 75 1 22 0.90 1.57 5.33
Method 20DL 2 22 0.12 0.29 8.66
𝝅𝒅𝒖 𝒑 3 22 0.07 0.03 9.74
Proposed SigNet-F SVM 75 1 22 0.72 2.99 2.30
Method 20DL 2 22 0.12 0.27 3.09
𝝅𝒈𝒂𝒖𝒔𝒔 3 22 0.01 0.08 3.65
Proposed SigNet-F SVM 75 1 22 9.01 41.52 3.64
Method 20DL 2 22 5.77 11.36 13.45
𝝅𝒌𝒏𝒐 𝒑 3 22 4.35 3.87 20.27
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Tabela 5.6: Summary of the experimental results using CEDAR dataset, where #W, #S, and #D stand for the number
of writers used for training, the number of genuine samples used for training, and the number of duplicates per
sample used for training, respectively.

Reference Feature Classifier #W #S #D Performance (%)
EER FRR 𝑭𝑨𝑹𝒔𝒌𝒊𝒍 𝒍𝒆𝒅

Hafemann et SigNet-F SVM 55 4 0 5.92 - -
al. [56] 8 0 4.77 - -

12 0 4.63 - -
Zois et al. KSVD/ SVM 55 10 0 0.79 - -
2019 [147] OMP (𝐹3)
Baseline SigNet-F SVM 55 1 0 11.33 73.84 0.64
(Without 2 0 8.63 43.91 2.35
Duplicates) 3 0 7.39 28.24 4.40
Duplicator SigNet-F SVM 55 1 22 4.29 3.25 18.60
𝝅𝒅𝒆 𝒇 2 22 3.72 1.09 24.72

3 22 3.04 0.45 27.56
Proposed SigNet-F SVM 55 1 22 3.39 6.76 12.95
Method 20DL 2 22 2.93 3.16 16.29
𝝅𝒅𝒖 𝒑 3 22 2.39 1.65 18.16
Proposed SigNet-F SVM 55 1 22 2.47 5.44 7.67
Method 20DL 2 22 1.31 1.89 10.52
𝝅𝒈𝒂𝒖𝒔𝒔 3 22 0.82 0.67 11.68
Proposed SigNet-F SVM 300 1 22 9.87 22.36 13.83
Method 20DL 2 22 6.41 4.40 25.83
𝝅𝒌𝒏𝒐 𝒑 3 22 5.42 1.69 32.89
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5.5 DUPLICATOR VS GAUSSIAN FILTER WITH LESS DISCRIMINANT FEATURES

In the previous experiments, the duplicator and the Gaussian filter were used with high
discriminant features to increase the performance of a signature verification system. However, they
were not tested with less discriminant features. Therefore, both offline signature augmentation
approaches are tested with fewer discriminant features. Some representations were defined to
show how the offline signature augmentation approaches are influenced by distinct levels of
feature discrimination. They were defined randomly selecting 64, 128, 256, 512, 768, 1024, 1280,
1536, and 1792 elements of the original SigNet-F feature vectors. The complete feature vectors
with 2048 elements were also used. These representations were used to analyze the quality of
duplicates in the feature space considering the duplicator and the Gaussian filter (Section 5.5.1).
Subsequently, these representations were used to assess the performance of the previously defined
signature verification system (Section 5.5.2).

5.5.1 Quality of Duplicates

A similar experimental protocol to the proposed in Section 5.1 was used here. The
average absolute Silhouette index |Δ| also was used to asses the quality of duplicates in the feature
space. For convenience, the average absolute Silhouette index will be called only Silhouette
index. The first 12 genuine signatures of each writer of GPDS DV were used to represent the
genuine cluster in the feature domain.

Three clusters of 12 feature vectors were considered: one with genuine signatures, one
with duplicates generated using the duplicator using the optimized parameter vector 𝜋𝑑𝑢𝑝, and one
with duplicates generated using the Gaussian filter using the optimized parameter vector 𝜋𝑔𝑎𝑢𝑠𝑠.
The quality of duplicates was assessed calculating the |Δ| and the standard deviation between:
the genuine cluster and the cluster of duplicates generated by duplicator, and the genuine cluster
and the cluster of duplicates generated by the Gaussian filter. This process was repeated 10 times,
and the average of the silhouette indices and the average of standard deviations were calculated.
The whole process was repeated for each representation.

If the average Silhouette Index of the representation is similar to or lower than the
complete feature vector, the parameter vector optimized with the complete feature vector can
be reused. Otherwise, the parameter vector should be optimized for the specific representation.
Table 5.7 presents the average silhouette indices |Δ|𝑎𝑣𝑔 and the respective standard deviations
for each representation with the signature augmentation approaches. For duplicator, the greater
the |Δ|𝑎𝑣𝑔, the greater the dimensionality representation. It may indicate that the duplicator can
generate better duplicates for less discriminant features.

