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Abstract—Embedded systems (electronic systems with a dedicated purpose that are part of larger devices) are increasing their 

relevance with the rise of the Internet of Things (IoT). Such systems are often resource constrained, battery powered, connected 

to the internet, and exposed to an increasing number of threats. An approach to detect such threats is through an anomaly-based 

intrusion detection with machine-learning techniques. However, most of these techniques were not created with energy efficiency 

in mind. This paper presents an anomaly-based method for network intrusion detection in embedded systems. The proposed 

method maintains the classifier reliability even when network traffic contents changes. The reliability is achieved through a new 

rejection mechanism and a combination of classifiers. The proposed approach is energy-efficient and well suited for hardware 

implementation. The experiments presented in this paper shows that the hardware versions of the machine learning algorithms 

consume 46% of the energy used by their software counterparts, and the feature extraction and packet capture modules 

consume 58% and 37% of their respective software counterparts. 

Keywords—Classifier design and evaluation; Feature evaluation and selection; Machine learning; Energy-aware systems; 

Network-level security and protection; System-on-a-Chip; Field-Programmable Gate Array 

1 INTRODUCTION

Most of the Internet of Things (IoT) and so-called "smart" 
devices are electronic devices containing embedded sys-
tems. Such systems are often battery-powered, resource 
constrained, and connected to the internet; therefore, 
they are exposed to an ever-increasing number of threats. 
According to OWASP [1], IoT devices are vulnerable to 
attacks and in general provide unsafe web interfaces and 
network services, raising security and privacy concerns. 

An approach to detect attacks at the network level is 
through anomaly-based intrusion detection [2]. In gen-
eral, this approach treats intrusion detection as a pattern 
recognition problem [3] that can be addressed with ma-
chine learning techniques. The use of machine learning 
makes it possible to detect variations of existing attacks 
and even new kinds of attack [3][25].  

Machine learning uses an inference algorithm (a clas-
sifier) that learns the attack behavior in a training phase. 
In this phase, each input event occurring in the network 
is labeled as normal or attack (e.g., an intrusion attempt). 
The events are seen by the classifier as a set of attributes 
composing a feature vector. A set of feature vectors com-
poses a dataset. The part of the dataset used to obtain the 
classifier model is called the training dataset. 

A classifier's accuracy is estimated using a test set, in a 
process commonly referred to as model testing. Model-
ing and testing a classifier aimed at network intrusion 
detection is challenging because the network traffic con-
tent in real-world network environments is highly varia-
ble; moreover, it is infeasible to represent all possible 
network profiles in a training dataset. 

An important requirement of an anomaly-based intru-
sion detector is its reliability. The higher the detection 
rate, the more accurate is the classifier.  However, when 
it is not possible to obtain a detection rate close to 100%, 
the second most important goal in classifier development 
is to guarantee that when it associates a class to an event, 
this classification is reliable. If a security system operator 
cannot trust the alerts generated by an intrusion detec-
tion engine due to a high number of false positives or 
negatives, future alerts might be disregarded even 
though most of them are correct. For this reason, it is 
often preferable to have a classifier that is reliable rather 
than one with a higher detection rate but also a high rate 
of false positives or negatives. 

Several approaches are proposed in the literature to 
improve a classifier's accuracy [4] [32]. A common solu-
tion is to combine the output of several classifiers, gener-
ally by voting techniques [5]. Although this approach 
usually improves the classifier accuracy, it may be inad-
equate for embedded systems, because the processing 
power and energy consumption increase with the num-
ber of used classifiers. 

Another approach is to provide a classification proba-
bility along with the classification result and reject the 
classifier output when this probability is low [8]. This is a 
common approach in other fields such as bank checking 
systems [6], spam detection [7], and facial recognition 
[12]. However, even though rejection techniques have 
shown promising results in other fields and classifier 
combinations have been used in other areas [9][10][11], 
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Fig. 1. Typical processing flow for an anomaly-based NIDS 

 

rejection techniques are still not common in intrusion 
detection. 

A rejection technique may significantly improve the 
classification reliability. When the network traffic content 
changes, the rejection rate could be increased to maintain 
the classification accuracy stable. Moreover, when the 
rejection increases, this may indicate that the detection 
models should be updated. However, if this update is 
not possible, the intrusion detection alerts will continue 
to be reliable. The events that are not classified are said 
to be rejected by the classifier. 

A common approach to detect changes in the network 
traffic is to analyze the history of extracted features val-
ues [13] in a fixed- or variable-length time window [14] 
[41]. A new network profile is detected when the features 
values are significantly different within this window 
[15]. A drawback of this approach is that it is computa-
tionally expensive, because it requires storing and ana-
lyzing a large number of events [16] to detect network 
changes. Therefore, this approach may be infeasible in 
resource-constrained devices. 

