

Accepted Manuscript

A Reliable and Energy-Efficient Classifier Combination Scheme for
Intrusion Detection in Embedded Systems

Eduardo Viegas , Altair Santin , Luiz Oliveira , André França ,
Ricardo Jasinski , Volnei Pedroni

PII: S0167-4048(18)30617-5
DOI: 10.1016/j.cose.2018.05.014
Reference: COSE 1351

To appear in: Computers & Security

Received date: 8 October 2017
Revised date: 23 May 2018
Accepted date: 28 May 2018

Please cite this article as: Eduardo Viegas , Altair Santin , Luiz Oliveira , André França ,
Ricardo Jasinski , Volnei Pedroni , A Reliable and Energy-Efficient Classifier Combination
Scheme for Intrusion Detection in Embedded Systems, Computers & Security (2018), doi:
10.1016/j.cose.2018.05.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cose.2018.05.014
https://doi.org/10.1016/j.cose.2018.05.014

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Reliable and Energy-Efficient Classifier
Combination Scheme for Intrusion Detection

in Embedded Systems
 Eduardo Viegas1, Altair Santin1, Luiz Oliveira2, André França3, Ricardo Jasinski3,

and Volnei Pedroni3

1
Pontifical Catholic University of

Parana, Curitiba, 80215-901, Brazil
{eduardo.viegas, san-

tin}@ppgia.pucpr.br

2
Federal University of Parana, Curi-

tiba, 80060-000, Brazil
lesoliveira@inf.ufpr.br

3
Federal Technological University of
Parana, Curitiba, 80230-901, Brazil

an-

dref@alunos.utfpr.edu.br, rjasinski@ieee

.org, pedroni@utfpr.edu.br
Abstract—Embedded systems (electronic systems with a dedicated purpose that are part of larger devices) are increasing their

relevance with the rise of the Internet of Things (IoT). Such systems are often resource constrained, battery powered, connected

to the internet, and exposed to an increasing number of threats. An approach to detect such threats is through an anomaly-based

intrusion detection with machine-learning techniques. However, most of these techniques were not created with energy efficiency

in mind. This paper presents an anomaly-based method for network intrusion detection in embedded systems. The proposed

method maintains the classifier reliability even when network traffic contents changes. The reliability is achieved through a new

rejection mechanism and a combination of classifiers. The proposed approach is energy-efficient and well suited for hardware

implementation. The experiments presented in this paper shows that the hardware versions of the machine learning algorithms

consume 46% of the energy used by their software counterparts, and the feature extraction and packet capture modules

consume 58% and 37% of their respective software counterparts.

Keywords—Classifier design and evaluation; Feature evaluation and selection; Machine learning; Energy-aware systems;

Network-level security and protection; System-on-a-Chip; Field-Programmable Gate Array

1 INTRODUCTION

Most of the Internet of Things (IoT) and so-called "smart"
devices are electronic devices containing embedded sys-
tems. Such systems are often battery-powered, resource
constrained, and connected to the internet; therefore,
they are exposed to an ever-increasing number of threats.
According to OWASP [1], IoT devices are vulnerable to
attacks and in general provide unsafe web interfaces and
network services, raising security and privacy concerns.

An approach to detect attacks at the network level is
through anomaly-based intrusion detection [2]. In gen-
eral, this approach treats intrusion detection as a pattern
recognition problem [3] that can be addressed with ma-
chine learning techniques. The use of machine learning
makes it possible to detect variations of existing attacks
and even new kinds of attack [3][25].

Machine learning uses an inference algorithm (a clas-
sifier) that learns the attack behavior in a training phase.
In this phase, each input event occurring in the network
is labeled as normal or attack (e.g., an intrusion attempt).
The events are seen by the classifier as a set of attributes
composing a feature vector. A set of feature vectors com-
poses a dataset. The part of the dataset used to obtain the
classifier model is called the training dataset.

A classifier's accuracy is estimated using a test set, in a
process commonly referred to as model testing. Model-
ing and testing a classifier aimed at network intrusion
detection is challenging because the network traffic con-
tent in real-world network environments is highly varia-
ble; moreover, it is infeasible to represent all possible
network profiles in a training dataset.

An important requirement of an anomaly-based intru-
sion detector is its reliability. The higher the detection
rate, the more accurate is the classifier. However, when
it is not possible to obtain a detection rate close to 100%,
the second most important goal in classifier development
is to guarantee that when it associates a class to an event,
this classification is reliable. If a security system operator
cannot trust the alerts generated by an intrusion detec-
tion engine due to a high number of false positives or
negatives, future alerts might be disregarded even
though most of them are correct. For this reason, it is
often preferable to have a classifier that is reliable rather
than one with a higher detection rate but also a high rate
of false positives or negatives.

Several approaches are proposed in the literature to
improve a classifier's accuracy [4] [32]. A common solu-
tion is to combine the output of several classifiers, gener-
ally by voting techniques [5]. Although this approach
usually improves the classifier accuracy, it may be inad-
equate for embedded systems, because the processing
power and energy consumption increase with the num-
ber of used classifiers.

Another approach is to provide a classification proba-
bility along with the classification result and reject the
classifier output when this probability is low [8]. This is a
common approach in other fields such as bank checking
systems [6], spam detection [7], and facial recognition
[12]. However, even though rejection techniques have
shown promising results in other fields and classifier
combinations have been used in other areas [9][10][11],

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 1. Typical processing flow for an anomaly-based NIDS

rejection techniques are still not common in intrusion
detection.

A rejection technique may significantly improve the
classification reliability. When the network traffic content
changes, the rejection rate could be increased to maintain
the classification accuracy stable. Moreover, when the
rejection increases, this may indicate that the detection
models should be updated. However, if this update is
not possible, the intrusion detection alerts will continue
to be reliable. The events that are not classified are said
to be rejected by the classifier.

A common approach to detect changes in the network
traffic is to analyze the history of extracted features val-
ues [13] in a fixed- or variable-length time window [14]
[41]. A new network profile is detected when the features
values are significantly different within this window
[15]. A drawback of this approach is that it is computa-
tionally expensive, because it requires storing and ana-
lyzing a large number of events [16] to detect network
changes. Therefore, this approach may be infeasible in
resource-constrained devices.

To reduce the energy consumption and increase the
system throughput [17], network security algorithms can
be implemented in hardware [18][19]. The algorithms are
usually coded using a hardware description language
(HDL) such as VHDL (Very High Speed Integrated Cir-
cuits HDL), and the circuits are implemented in hard-
ware using a System-on-a-Chip (SoC) or Field-
Programmable Gate Array (FPGA) [20]. Such approaches
take advantage of the parallel processing capacity inher-
ent to a hardware implementation, allowing the use of
several classifiers, often with lower energy consumption
[17]. However, the implementation of security mecha-
nisms in hardware has several drawbacks. New attacks
are discovered daily; to be usable in real-world environ-
ments, the classifiers must be able to cope with new at-
tack profiles and still provide a reliable classification. If
the intrusion detect engine is implemented on an FPGA,
unless partial reconfiguration is used, an update of the
detection engine or classifier model may require repro-
gramming the entire chip [20].

This paper presents a new method using rejection
techniques to improve the classification reliability in an
anomaly-based intrusion detection engine. We present
and evaluate a hardware implementation that is suitable
for resource-constrained embedded systems. In sum-
mary, our main contributions and novelties are:

 A new rejection method suitable for embedded
systems, providing classification reliability even
when the network traffic behavior changes.

 A new method to define detection rates for ma-
chine-learning-based intrusion detection algo-
rithms. The expected anomaly-based detection
properties are used in combination (detection of
known, similar and new attacks), allowing the ob-
tainment of the best parameter vector arrange-
ment for each situation.