The Gaussian filter presents a subtle difference between the |Δ|𝑎𝑣𝑔s. Moreover, it
presents higher |Δ|𝑎𝑣𝑔s and standard deviations than duplicator does. Due to that it is difficult
to compare the quality of the duplicates generated by both signature augmentation approaches.
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Tabela 5.7: Average Absolute Silhouette Index and Standard Deviation for Different Representations

Feature |𝚫|𝒂𝒗𝒈
Vector Size Duplicator Gaussian Filter
64 0.030±0.031 0.103±0.070
128 0.027±0.029 0.097±0.187
256 0.031±0.024 0.123±0.052
512 0.032±0.037 0.105±0.075
768 0.036±0.031 0.109±0.134
1024 0.037±0.031 0.106±0.098
1280 0.040±0.037 0.118±0.039
1536 0.040±0.042 0.125±0.189
1792 0.041±0.040 0.131±0.145
2048 0.055±0.055 0.118±0.121

Therefore, the performance of a signature verification system was assessed when it used each
kind of duplicate for training.

5.5.2 Performance of the Offline Signature Verification System

The signature verification system described in Chapter 4 was trained and tested to assess
the influence of representation on two signature augmentation approaches: the duplicator and
the Gaussian filter. For GPDS datasets, the subsets DV and DL were used to perform the
experiments. The genuine signatures and random forgeries were randomly selected. In DV ,
three genuine signatures per writer were used for training. For each genuine signature used
for training, the signature augmentation technique was used to generate up to 22 duplicates for
training. In DL , the 14 genuine signatures of each writer was used as random forgeries. For
each random forgery used for training, the signature augmentation technique was also used to
generate up to 22 duplicates. The classifiers were tested using 10 genuine signatures, and 10
skilled forgeries from subset DV . The training and testing were repeated 10 times, and the
average EER and standard deviation were calculated. The whole process was repeated for each
one of the predefined representations.

A similar procedure has been adopted for MCYT-75 and CEDAR dtasets. Since
MCYT-75 does not have a development dataset, the 10 genuine signatures of the other 74 writers
and the respective duplicates were used as random forgeries. Five genuine signatures and 15
skilled forgeries were used to test the classifiers. For CEDAR dataset, the 12 genuine signatures
of the other 54 writers and the respective duplicates were used as random forgeries. Ten genuine
signatures and 10 skilled forgeries were used for testing. For each dataset, Table 5.8 presents the
number of signature samples and duplicates used for training, and testing.

Figure 5.15 shows the performance achieved in each dataset for different discrimination
feature levels. While the left column (Figure 5.15ace) presents the duplicator’s performance, the
right column (Figure 5.15bdf) presents the Gaussian filter’s performance. For both signature
augmentation approaches, the small feature vectors are less discriminant than the large ones.
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Tabela 5.8: Number of samples used for training and testing with different representations. The number of genuine
signatures G, and skilled forgeries S are specified. The number of duplicates used for training also is specified.

Dataset Training subset Testing subset
G R G S

GPDS 50DV 3 + 3 × (d ∈ {0, ..., 22}) (14 × 581) + (14 × 581 × d) 10 10
MCYT-75 3 + 3 × (d ∈ {0, ..., 22}) (10 × 74) + (10 × 74 × d) 5 15
CEDAR 3 + 3 × (d ∈ {0, ..., 22}) (12 × 54) + (12 × 54 × d) 10 10

For the same signature augmentation approach, the representations followed a similar trend in
the three different datasets. For the duplicator, the duplicates provide additional information
about the signatures that helps to increase performance. Figures 5.15a, c, and e suggest that the
contribution of the duplicates is more significant for lower discriminant levels than for greater
ones. Since the duplicator uses a genuine signature as base to apply some distortions and generate
a duplicate, it preserves some visual aspects of the genuine signature image. As consequence,
some features are preserved in the feature space as well. Thus, they can help to characterize the
duplicates as the original signatures of their writers.

When the Gaussian filter uses small feature vectors, the duplicates provide information
that reduce the performance of the classifiers. For the feature vectors with 512 elements, the
performance of the system starts to stabilize. It shows that the duplicates start to provide useful
information when the discrimination level of the feature vectors increases, which improves the
performance of the system. Even the Gaussian filter has a low computational cost and it is simpler
to implement, Figures 5.15b, d, and f suggest that the duplicates generated using it do not help to
increase the performance of the system with low and medium feature discrimination levels. The
Gaussian filter relies on a single kind of transformation to distort the whole feature vector. It can
modify the distribution of the features in such way, that they do not keep the information which
characterizes the writer anymore [120]. Therefore, other techniques like duplicator may be more
suitable to generate duplicates that can also be used with these kind of representations.