To reduce the energy consumption and increase the 
system throughput [17], network security algorithms can 
be implemented in hardware [18][19]. The algorithms are 
usually coded using a hardware description language 
(HDL) such as VHDL (Very High Speed Integrated Cir-
cuits HDL), and the circuits are implemented in hard-
ware using a System-on-a-Chip (SoC) or Field-
Programmable Gate Array (FPGA) [20]. Such approaches 
take advantage of the parallel processing capacity inher-
ent to a hardware implementation, allowing the use of 
several classifiers, often with lower energy consumption 
[17]. However, the implementation of security mecha-
nisms in hardware has several drawbacks. New attacks 
are discovered daily; to be usable in real-world environ-
ments, the classifiers must be able to cope with new at-
tack profiles and still provide a reliable classification. If 
the intrusion detect engine is implemented on an FPGA, 
unless partial reconfiguration is used, an update of the 
detection engine or classifier model may require repro-
gramming the entire chip [20].  

This paper presents a new method using rejection 
techniques to improve the classification reliability in an 
anomaly-based intrusion detection engine. We present 
and evaluate a hardware implementation that is suitable 
for resource-constrained embedded systems. In sum-
mary, our main contributions and novelties are: 

 A new rejection method suitable for embedded 
systems, providing classification reliability even 
when the network traffic behavior changes. 

 A new method to define detection rates for ma-
chine-learning-based intrusion detection algo-
rithms. The expected anomaly-based detection 
properties are used in combination (detection of 
known, similar and new attacks), allowing the ob-
tainment of the best parameter vector arrange-
ment for each situation. 

 A new, hardware-friendly implementation of a re-
liable anomaly-based intrusion detector using the 
proposed rejection technique. Our implementa-
tion acquires network packets directly from the 
network and performs reliable classification even 
in the presence of network traffic changes, using 
multiple classifiers. The hardware version has a 
significantly lower energy consumption than the 
equivalent software implementation, making it 
suitable for use in embedded systems. 

The remainder of this paper is organized as follows. 
Section 2 presents the background work and the main 
challenges associated with anomaly-based intrusion 
detection. Section 3 explains in detail the proposed 
anomaly-based detection method and the testbed envi-
ronment. Section 4 presents the evaluation of the pro-
posed rejection methods. Section 5 describes the software 
and hardware implementations. Section 6 presents the 
energy consumption measurements of the software and 
hardware implementations. Section 7 presents related 
works. Finally, Section 8 summarizes the conclusions and 
the main contributions of this work. 

2 BACKGROUND  

A Network-based Intrusion Detection System (NIDS) 
captures and classifies events (network packets, flows, or 
connections) in a network environment. A typical anom-
aly-based workflow for NIDS is shown in Fig.1. Initially, 
a Packet Capture module collects and filters the network 
traffic. Next, the filtered events (e.g., network packet 
headers or connection flow statuses) are sent to the Fea-
ture Extraction module, which selectively obtains a set of 
features (attributes relevant to the purpose of attack 
characterization) and assembles a feature vector. Finally, 
the Detection Engine assigns a class (normal or attack) to 
the event. 

Several techniques are used in the literature to assign 
a class to an event; pattern recognition is the most com-
mon approach [2]. This approach uses an inference algo-
rithm to build a model by learning the event classes from 
a training dataset - a file containing a set of previously 
labeled features vectors. After the classifier has been 
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trained, the event class can be predicted using the 
learned attack model. Events from different classes but 
with similar feature values can be wrongly classified by 
the classifier, resulting in false positive or negative detec-
tions (FPND). 

Usually, the model development process uses three 
distinct datasets: one for training, one for validating, and 
one for testing the model. The training dataset is used to 
obtain the attack model, whereas the validation dataset 
can be used to fine-tune the model parameters. Due to 
FPND, during the model obtainment process an accuracy 
rate is estimated, using the test dataset. If necessary, an 
iterative process involving the training, validating and 
testing datasets can be performed to improve the model 
accuracy rate. 

As reported in the literature, the combination of classi-
fiers can improve a system’s accuracy rate [5] [21]. Most 
classifier combination schemes use majority voting to 
assign a final class to an event. 