 A new, hardware-friendly implementation of a re-
liable anomaly-based intrusion detector using the
proposed rejection technique. Our implementa-
tion acquires network packets directly from the
network and performs reliable classification even
in the presence of network traffic changes, using
multiple classifiers. The hardware version has a
significantly lower energy consumption than the
equivalent software implementation, making it
suitable for use in embedded systems.

The remainder of this paper is organized as follows.
Section 2 presents the background work and the main
challenges associated with anomaly-based intrusion
detection. Section 3 explains in detail the proposed
anomaly-based detection method and the testbed envi-
ronment. Section 4 presents the evaluation of the pro-
posed rejection methods. Section 5 describes the software
and hardware implementations. Section 6 presents the
energy consumption measurements of the software and
hardware implementations. Section 7 presents related
works. Finally, Section 8 summarizes the conclusions and
the main contributions of this work.

2 BACKGROUND

A Network-based Intrusion Detection System (NIDS)
captures and classifies events (network packets, flows, or
connections) in a network environment. A typical anom-
aly-based workflow for NIDS is shown in Fig.1. Initially,
a Packet Capture module collects and filters the network
traffic. Next, the filtered events (e.g., network packet
headers or connection flow statuses) are sent to the Fea-
ture Extraction module, which selectively obtains a set of
features (attributes relevant to the purpose of attack
characterization) and assembles a feature vector. Finally,
the Detection Engine assigns a class (normal or attack) to
the event.

Several techniques are used in the literature to assign
a class to an event; pattern recognition is the most com-
mon approach [2]. This approach uses an inference algo-
rithm to build a model by learning the event classes from
a training dataset - a file containing a set of previously
labeled features vectors. After the classifier has been

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

trained, the event class can be predicted using the
learned attack model. Events from different classes but
with similar feature values can be wrongly classified by
the classifier, resulting in false positive or negative detec-
tions (FPND).

Usually, the model development process uses three
distinct datasets: one for training, one for validating, and
one for testing the model. The training dataset is used to
obtain the attack model, whereas the validation dataset
can be used to fine-tune the model parameters. Due to
FPND, during the model obtainment process an accuracy
rate is estimated, using the test dataset. If necessary, an
iterative process involving the training, validating and
testing datasets can be performed to improve the model
accuracy rate.

As reported in the literature, the combination of classi-
fiers can improve a system’s accuracy rate [5] [21]. Most
classifier combination schemes use majority voting to
assign a final class to an event.

2.1 Anomaly-based Network Intrusion Detection

An important feature of anomaly-based intrusion detec-
tion is its ability to detect new kinds of attack using the
same model [3][25]. This is particularly important be-
cause network traffic and attack profiles are frequently
changing, either by the adoption of new technologies
(services) or by the emergence of new kinds of attacks.
However, despite its extensive presence in the literature
[2][27][28], anomaly-based intrusion detection is not
commonly used in commercial products, mainly because
it faces several challenges when compared with other
approaches such as signature-based techniques [25][26].

The constant changes in network traffic make it diffi-
cult to create representative datasets [25]. Training a
machine learning algorithm requires a significant num-
ber of samples from each class – in this case, a large
number of packets representing both normal and attack
network traffic [26].

Changes in network traffic may require periodic up-
dates of the intrusion detection model. Due to the lack of
public intrusion databases reflecting such characteristics,
many works found in the literature simply use network
traffic that does not change over time [25]. Such works
assume that the detection accuracy rate obtained during
the model training, validating and testing will remain
valid for a long period in real-world environments.
However, in practice, when the traffic content changes,
the model accuracy probably changes as well, and the
classifier may become less effective.

Unlike other areas in which misclassifications are ac-
ceptable, intrusion detection systems pay a high cost for
FPND [25]. An intrusion attempt misclassified as a legit-
imate access may compromise an entire system. There-
fore, to be reliable, a NIDS must be able to deal with
network traffic changes and still provide a reasonable
detection rate.

3 EVENT REJECTION METHOD

The design of a security mechanism in hardware is not a
trivial task. Besides the difficulties of adapting algo-

rithms that were initially developed with the flexibility
of software in mind, model updates may be difficult due
to the more static nature of a hardware implementation.
The approach described in this paper uses a rejection
technique and a combination of classifiers to provide a
more reliable detection. This solution aims at being
hardware-friendly, energy-efficient, and reliable over
extended periods, even though it does not classify all the
input events.

3.1 Changes in Feature Values Distribution

When a classifier is operating, its accuracy depends on
the feature values distribution being similar to that of the
training dataset (usually composed of real network traf-
fic). If the distribution changes significantly, the classifier
model should be updated, or its accuracy may decrease.
This update usually requires expert knowledge to label
new events and to rebuild the model, which may not be
practical in real-world environments. To test a classifier
designed to operate in such environments, we need a
method to assess whether it is still reliable even when the
network traffic changes. Here we describe an evaluation
scenario and propose an event rejection method that
allows the classifier to operate reliably even when it can-
not be easily updated.

To overcome the limitations of other works in the lit-
erature, we propose a rejection method that takes into
account the frequent content changes observed in real-
world network traffic. We also propose the usage of sev-
eral independent classifiers using different machine-
learning algorithms. After each classification, we check
whether there are enough similarities between the classi-
fier outputs class (normal or attack) and the class occur-
rence observed in the training dataset. If there is not a
predominant match, the classification is deemed unrelia-
ble and the event should be rejected because the features
used to build the model and the current event are not
similar enough for a reliable classification. An event
rejection means that none of the classifiers can reliably
assign a class to an input event; in this case, the event is
rejected rather than being potentially incorrectly classi-
fied.

3.1.1 Scenario

Fig. 2 shows a real-world scenario whose feature distri-
bution changes over time. It considers the feature set of
SYNFlood attacks [29] as baseline in the attack model. If
an HTTPFlood attack [29] occurs, it can still be detected
because the feature distribution of the two attacks are
similar. However, if the network traffic changes signifi-
cantly (as in an Exploit attack [29]), the classification
output becomes unreliable due to the significant change
in the feature set. In such cases, if the model cannot be
updated, another technique should be used to provide a
reliable classification.

3.1.2 Rejection Engine

One way to detect changes in the network traffic profile
is to monitor the distribution of values in the extracted
feature set (Fig. 2, Exploit Attack). A significant change
in feature distribution may indicate that a new attack is

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig 3. Features within the threshold range for a class (attack).

Fig 2. Changes on features distribution, considering SYNFlood Attack as reference.

occurring. However, it is not easy to detect profile simi-
larities from network events occurring in real time.

As shown in [18][30][31][47], in a NIDS, approximate-
ly 50 features must be taken into account for anomaly-
based intrusion detection. If each feature is represented
with 2 bytes [18], a single event will require 100 bytes for
storage. Considering a feature distribution history of 100
events, 10 KB are required in order to store the data for
detecting changes in the distribution. The amount of
memory storage, processing power and energy required
to update the feature distributions and to detect changes
could be impractical for embedded systems. To over-
come these issues, we defined two ranges for each attrib-
ute (one for each class) to determine whether a feature
value is valid. When an extracted feature lies within the
appropriate range, the feature is considered valid.

To evaluate our method, we used three traffic scenar-
ios: a baseline scenario, a scenario with network traffic
changes but similar to the baseline scenario, and a sce-
nario with new attacks (Fig. 2). The baseline scenario was
used to obtain the rejection range thresholds and the
attack models; the other scenarios were used to evaluate
the rejection method.