The Gaussian filter has a low computational cost and is simpler to implement than
duplicator [85]. Since the Gaussian filter generates the duplicates directly in the feature space, it
does not provide signature images that can be used by different feature extractors. While the
duplicator is indicated to be used with low, some medium, and high discriminant features, the
Gaussian filter is only indicated to be used with high discriminant features [92].
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(a) GPDS 50DV : Duplicator
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(b) GPDS 50DV : Gaussian Filter
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(c) MCYT-75: Duplicator
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(d) MCYT-75: Gaussian Filter
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(e) CEDAR: Duplicator
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(f) CEDAR: Gaussian Filter

Figura 5.15: Average Equal Error Rate achieved with different feature representations, 3 genuine samples per writer,
and duplicates generated by the offline signature augmentation approaches.
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6 CONCLUSION

In this work, a method to automatically model the intrapersonal variability of writers
to generate synthetic samples of offline handwritten signatures was proposed. The proposed
method was used with two kinds of offline signature augmentation approaches: one in the image
space (duplicator) [21] and another two in the feature space (Gaussian filter and the variation of
the Knop’s method). The advantages and limitations of these approaches were also explored.
Moreover, the synthetic samples generated by these approaches can be used to train an automatic
handwritten signature verification system. Besides improving the performance of the system, the
method was able to model the most common writer variability traits to produce better synthetic
samples than the method proposed by Diaz et al. (2017a) [21]. Furthermore, a new approach to
validate the quality of synthetic samples with their features was proposed. The results support
the hypothesis that the writer variability observed in the image space induces a writer variability
in the feature space as well [92].

The proposed method achieved a performance comparable to the state of the art in
GPDS-300, MCYT-75, and CEDAR datasets using up to 3 genuine signatures per writer. It
achieved EERs close to zero in the MCYT-75 dataset. Since the parameter vector was optimized
using a GPDS subset which has a writer variability close to the observed in MCYT-75, this
behavior is expected. The proposed method also achieved low EERs in the CEDAR dataset.
However, the optimization of six parameters of the duplicator may not be sufficient to reproduce
the small writer variability observed in the CEDAR dataset. Therefore, the other duplicator’s
parameters can be optimized to generate more compact clusters in the feature space. The different
distributions observed in the three datasets suggest that other transformations may be investigated
to improve the performance in each one of them, specially in CEDAR dataset. Perhaps, some
nonlinear transformations like the ones used in feature extractors [2] [95] should be investigated.
The proposed method showed promising results for three distinct offline signature datasets based
on the Latin alphabet. Therefore, the proposed method can be tested using signature datasets
based on another alphabet systems [92].

According to the previous experiments, the offline signature augmentation approaches
depends on the parameter vector used to model the writer variability. Moreover, the proposed
method was able to optimize their parameter vectors. It can be tested with other offline signature
augmentation approaches or even other parameter optimization problems. Despite the low
complexity and its simple implementation, the Gaussian filter is only indicated to be used with
high discriminant features. On the other hand, the duplicator is indicated to be used with low,
some medium, and high discriminant features. Unlike the Gaussian filter, the duplicator provides
a signature image that can be used by different feature descriptors. These synthetic signature
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images can be used to create more robust offline handwritten signature datasets [39]. Furthermore,
they can also be used to train more robust deep learning models [56] [58] [135] [92].

The main constraint of this work is the number of random forgeries needed to train the
signature verification system. Therefore, an opposite approach can be used to generate random
forgeries. Instead modeling the most common intrapersonal variability traits among a set of
writers, the less common intrapersonal variability traits can be modeled to generate the random
forgeries. It is expected that the model can describe the surrounding of the genuine signatures in
the feature space. By definition, the genuine signatures and random forgeries are not visually
alike. Therefore, other transformations can also be explored to generate the random forgeries.

In this work, the Gaussian filter is used to increase the number of samples in the feature
space using as input a feature vector. However, it uses the same 𝜎 for all elements of the same
feature vector. As consequence, it limits the diversity of the synthetic samples. To increase
this diversity, the Gaussian filter could use a different 𝜎 for each element of the feature vector.
Perhaps, it can also be applied to generate random forgeries directly in the feature space.

As previous exposed, the variation of the Knop’s method uses a Gaussian distribution
to generate the duplicates in the feature space. Consequently, it has a higher probability in
creating duplicates too similar to the genuine signatures than creating different ones. Therefore,
these duplicates can provide less information about the genuine signatures. This behavior is
particularly evident when a small number of duplicates is generated for each genuine signature. A
possible solution is use a uniform distribution to generate the duplicates surrounding the genuine
signatures in the feature space.

When the genuine signatures are close to the skilled forgeries and the duplicates are
surrounding the genuine samples, the variation of the Knop’s method can increase the confusion
between the genuine signatures and the skilled forgeries. Instead of generating the duplicates
surrounding each genuine signature, they can be generated surrounding the centroid of the cluster
of genuine signatures.
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