2.1 Anomaly-based Network Intrusion Detection 

An important feature of anomaly-based intrusion detec-
tion is its ability to detect new kinds of attack using the 
same model [3][25]. This is particularly important be-
cause network traffic and attack profiles are frequently 
changing, either by the adoption of new technologies 
(services) or by the emergence of new kinds of attacks. 
However, despite its extensive presence in the literature 
[2][27][28], anomaly-based intrusion detection is not 
commonly used in commercial products, mainly because 
it faces several challenges when compared with other 
approaches such as signature-based techniques [25][26].  

The constant changes in network traffic make it diffi-
cult to create representative datasets [25]. Training a 
machine learning algorithm requires a significant num-
ber of samples from each class – in this case, a large 
number of packets representing both normal and attack 
network traffic [26].  

Changes in network traffic may require periodic up-
dates of the intrusion detection model. Due to the lack of 
public intrusion databases reflecting such characteristics, 
many works found in the literature simply use network 
traffic that does not change over time [25]. Such works 
assume that the detection accuracy rate obtained during 
the model training, validating and testing will remain 
valid for a long period in real-world environments. 
However, in practice, when the traffic content changes, 
the model accuracy probably changes as well, and the 
classifier may become less effective.  

Unlike other areas in which misclassifications are ac-
ceptable, intrusion detection systems pay a high cost for 
FPND [25]. An intrusion attempt misclassified as a legit-
imate access may compromise an entire system. There-
fore, to be reliable, a NIDS must be able to deal with 
network traffic changes and still provide a reasonable 
detection rate. 

3 EVENT REJECTION METHOD 

The design of a security mechanism in hardware is not a 
trivial task. Besides the difficulties of adapting algo-

rithms that were initially developed with the flexibility 
of software in mind, model updates may be difficult due 
to the more static nature of a hardware implementation. 
The approach described in this paper uses a rejection 
technique and a combination of classifiers to provide a 
more reliable detection. This solution aims at being 
hardware-friendly, energy-efficient, and reliable over 
extended periods, even though it does not classify all the 
input events. 

3.1 Changes in Feature Values Distribution 

When a classifier is operating, its accuracy depends on 
the feature values distribution being similar to that of the 
training dataset (usually composed of real network traf-
fic). If the distribution changes significantly, the classifier 
model should be updated, or its accuracy may decrease. 
This update usually requires expert knowledge to label 
new events and to rebuild the model, which may not be 
practical in real-world environments. To test a classifier 
designed to operate in such environments, we need a 
method to assess whether it is still reliable even when the 
network traffic changes. Here we describe an evaluation 
scenario and propose an event rejection method that 
allows the classifier to operate reliably even when it can-
not be easily updated. 

To overcome the limitations of other works in the lit-
erature, we propose a rejection method that takes into 
account the frequent content changes observed in real-
world network traffic. We also propose the usage of sev-
eral independent classifiers using different machine-
learning algorithms. After each classification, we check 
whether there are enough similarities between the classi-
fier outputs class (normal or attack) and the class occur-
rence observed in the training dataset. If there is not a 
predominant match, the classification is deemed unrelia-
ble and the event should be rejected because the features 
used to build the model and the current event are not 
similar enough for a reliable classification. An event 
rejection means that none of the classifiers can reliably 
assign a class to an input event; in this case, the event is 
rejected rather than being potentially incorrectly classi-
fied. 

3.1.1 Scenario 

Fig. 2 shows a real-world scenario whose feature distri-
bution changes over time. It considers the feature set of 
SYNFlood attacks [29] as baseline in the attack model. If 
an HTTPFlood attack [29] occurs, it can still be detected 
because the feature distribution of the two attacks are 
similar. However, if the network traffic changes signifi-
cantly (as in an Exploit attack [29]), the classification 
output becomes unreliable due to the significant change 
in the feature set. In such cases, if the model cannot be 
updated, another technique should be used to provide a 
reliable classification. 

3.1.2 Rejection Engine 

One way to detect changes in the network traffic profile 
is to monitor the distribution of values in the extracted 
feature set (Fig. 2, Exploit Attack). A significant change 
in feature distribution may indicate that a new attack is 
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Fig 3. Features within the threshold range for a class (attack). 

 

Fig 2. Changes on features distribution, considering SYNFlood Attack as reference. 

occurring. However, it is not easy to detect profile simi-
larities from network events occurring in real time.  

As shown in [18][30][31][47], in a NIDS, approximate-
ly 50 features must be taken into account for anomaly-
based intrusion detection. If each feature is represented 
with 2 bytes [18], a single event will require 100 bytes for 
storage. Considering a feature distribution history of 100 
events, 10 KB are required in order to store the data for 
detecting changes in the distribution. The amount of 
memory storage, processing power and energy required 
to update the feature distributions and to detect changes 
could be impractical for embedded systems. To over-
come these issues, we defined two ranges for each attrib-
ute (one for each class) to determine whether a feature 
value is valid. When an extracted feature lies within the 
appropriate range, the feature is considered valid.  