For each feature (fx, x=1,2,…,N) and class (normal or
attack), two rejection limits or thresholds (tlower and tupper)
were computed. The limits define the range within
which a feature value is valid. The range is class-specific
because the feature distribution for each class is different.
The thresholds are defined with respect to an ∝ value
(Fig. 3), which establishes a percentage of instances in the
validation dataset that fall outside the defined thresh-
olds, but still provide the desired model reliability. To
determine the value of ∝, an experimental analysis must
be performed (Section 4.2).

For each feature fx, 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 1 if the values

for fx lie in the threshold interval (tinterval): tlower < value

(fx) < tupper; otherwise, 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 0. For exam-

ple, 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 1 for the attack profile (Fig. 3)

and 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 0 in Fig. 4 for both profiles.

If N denotes the number of features in the feature set,
the profile instance similarity (𝑝𝑟𝑜𝑓𝑖𝑙𝑒) is defined

according to (1):

𝑝𝑟𝑜𝑓𝑖𝑙𝑒
∑ 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

Fig 4. Feature outside the threshold range for both classes.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 6.Network traffic generation process.

A classifier output should be rejected when it presents
a low 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 (e.g., 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 < 0.7); other-

wise, the event is labeled with the class informed by the
model (Fig. 5a and 5b). Using this approach, we are able
to establish the profile similarity without the need to
keep the feature values history to identify a change in
feature distribution.

The output of the combined classifier is assigned via a
combination algorithm (Fig. 5), choosing the majority of
the outputs of the individual classifiers whose outputs
were not rejected. In the example of Fig. 5c, the output is
rejected because no individual classifier output is valid,
while in Fig. 5a and Fig. 5b the output is accepted be-
cause there is at least one classifier that can reliably clas-
sify the event.

3.2 Changes in the Distribution of Feature Value

Although there are some public datasets and proposed
validation approaches in the literature

[33][34][35][36][37], most lack desirable IDS properties
such as reproducibility, update capacity, real and valid
traffic content, correct class labeling, and fully-compliant
attack implementations. Therefore, to validate the pro-
posed rejection method, it was necessary to develop a
testbed environment to ensure it had the desired IDS
properties (Fig. 6).

Differently from most works in the literature
[35][36][37], the traffic content in our scenarios was not
recorded from real-world network traffic, thus avoiding
privacy issues such as sensitive data exposure [26]. We
used a controlled environment with automatic traffic
generation mimicking a real-world environment. This is
the same approach used in our previous work [18], but
with a larger number of scenarios. The background traf-
fic (normal or legitimate events) is generated with work-
load tools (Fig. 6, Background Traffic), whereas the at-
tack traffic is generated with well-known, standard ex-
ploit tools (Fig. 6, Attacker Traffic). All requests are per-
formed to a honeypot server – a highly interactive virtual
server that implements vulnerable servers on a network,
normally used to study attacker behavior.

The next sections briefly detail the method used to
create the intrusion datasets, the conceived scenarios,
and the dataset properties used in our work.

3.2.1 Background Traffic Creation Method

In an intrusion dataset, the background traffic must con-
tain the normal and expected network activities. In a
real-world environment, the normal traffic content of a
client is service-dependent (e.g., a client browsing a web-
site behaves differently from a client sending an e-mail).

Our approach is to use virtual machines running real
software applications performing real network requests
and responses at pseudo-random intervals. The back-
ground traffic contains network packets generated by the
clients and server. We use a honeypot tool as server for
the client requests; the server receives the requests, in-
terprets them, and provides proper replies, generating
the background traffic (Fig. 6, Background Traffic). In
this way, we can provide real responses to the clients in a
controlled environment.

To generate the client-side traffic, we use a specific
workload tool for each service. The generated traffic
consists of requests that could be observed in a real-
world network; they are all valid, well-formed packets,
including both request and response messages. The be-
havior of each virtual client was defined to request one
type of service with pseudo-random contents. Each client
requests its predefined service indefinitely, with different
contents and different time intervals between the re-
quests.

3.2.2 Attack Traffic Creation Method

To create the attack traffic, we used the same method
proposed in [18], using well-known and de facto standard
tools to generate the attacks (Fig. 6, Attacker Traffic). In
this way, we ensure that the attacks are correctly imple-
mented and reproducible.

Fig 5. Final class assignement using majority vote as classifier
combination

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TABLE 1
SERVICES USED FOR BACKGROUND TRAFFIC GENERATION
Service Description

HTTP

1,000 most visited worldwide websites were down-

loaded (www.alexa.com/topsites) and hosted on the

honeypot; each HTTP client requests a pseudoran-

dom website from such set of content.

SMTP
Each SMTP client sends a mail with a 50-400 bytes

subject and 100-4.000 bytes in the body.

SSH

Each SSH client logs into the honeypot host and

executes a random command from a list of 100 pos-

sible commands.

SNMP
Each SNMP client walks through a predefined MIB

from a predefined list of possible MIBs.

DNS
Every name resolution is also made to the honeypot

server.

TABLE 2
ATTACK AND TOOLS USED IN BENCHMARK SCENARIOS

Scenario Attack Tool Description

Baseline
(model-
known
attacks)

UDPScan Nmap Searches for open UDP ports varying the attack frequency and duration.

SYNScan Nmap
Searches for open TCP ports by sending TCP packets with the SYN flag set while vary-
ing the attack frequency and duration.

NULLScan Nmap
Searches for open TCP ports by sending TCP packets without flags set while varying
the attack frequency and duration.

TCPConnect Nmap
Searches for open TCP ports by completing the three-way handshake while varying the
attack frequency and duration.

FINScan Nmap
Searches for open TCP ports by sending TCP packets with the FIN flag set while vary-
ing the attack frequency and duration.

XMASScan Nmap
Searches for open TCP ports by sending TCP packets with the FIN, PSH and URG flags
set while varying the attack frequency and duration.

ACKScan Nmap
Searches for open TCP ports by sending TCP packets with the ACK flag set while vary-
ing the attack frequency and duration.

Similar
attacks

OS Fingerprint Nmap
Identifies the OS of the target (https://nmap.org/book/osdetect.html) while varying
the attack frequency and duration.

Service Fingerprint Nmap
Identifies the target’s services and their versions (https://nmap.org/book/man-
version-detection.html) while varying the attack frequency and duration.

New
attacks

Vulnerability Scan Nessus Identifies service level vulnerabilities while varying the attack frequency and duration.

Fig 7. Client distribution for each service in the deployed
scenarios.

3.3 Background Traffic Creation Process

The following services were represented in our testbed
environment: HTTP (Hypertext Transfer Protocol),
SNMP (Simple Network Management Protocol), SMTP
(Simple Mail Transfer Protocol), NTP (Network Time
Protocol), and SSH (Secure Shell). DNS (Domain Name
System) requests were also generated as a consequence
of using the listed protocols. These services were selected
because they reflect the most used network services
nowadays, as specified in [38].

To create the honeypot server (Fig. 6), we used the
honeyd [39] tool. To implement the clients, we used a
workload tool automated with custom scripts. All tools
are available at secplab.ppgia.pucpr.br/eeids.

To provide traffic variability, each client randomly
varies the requested content according to the service
description shown in Table 1. The time between requests
varies between zero and four seconds. This method can
approximately mimic the behavior of a user browsing a
webpage and sending e-mails, for instance.

To analyze the capability of the classifiers to detect

the attacks, the simulation setup is composed of three
distinct scenarios, with a duration of 30 minutes each. All
the traffic is logged so that the scenario can be replayed
later if needed.

Each scenario consists of 100 interconnected clients
that request one or more services to a single server. The
number of attackers varies according to the scenario
(Table 2), while the number of clients requesting each
service is shown in the Venn diagram of Fig. 7. The
honeypot server and the clients generating the normal
background traffic use the Ubuntu 14.04 OS. The attacker
machines run Kali Linux 1.0.0a. The honeypot server
runs honeyd 1.5c.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TABLE 4
ACCURACY FOR EACH SCENARIO USING THE OBTAINED

CLASSIFIERS
Classifier

 Accuracy

Scenario

Baseline Similar New attack

DT 99.97 % 98.62 % 64.66 %

NB 99.75 % 99.23 % 57.38 %

LDA 99.44 % 98.39 % 56.00 %

Combination 99.75 % 99.14 % 70.29 %

TABLE 5
FEATURES GROUP

Group No. of

Attributes

Description Example

Header-

based

30 Features extracted

directly from the packet

header

SYN flag

from TCP

protocol

Service-

based

17 Features regarding the

communication be-

tween two hosts on the

network

Bytes sent

in the last

two se-

conds

Header-

based

7 Features regarding the

communication be-

tween two services on

the network

TCP con-

nection

status

TABLE 3
GENERATED TRAFFIC FOR EACH SCENARIO

Scenario Traffic (Packets) Database Size

(Megabytes) Background Attack Total

Baseline 28,618,365 36,628 28,654,993 8,476

Similar 28,477,884 10,441 28,448,325 8,499

New 28,391,914 17,753 28,409,667 8,512

A single LAN network at 100 Mbps connects all hosts.

The network speed allowed us to capture the generated
traffic on a single host without dropping any packets
[40]. Both normal requests and attacks are generated
targeting the honeypot server (Fig. 6). The generated
traffic is logged on the honeypot server itself.

3.4 Rejection Method Evaluation

To mimic a real-world environment, we considered three
distinct scenarios (Fig. 2) representing a traffic profile
that changes over time: (i) a known attack profile (base-
line dataset), (ii) a similar attack profile (similar dataset),
and (iii) a new attack profile (new dataset).

The baseline dataset is composed of normal back-
ground traffic and a known set of attacks (Table 2). This
dataset is used to train the model and to establish the
reference accuracy rate for the classifiers.

After the attack model has been obtained, we use the
other scenarios to evaluate the classifier’s ability to detect
similar and different attacks that were not considered in
the model training phase. Only the attack traffic changes
across the scenarios; the normal traffic remains the same.

The baseline scenario contains probing attacks, a kind
of attack in which an opponent gathers information
about a host in the network (such as open ports, service
versions, and operating system fingerprints). In this
baseline scenario, the attacks occur mainly at the net-
work protocol level.

The second attack scenario also consists of probing at-
tacks; however, they aim at gathering application-level
information. This kind of attack has a lower traffic con-
tent variation compared with the baseline dataset.

Finally, the third attack scenario represents the occur-
rence of a new kind of attack, using exploit attacks. This
dataset represents real-world environments where new
attacks (not previously learned by the model) are discov-
ered over time. Table 2 presents the tools used to gener-
ate the attacks.

To generate the databases, each scenario was de-
ployed for 30 minutes. The number of clients requesting
each kind of service is depicted in Fig. 7. The behavior of
each client is described in Table 1 and the attack profiles
are shown in Table 2. The traffic amount for each scenar-
io is shown in Table 3.

4 EVENT REJECTION EVALUATION

The datasets described in section 3.4 and the evaluation
method presented in Fig. 2 were used to evaluate the
proposed rejection method. Three energy-efficient classi-
fiers [17] were used during the evaluation: Decision Tree
(DT), Naïve Bayes (NB), and Linear Discriminant Analy-
sis (LDA). The following sections describe how the classi-
fier models were built and how the proposed rejection
method was evaluated.

 4.1 Model Obtainment Process

In our experiments, we have used two distinct detection

approaches. First, a single classifier using the DT, NB or
LDA algorithm; second, a combination of the three classi-
fiers using majority voting, as explained in section 3.1.2
(Fig. 4).

The naturally occurring amounts of packets corre-
sponding to normal and attack events are distinct, be-
cause most of the logged events are normal. However,
during the dataset generation, we have selected the same
number of events from each class. This allowed us to
compute the classifier accuracy without the need for
verification of false-positives and false-negatives during
the model generation.

Our stratification process consisted of randomly se-
lecting 25% of the events from the least frequent class,
and then selecting the same number of events from the
other class. The datasets were obtained using a stratifica-
tion process with 25% for training, 25% for validation,
and the remaining events (50%) for testing. The test da-
taset is composed of events that were not used to obtain
any classifier model.

To obtain the classifier models, we used the Weka [48]
framework version 3.7.12. For the NB classifier, all the
numerical attributes were discretized according to the
method proposed in [42]. The C4.5 decision tree algo-
rithm was used with a confidence factor of 0.25. The
Fisher’s method [43] was used for the LDA classifier.

After the models were obtained using the baseline da-
taset, they were tested in the three available scenarios.
Each classifier had its average accuracy measured, as
defined by the average of true-positive and true-negative
rates. Table 4 presents the resulting accuracy in each
scenario, for each single classifier in the combination

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TABLE 6
ACCURACY-REJECTION TRADEOFF FOR EACH DATASET USING THE POINTS MARKED IN FIG. 10 (SCENARIO).

Rejection

Rate

Classifier

(Normal Alpha, Attack

Alpha)

Dataset/Scenario

Known attack Similar attack New attack

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%)

No

Rejection

DT (n.a., n.a.) 99.97 - 98.62 - 64.66 -

NB (n.a., n.a.) 99.75 - 99.23 - 57.38 -

LDA (n.a., n.a.) 99.44 - 98.39 - 56.00 -

Combination (n.a., n.a.) 99.75 - 99.14 - 70.29 -

Low

Rejection

DT (0.55, 0.18) 99.97 0.21 98.70 1.05 67.37 4.82

NB (0.62, 0.27) 99.75 0.14 99.23 0.25 59.66 4.07

LDA (0.64, 0.29) 99.44 0.14 98.48 0.31 58.15 3.98

Combination (0.53, 0.16) 99.75 0.01 99.14 0.00 72.66 3.31

Average

Rejection

DT (0.83, 0.37) 99.98 5.40 98.80 5.77 74.90 24.14

NB (0.88, 0.51) 99.75 5.41 99.21 5.88 67.94 23.50

LDA (0.88, 0.51) 99.65 5.71 99.65 6.00 66.37 24.99

Combination (0.81, 0.25) 99.76 0.25 99.14 0.15 84.27 23.16

High

Rejection

DT (0.90, 0.51) 99.99 37.27 99.87 25.79 99.92 59.57

NB (0.90, 0.51) 99.96 37.34 99.92 25.42 99.92 59.61

LDA (0.90, 0.51) 100.00 37.38 99.87 25.57 99.86 59.62

Combination (0.90, 0.51) 99.95 37.27 99.92 25.38 99.86 59.52

Fig 8. Accuracy-rejection tradeoff for the combination technique while detecting new attacks.

scheme and also for the combined classifier, using the
testing dataset and without the proposed rejection
scheme.

All classifiers presented a reasonably good perfor-
mance when used in the baseline testing dataset. The
best accuracy rate, 99.97% was obtained with the DT
classifier. The worst classifier accuracy rate, 99.44%, was
achieved by LDA, although it was only 0.53% lower than
DT. When evaluated with the similar scenario, the classi-
fiers were able to detect events with an average accuracy

drop of 0.88% compared to the baseline scenario. For
new attacks, however, the accuracy decreased on average
by 37.64%. The best accuracy rate when detecting new
attacks was obtained with the combination/voting classi-
fier, with an accuracy of 70.29% (Table 4). None of the
used classifiers or methods were able to maintain their
baseline accuracy when detecting similar or new attacks.
If such classifiers were used in a real-world environment,
their accuracy would likely drop over time due to chang-
es in the traffic or attack profiles.

4.2 Evaluation of the Proposed Rejection Method

Our proposed rejection method aims at maintaining the
classifier reliability over time even in the absence of
model updates. To achieve this goal, our class assign-
ment (Fig. 4) must reject potentially wrong classifica-
tions. Therefore, the evaluation tests aim at checking the
detection accuracy, while still rejecting as few events as
possible.

Due to the number of used features (54 features, Table
5), evaluating all possible values of ∝ for each feature
and profile similarity (section 3.1.2, Fig. 3) was infeasible.
Therefore, we have performed two tests for each final
class assignment (Fig. 4). The first test, named Different
Alpha, used different ∝ values (Fig. 3) for each feature
group (header-based, service-based, and host-based,
Table 5), whereas the second test (named Same Alpha)
used the same ∝ for all features. The profile similarity
varied from 0% to 100% in 1% increments. The rejection
rate is the ratio between the number of rejected instances

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 9. Tradeoff between the accuracy improvement for new
attacks and the rejection of known and similiar attacks.

Fig. 10. Tradeoff between Accuracy and rejection rate, for each
classifier in new attacks dataset.

and the total number of instances in the test set. The
accuracy rate vs rejection rate tradeoff using the com-
bined classifiers for the detection of new attacks is shown
in Fig. 8.

It is possible to note that in most cases there is a direct
relation between accuracy and rejection, regardless of the
∝ technique (Fig. 8, Different Alpha and Same Alpha).
One may notice that different distributions of feature
values allowed improving the accuracy rate while reject-
ing fewer instances. The classifier combination scheme
was able to reach an accuracy rate of 100% while reject-
ing 59.52% of instances in the new attack dataset.

All evaluated classifiers were able to reach an accura-
cy of 100% at the cost of a 60% rejection rate for the new
attack dataset (attacks not previously known to the mod-
el). The combination classifier provided the best accuracy
with a minimum rejection rate considering all scenarios,
outperforming the best single classifier (DT) by about 5%
in the low rejection rate setting, and by about 10% in the
average rejection setting (Table 6).

In the real world, it is not possible to choose a differ-
ent set of thresholds for each event, because the classifier
is unable to determine whether an event is a known at-
tack, a similar attack, or a new one. Therefore, the choice
of a set of thresholds must be made taking into account
the tradeoff between accuracy and rejection rate. Fig. 9
shows the accuracy-reject tradeoff between the accuracy
in detecting new attacks and the rejection rate for known
and similar attacks, using the same set of thresholds
during the detection. The graph shows that it is possible
to maintain the accuracy for the detection of new attacks,
but at the cost of an increased rejection rate for known
and similar attacks. For instance, it is possible to main-
tain the accuracy rate at 95% in a scenario with new at-
tacks, at the cost of rejecting 31% in average of the events
in the other two scenarios (known and similar attacks).

The set of thresholds should be established according
to the user goals. If certain lenience for accuracy is ac-
ceptable, fewer events will be rejected, but the class as-
signment will be more susceptible to errors. Table 6
shows the accuracy-reject relationship for each dataset,

for the rejection settings highlighted in Fig. 10, using the
same set of thresholds. Four rejection rate settings (no
rejection, low rejection, average rejection, and high rejec-
tion) were selected for the new attacks dataset. The same

set of thresholds were used in the other scenarios to in-
vestigate the rejection rate impact for the known and
similar attack datasets. The obtained results are shown in
Table 6.

The Average Rejection setting presented the best accu-
racy-reject tradeoff. The rejection method was able to
improve the classification accuracy by 13.98% for new
attacks while rejecting only 0.25% known attacks and
0.15% similar attacks, using the combination classifier
(Average Rejection, Table 6). The combination classifier
produced, in average, the best results when compared to
the single classifiers at the same rejection rate interval. In
summary, the proposed rejection method allowed the
detection of new attacks while maintaining the classifi-
er’s overall reliability.

4.3 Comparison with other Rejection Approaches

Finally, two commonly used rejection approaches that
rely on class probabilities, the Chow’s rule [23] and the
Class-related Reject Threshold (CRT) [24], were com-
pared to our proposed method. Chow’s rule defines a
single rejection threshold for all classes, whereas CRT
uses a different threshold for each class. For evaluation
purposes, the combination classifier was used because it
presented the best results (Table 6). The three approaches
– CRT, Chow and the proposed approach – were evalu-
ated using the New Attacks dataset. We used rejection
rates from 0% to 100%. Fig. 11 shows the accuracy-reject
tradeoff comparison for the evaluated approaches.

The proposed approach outperformed both existing
techniques, CRT and Chow’s rule. The traditional rejec-
tion approaches were not able to identify behavior
changes and increased the classification confusion; the
assigned class probabilities were high even for misclassi-
fied instances. In contrast, our approach was able to op-
erate with fewer misclassifications in the presence of
traffic behavior changes, reaching 100% accuracy while

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 12. Power measurement platform with application under
test.

Fig. 11. Accuracy-rejection tradeoff, for the combination
classifier in the new attacks dataset, using the evaluated
rejection techniques.

rejecting 60% of the events.

4.4 Discussion of the Proposed Rejection Method

The conceived scenarios reproduce three common situa-
tions in real-world intrusion detection systems. The
Known scenario represents the environment behavior
when the system was conceived, including all possible
behavior variations that were known a priori. The Simi-
lar scenario represents the occurrence of attacks similar
to those already known by the classifier. Finally, the New
scenario represents the environment after an extended
period of time, when new attacks (which were not pub-
licly known when the model was trained) are created.

We presented an evaluation method that takes into
account such situations. All tested detection schemes
were able to detect known and similar behaviors with a
reasonably high detection rate (an average accuracy of
99.72% for known behaviors and 98.84% for similar be-
haviors). However, when the system faces previously
unseen attacks, its accuracy drops significantly (to an
average of 62.08%). To ensure the classification reliabil-
ity, we proposed the use of simple lower and upper
thresholds, obtained from the feature distributions ob-
served during the model training phase.

Due to the large number of used features, we have an-
alyzed the contribution of distinct features according to
their feature group. Our proposed embedded-friendly
rejection method was able to guarantee the system relia-
bility with a low accuracy-reject tradeoff, improving the
accuracy in 13.98% for new attacks while rejecting only
0.25% of known behaviors using a classifier combination
scheme.

Our experiments revealed other factors that should be
taken into account by the anomaly-based intrusion detec-
tion community. A machine-learning classifier works by
identifying similar behaviors and must have representa-
tive instances from all of the considered classes [25]. The
assumption that a classifier will be able to detect new
attacks only holds when their behavior is similar to the
one used during the classifier training.

A machine learning detection system becomes unreli-

able when the traffic behavior changes. In our work, we
have dealt with such issue by rejecting potentially non-
reliable classifier decisions. However, in the literature,
such effect is often ignored [26]. Network traffic is con-
sidered static, and the common machine learning evalua-
tion schemes are adopted without taking into its dynam-
ic characteristics.

5 CLASSIFIERS IMPLEMENTATION

To evaluate the energy consumption of our classifiers
and the proposed rejection scheme, we have implement-
ed the anomaly-based intrusion detection schemes in
both software (SW) and hardware (HW). The next sec-
tions describe the implementation of each platform.

To properly measure the energy consumption of our
SW algorithms, we developed an energy measurement
platform described in [18] and shown in Fig. 12. It allows
isolating the energy consumed by the measured applica-
tion from the consumption of other tasks running in the
CPU. The platform is composed of a hardware environ-
ment, a measurement application, and an instrumented
kernel (using a kernel-level probe module, or KPM). The
KPM detects when the monitored software is running
and triggers a signal in the motherboard’s parallel port;
while this signal is asserted, we know that the monitored
software is running. We used a DN2800MT Atom moth-
erboard with an N2800 CPU, 4 GB DDR3 RAM, and a
500 GB hard drive.

5.1 Software

The SW version of the proposed intrusion detection
scheme is implemented as a sequence of four modules:
Packet Capture, Feature Extractor, Classifier, and Rejec-
tion Logic. The output of each module is used as an input
by the next one.

The Packet Capture module acquires network packets
from the network interface and filters them. The network
packets are collected using the libpcap library [44]. In our
experiments, we capture all TCP, UDP and ICMP net-
work packets.

The filtered network packets are sent to the Feature
Extractor module, which extracts 54 features from the
packet headers (Table 5). Service-based and host-based
features are extracted using a hash table for performance

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TABLE 7
POWER CONSUMPTION OF THE PACKET CAPTURE AND

FILTER BLOCK

Implementation Power (mW)

Packet capture and filter in SW 617.2

Packet capture and filter in HW 226.3

Fig. 13. Block diagram of the HW implementation of the
combination classifier.

reasons. The network packet fields are used as keys for
the hash function, and the hash value is used as an index
into a table of cumulative feature values. This allows the
feature history calculation to be performed as a cyclic,
limited size list. The feature extractor implementation is
described in more detail in [18]. The feature values are
assembled into a feature vector and sent to the Classifier
module, which classifies the network packet as normal or
attack.

Finally, the Rejection Logic module computes the fea-
ture similarities for each decision and rejects them or not.
The class assigned to the packet is the class with most
occurrences among the accepted classifier outputs.

The proposed scheme was implemented in C++. To
acquire the network packets, libpcap version 1.3.0 was
used. The classifiers in the detection engine are a direct
implementation of the classifiers provided by the Weka
framework (Section 4.1).

5.1 Hardware

The hardware version of the proposed intrusion detec-
tion scheme was implemented as a system-on-a-chip
(SoC) in an FPGA (Field Programmable Gate Array)
device. The hardware that defines the system operation
is implemented inside the FPGA; the only external com-
ponent is an Ethernet PHY chip. The main processor is a
32-bit Altera Nios II soft-core CPU. The CPU uses both
custom and ready-made peripherals and an internal bus
to process the incoming data. The program and data
memories are implemented using on-chip memory –
dedicated memory blocks available in the FPGA. The
hardware was designed in VHDL and synthesized in
Quartus 13.0SP1 for an Altera Cyclone IV FPGA
(EP4CGX150N).

The network system is able to operate at gigabit
speed. The packets are received on the Ethernet PHY
chip and processed in the Ethernet MAC module. The
frames are stored in the on-chip memory via DMA.

The CPU firmware was coded in C and is responsible
for five main tasks: configuring the receive DMA, con-
figuring and managing the Ethernet MAC core, allocat-
ing packet descriptors in the on-chip memory, coordinat-
ing the bus data transfers between the modules, and
processing system interrupts.

When a network packet is received, an interrupt trig-
gers a routine that copies the packet header to the feature

extractor register bank. Next, the feature extractor mod-
ule processes the received header and extracts the 54
features (Table 5) used by the classifiers. Finally, the
classifiers analyze the feature values and label the incom-
ing frame as normal or attack (Fig. 13). The output of
each classifier is used as an input to a corresponding
rejection logic block. Each rejection block uses the class
value and the extracted feature values to determine
whether the classifier output should be rejected.

The rejection limits are implemented as constants in-
side the blocks. When five or more of the normalized
attribute values lie outside the allowed limits (Fig. 10,
Average Rejection Point thresholds), the output of the
rejection logic block is true, meaning that the class output
should be rejected. The reject output of the combination
classifier is true only when all the three individual reject
outputs are true.

6. EXPERIMENTAL RESULTS

We have measured the energy consumption and data
throughput of each module, including the Packet Cap-
ture, Feature Extraction, and Detection Engine modules
(the detection engine includes our proposed rejection
method). To evaluate the packet capture module, the
packets from our baseline scenario (Table 3) were sent
using the Tcpreplay tool [66] running on a remote com-
puter. To measure the power consumption of the soft-
ware implementation, we used our power measurement
platform (Fig. 12). To measure the consumption of the
hardware implementation running on the FPGA, we
used Altera’s Power Monitor tool. This tool measures the
FPGA consumption using onboard ADCs and sends the
results continuously to a PC via JTAG.

The energy consumed per operation (capture, extrac-
tion or classification of each packet) was calculated with
(2), where Prunning denotes the motherboard or FPGA
power consumption while the algorithm is running, and
Pidle denotes the motherboard or FPGA baseline power
consumption. We discount the baseline consumption
because our goal is to compare the two approaches. To
calculate the throughput, we used (3).

The processing time in HW is calculated from the
clock frequency (50 MHz for all circuits) and the number
of clock cycles required to complete an operation.

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐽

(𝑃 − 𝑃) ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 2

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 3

Table 7 shows the measured power consumption, in
SW and in HW, to capture and filter the packets from the
network interface. Although they are functionally identi-

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TABLE 8
ENERGY CONSUMPTION AND THROUGHPUT OF EACH MOD-

ULE

Algorithm
Energy (uJ/packet) Throughput (packets/s)

SW HW SW HW

Feature Extractor 1.873 1.078 363,875 534,815

Decision Tree 0.3809 0.0839 979,220 2,489,333

Naïve-Bayes 2.948 0.941 164,882 92,140

LDA 1.223 1.172 382,193 68,795

Combined classifier 4.271 1.540 111,641 66,452

TABLE 9
LOGIC RESOURCES UTILIZATION AND TIMING PERFORMANCE

OF THE HW CLASSIFIER IMPLEMENTATIONS

Classifier LEs
Memory

bits
Multipliers #cycles

Fmax

(MHz)

Decision

Tree
1,247 0 0 45 112.0

Naïve-Bayes 3,640 36,864 14 486 44.8

LDA 8,608 0 14 606 41.7

Combination 13,384 36,864 28 606 40.3

cal, the HW implementation uses only 36.7% of the pow-
er used by the SW version (226.3 mW vs 617.2 mW). This
difference in power consumption suggests that the HW
version of this module can provide significant energy
savings.

Table 8 shows the energy consumption and through-
put of each module, including the feature extractor, the
three single classifiers (DT, NB, and LDA), and the com-
bined classifier. As for the energy spent to process a
packet, all HW implementations require less energy than
their SW counterparts do. The HW versions use between
22% (DT classifier) and 96% (LDA classifier) of the ener-
gy used by their SW equivalents. As for the throughput,
only the DT classifier is faster in HW.

Table 9 shows the FPGA logic resources used by the
HW implementation of each module. The area (in logic
elements, or LEs) of the combination classifier (13,384
LEs) is approximately the same as the sum of the indi-
vidual classifiers (13,495 LEs). The only classifier that
requires dedicated memory blocks is LDA (36 kB). The
combination classifier requires as many clock cycles as
the slowest individual classifier (LDA, 606 cycles), and its
maximum operating frequency (40.3 MHz) is slightly
lower than that of the slowest classifier (LDA, 41.7 MHz).

7. RELATED WORKS

Over the past years, anomaly-based intrusion detection
using classifiers has been extensively studied due to its
ability to detect new attacks [45]. However, as noted in
[3] and [25], there is a lack of real-world applicability in
the works found in the literature. Although several stud-
ies present promising results and reasonably high detec-
tion rates [2], most do not deal with the practical aspects
of network-based intrusion detection, such as detection
throughput, traffic profile changes, and energy consump-
tion [25].

Because real-world network traffic is highly variable
and context-dependent [26], approaches modeling the
traffic behavior through statistical methods [33] [34] will
fail if they assume that the network traffic is static. Shira-
vi et al. [33] deal with changes in network behavior by
creating abstract distribution models for applications and
detailed descriptions of intrusions. In their approach,
each client has a specific profile that was statistically
modeled according to real network traces from several
services. However, this approach leads to a database
environment that is too specific and hard to maintain,
because the environment must be reanalyzed for each
model update.

Several authors have proposed the sanitization of real
network traces in order to provide intrusion databases as
realistic as possible [35] [36] [37] and to distribute them
publicly. However, as noted in [46], sensitive data can
still be extracted in spite of traffic sanitization processes.
To overcome these problems, the approach used in our
work obtains the data using well-known tools in a con-
trolled environment. We mimic the profile changes by
generating different scenarios with different traffic char-
acteristics.

To the best of our knowledge, our work is the first to
address the classifier reliability in the presence of traffic
profile changes.

To minimize the energy consumption and maximize

the system throughput, several authors use hardware-
based implementations. Das et al. [19] developed an
FPGA architecture composed of a feature extraction
module and a detection module, using the Principal
Component Analysis technique to detect port scan (prob-
ing) and syn flood (DoS) attacks. The throughputs
achieved for extraction and detection were 21 and 23
Gbps, respectively, using a Xilinx Virtex-II XC2V1000.
However, the authors used the outdated KDD’99 dataset
to validate their implementation.

A software and hardware comparison was performed
in [17]; the authors showed that the hardware version of
the decision tree algorithm consumed only 0.03% of the
energy used by its software counterpart. In our previous
work [18], energy savings were pursued at the feature
extraction module by considering the energy required to
extract the selected set of features. The subject of
maintaining the classification reliability in hardware
implementations was not considered in any work in the
literature.

8. CONCLUSION

The growing number of embedded systems connected to
the internet has increased the demand for security solu-
tions that are energy efficient and provide classification
reliability, detection accuracy, and throughput. Anoma-
ly-based intrusion detection using machine-learning
classifiers is an increasingly popular approach to detect
network attacks.

In order to evaluate the applicability of the proposed
solution, we conceived a testbed environment that mim-
ics real-world network characteristics. Using our test
scenarios, we presented a new rejection method that
addresses network profile changes over time by defining

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

an assigned class 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 level according to the
current feature values. By using our proposed approach,
we were able to reject a small number of known and
similar events (0.25% and 0.15% respectively) while still
improving the classification accuracy by 13.98% when
detecting new attacks.

To improve the classification accuracy and reduce the
rejection rate, we evaluated a combination of various
independent classifiers using a majority-voting scheme.
The combination approach improved the classification
accuracy by an average of 0.39% and 10.94% for similar
and new profiles respectively, when compared to the
single classifier approach. The combination approach
provided improved reliability while still rejecting fewer
instances.

Finally, we have evaluated a hardware implementa-
tion of the proposed solution that provides reliable intru-
sion detection and is more energy-efficient than the cor-
responding software version. Our hardware implementa-
tion (feature extractor plus combination classifier) con-
sumed only 42.6% of the energy required by the corre-
sponding software version (2.6 uJ vs. 6.1 uJ, respectively).

ACKNOWLEDGMENT

The authors would like to thank Intel Labs Univ. Re-
search Office and the Brazilian National Council for Sci-
entific and Technological Development (CNPq), grant
307346/2015-3, for the financial support.

REFERENCES

[1] OWASP, Internet of Things (IoT) Project.

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top

_Ten_Project, May 2018.

[2] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by

machine learning: A review,” Expert Syst. Appl., vol. 36, no. 10, pp.

11994–12000, 2009.

[3] R. Sommer and V. Paxson, “Outside the Closed World: On

Using Machine Learning for Network Intrusion Detection,”

2010 IEEE Symp. Secur. Priv., vol. 0, no. May, pp. 305–316.

[4] Jyothsna, V. V Rama Prasad, and K. Munivara Prasad, “A

Review of Anomaly based Intrusion Detection Systems,” Int. J.

Comput. Appl., vol. 28, no. 7, pp. 26–35, 2011

[5] A. S. Britto, R. Sabourin, and L. E. S. Oliveira, “Dynamic selec-

tion of classifiers—A comprehensive review,” Pattern Recog-

nit., vol. 47, no. 11, pp. 3665–3680, 2014.

[6] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Au-

tomatic recognition of handwritten numerical strings: A

Recognition and Verification strategy,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 24, no. 11, pp. 1438–1454, 2002.

[7] H.-Y. Lam and D.-Y. Yeung, “A Learning approach to spam

detection based on social networks,” 4th Conf. Email anti-

spam ({CEAS 2007}), pp. 81–89, 2007.

[8] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Im-

pacts of verification on a numeral string recognition system,”

Pattern Recognit. Lett., vol. 24, no. 7, pp. 1023–1031, 2003.

[9] R. Perdisci, O. Gu, e W. Lee, “Using an ensemble of one-class

SVM classifiers to harden payload-based anomaly detection sys-

tems”, Proc. IEEE Int. Conf. Data Mining, ICDM, p. 488–498,

2006.

[10] G. Giacinto, R. Perdisci, M. Del Rio, e F. Roli, “Intrusion detec-

tion in computer networks by a modular ensemble of one-class

classifiers”, Inf. Fusion, vol. 9, no 1, p. 69–82, 2008.

[11] A. Zainal, M. A. Maarof, e S. M. Shamsuddin, “Ensemble

Classifiers for Network Intrusion Detection System”, Comput.

Intell., vol. 4, no July, p. 217–225, 2009.

[12] D. Li, H. Zhou, e K. M. Lam, “High-resolution face verification using

pore-scale facial features”, IEEE Trans. Image Process., vol. 24, no 8,

p. 2317–2327, 2015.

[13] M. Baena-Garcia, J. Del Campo-Avila, R. Fidalgo, A. Bifet, R.

Gavalda, and R. Morales-Bueno, “Early Drift Detection Meth-

od,” 4th ECML PKDD Int. Work. Knowl. Discov. from Data

Streams, pp. 77–86, 2006.

[14] M. R. Kmieciak and J. Stefanowski, “Semi-supervised ap-

proach to handle sudden concept drift,” Control and Cybernet-

ics vol. 40, no. 3, 2011.

[15] V. González-Castro, R. Alaiz-Rodríguez, and E. Alegre, “Class

distribution estimation based on the Hellinger distance,” Inf.

Sci. (Ny)., vol. 218, pp. 146–164, 2013.

[16] M. Baena-Garcia, J. Del Campo-Avila, R. Fidalgo, A. Bifet, R.

Gavalda, and R. Morales-Bueno, “Early Drift Detection Meth-

od,” 4th ECML PKDD Int. Work. Knowl. Discov. from Data

Streams, pp. 77–86, 2006.

[17] A. L. França, R. P. Jasinski, P. R. Cemin, V.A. Pedroni and A.

O. Santin, “The Energy Cost of Network Security: a Hardware

vs. Software Comparison,” in Proc. IEEE ISCAS, 2015, pp 81-

84.

[18] E. Viegas, A. Santin, A. França, R. Jasinski, V. Pedroni, and L.

Oliveira, “Towards an Energy-Efficient Anomaly-Based Intru-

sion Detection Engine for Embedded Systems,” IEEE Transac-

tions on Computers, vol. 66, no. 1, pp. 1–14, 2017.

[19] Das, A.; Misra, S.; Joshi, S.; Zambreno, J.; Memik, G.;

Choudhary, A., "An Efficient FPGA Implementation of Princi-

ple ComponentAnalysis based Network Intrusion Detection

System," in DATE, pp.1160-1165, 2008.

[20] Embedded Intel solutions, “Intel’s Hybrid CPU-FPGA,”

www.embeddedintel.com/commentary.php?article=2143. Ac-

cessed: May/2018.

[21] T. T. T. Nguyen e G. Armitage, “A survey of techniques for

internet traffic classification using machine learning”, Com-

mun. Surv. Tutorials, IEEE, vol. 10, no 4, p. 56–76, 2008.

[22] G. Fumera and F. Roli, “Analysis of error-reject trade-off in

linearly combined multiple classifiers”, Pattern Recognit., vol.

37, no 6, p. 1245–1265, 2004.

[23] C.K. Chow, “On optimum error and reject tradeoff”, IEEE

Trans. Inform. Theory IT, 1970.

[24] G. Fumera, F. Roli, and G. Giacinto, “Reject option with multi-

ple thresholds,” Pattern Recognit., vol. 33, no. 12, pp. 2099–

2101, 2000.

[25] C. Gates and C. Taylor, “Challenging the Anomaly Detection

Paradigm: A Provocative Discussion,” Proc. 2006 Work. New

Secur. Paradig., pp. 21–29, 2007.

[26] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of

Poisson Modeling,” IEEE/ACM Trans. Netw., vol. 3, no. 3, pp.

226–244, 1995.

[27] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Ferná Ndez, and

E. V{ Zquez, “Anomaly-based network intrusion detection:

Techniques, systems and challenges,” Comput. Secur., vol. 28,

pp. 18–28, 2009.

[28] V. Jyothsna, V. V Rama Prasad, and K. Munivara Prasad, “A

Review of Anomaly based Intrusion Detection Systems,” Int. J.

Comput. Appl., vol. 28, no. 7, pp. 26–35, 2011.

[29] Symantec Lab. ISTR20: Internet Security Threat Report, [online]

available:

www.symantec.com/content/en/us/enterprise/other_resources/2134

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf.

Accessed May/2018.

[30] C. Komviriyavut, T.; Sangkatsanee, P.; Wattanapongsakorn, N.;

Charnsripinyo, “Network intrusion detection and classification with

Decision Tree and rule based approaches,” 9th Int. Symp. Commun.

Inf. Technol. pp. 1046–1050, 2009.

[31] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita, “Packet

and Flow Based Network Intrusion Dataset”, Contemporary Com-

puting, p. 322-334, 2012.

[32] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable

anomaly-based intrusion detection in real-world environments,”

Comput. Networks, pp. 200-216, vol. 127, 2017.

[33] A. Shiravi, H. Shiravi, M. Tavallaee, and A. a. Ghorbani, “Toward

developing a systematic approach to generate benchmark datasets

for intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374,

2012.

[34] J. McHugh, “Testing Intrusion detection systems: a critique of the

1998 and 1999 DARPA intrusion detection system evaluations as

performed by Lincoln Laboratory,” ACM Trans. Inf. Syst. Secur., vol.

3, no. 4, pp. 262–294, 2000.

[35] CAIDA. The cooperative association for internet data analysis

[online] available: http://www.caida.org/. Accessed May/2018.

[36] RTI International. PREDICT: Protected repository for the defense of

infrastructure against cyber threats [online] available:

http://www.predict.org. Accessed Nov./2015.

[37] Lawrence Berkeley Nationatiol Laboratory, The internet traffic

archive [online] available: http://ita.ee.lbl.gov/index.html. Accessed

Jun./2016.

[38] CISCO. Cisco Visual Networking Index: Forecast and Methodology,

2014-2019 White Paper [online] available:

http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/ip-ngn-ip-next-generation-network/white_paper_c11-

481360.pdf. Accessed May/2018.

[39] “Honeyd.” www.honeyd.org/.Accessed May/2018.

[40] S. Brugger and J. Chow, “An assessment of the DARPA IDS Evalua-

tion Dataset using Snort,” UCDAVIS Dep. Comput. Sci., pp. 1–19,

2007.

[41] E. Viegas, A. Santin, V. Abreu, and L. S. Oliveira, “Stream learning

and anomaly-based intrusion detection in the adversarial settings,”

in Proceedings - IEEE Symposium on Computers and Communica-

tions, pp. 1-6, 2017.

[42] U. M. Fayyad and K. B. Irani, “Multi-Interval Discretization of

Continuos-Valued Attributes for Classification Learning,” Proceed-

ings of the International Joint Conference on Uncertainty in AI. pp.

1022–1027, 1993.

[43] S. Mika, G. R¨atsch, J. Weston, B. Sch¨olkopf, and K.-R. Muller.

¨Fisher discriminant analysis with kernels. In Hu, Larsen, Wilson,

and Douglas, editors, Proceedings of the IEEE Workshop on Neural

Networks for Signal Processing IX, pages 41–48, 1999.

[44] “Libpcap” http://www.tcpdump.org/. Accessed Jun./2016.

[45] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible

evaluation of anomaly-based intrusion-detection methods,” IEEE

Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 40, no. 5, pp. 516–

524, 2010.

[46] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phono-

tactic Reconstruction of Encrypted VoIP Conversations: Hookt on

Fon-iks,” 2011 IEEE Symp. Secur. Priv., pp. 3–18, 2011.

[47] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based

network intrusion detection: A review,” Comput. Secur., vol. 30, no.

6–7, pp. 353–375, 2011.

[48] “Weka.” www.cs.waikato.ac.nz/ml/weka/. Accessed May/2018.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eduardo Viegas received the BS de-
gree in computer science from PUCPR
in 2013 and is currently working to-
ward the PhD degree at PUCPR. His
research interests include machine
learning and security.

 Altair Olivo Santin received the BS
degree in Computer Engineering
from the PUCPR in 1992, the MSc
degree from UTFPR in 1996, and the
PhD degree from UFSC in 2004. He is
a full professor of Computer
Engineering at PUCPR. He is a mem-
ber of the IEEE, ACM, and the Brazil-
ian Computer Society.

 André L. França received the BS
degree in Electrical Engineering from
Federal University of Parana (UFPR)
in 2013 and the MSc degree in Elec-
trical and Computer Engineering
from Federal Technological Universi-
ty of Parana (UTFPR) in 2015.

Ricardo P. Jasinski was born in Curiti-
ba, Brazil, in 1977. He received his B.S.,
M.S., and Ph.D. degrees in electrical
engineering from the Federal Technolog-
ical University of Parana in 2000, 2004,
and 2014.

Volnei A. Pedroni received his BSc in
Electrical Engineering from UFRGS, in
1975, and his MSc and PhD from Cal-
tech, in 1990 and 1995, respectively. He
has been since with the Electronics Engi-
neering Dept. of Federal Technological
University of Paran{ State (UTFPR), in
Brazil.

Luiz S. Oliveira received his B.S. degree
in Computer Science from UP, the M.Sc.
from UTFPR, and Ph.D. degree in
Computer Science from École de Tech-
nologie Supérieure, Université du Que-
bec in 1995, 1998 and 2003, respectively.
From 2004 to 2009 he was professor of
PUCPR. In 2009, he joined the UFPR,
where he is professor of the Department
of Informatics and head of the Graduate
Program in Computer Science.