To evaluate our method, we used three traffic scenar-
ios: a baseline scenario, a scenario with network traffic 
changes but similar to the baseline scenario, and a sce-
nario with new attacks (Fig. 2). The baseline scenario was 
used to obtain the rejection range thresholds and the 
attack models; the other scenarios were used to evaluate 
the rejection method. 

For each feature (fx, x=1,2,…,N) and class (normal or 
attack), two rejection limits or thresholds (tlower and tupper) 
were computed. The limits define the range within 
which a feature value is valid. The range is class-specific 
because the feature distribution for each class is different. 
The thresholds are defined with respect to an ∝ value 
(Fig. 3), which establishes a percentage of instances in the 
validation dataset that fall outside the defined thresh-
olds, but still provide the desired model reliability. To 
determine the value of  ∝, an experimental analysis must 
be performed (Section 4.2). 

For each feature fx,  𝑝𝑟𝑜𝑓𝑖𝑙𝑒              = 1 if the values 

for fx lie in the threshold interval (tinterval):  tlower < value 

(fx) < tupper; otherwise, 𝑝𝑟𝑜𝑓𝑖𝑙𝑒              = 0. For exam-

ple, 𝑝𝑟𝑜𝑓𝑖𝑙𝑒              = 1 for the attack profile (Fig. 3) 

and 𝑝𝑟𝑜𝑓𝑖𝑙𝑒              = 0 in Fig. 4 for both profiles.  

If N denotes the number of features in the feature set, 
the profile instance similarity (𝑝𝑟𝑜𝑓𝑖𝑙𝑒          ) is defined 

according to (1): 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒           
∑ 𝑝𝑟𝑜𝑓𝑖𝑙𝑒             

 

   

 
       

 
Fig 4. Feature outside the threshold range for both classes. 
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Fig. 6.Network traffic generation process. 

A classifier output should be rejected when it presents 
a low 𝑝𝑟𝑜𝑓𝑖𝑙𝑒           (e.g., 𝑝𝑟𝑜𝑓𝑖𝑙𝑒           < 0.7); other-

wise, the event is labeled with the class informed by the 
model (Fig. 5a and 5b). Using this approach, we are able 
to establish the profile similarity without the need to 
keep the feature values history to identify a change in 
feature distribution.   

The output of the combined classifier is assigned via a 
combination algorithm (Fig. 5), choosing the majority of 
the outputs of the individual classifiers whose outputs 
were not rejected. In the example of Fig. 5c, the output is 
rejected because no individual classifier output is valid, 
while in Fig. 5a and Fig. 5b the output is accepted be-
cause there is at least one classifier that can reliably clas-
sify the event. 

3.2 Changes in the Distribution of Feature Value 

Although there are some public datasets and proposed 
validation approaches in the literature 

[33][34][35][36][37], most lack desirable IDS properties 
such as reproducibility, update capacity, real and valid 
traffic content, correct class labeling, and fully-compliant 
attack implementations. Therefore, to validate the pro-
posed rejection method, it was necessary to develop a 
testbed environment to ensure it had the desired IDS 
properties (Fig. 6).  

Differently from most works in the literature 
[35][36][37], the traffic content in our scenarios was not 
recorded from real-world network traffic, thus avoiding 
privacy issues such as sensitive data exposure [26]. We 
used a controlled environment with automatic traffic 
generation mimicking a real-world environment. This is 
the same approach used in our previous work [18], but 
with a larger number of scenarios. The background traf-
fic (normal or legitimate events) is generated with work-
load tools (Fig. 6, Background Traffic), whereas the at-
tack traffic is generated with well-known, standard ex-
ploit tools (Fig. 6, Attacker Traffic). All requests are per-
formed to a honeypot server – a highly interactive virtual 
server that implements vulnerable servers on a network, 
normally used to study attacker behavior.  

The next sections briefly detail the method used to 
create the intrusion datasets, the conceived scenarios, 
and the dataset properties used in our work. 

3.2.1 Background Traffic Creation Method 

In an intrusion dataset, the background traffic must con-
tain the normal and expected network activities. In a 
real-world environment, the normal traffic content of a 
client is service-dependent (e.g., a client browsing a web-
site behaves differently from a client sending an e-mail). 

Our approach is to use virtual machines running real 
software applications performing real network requests 
and responses at pseudo-random intervals. The back-
ground traffic contains network packets generated by the 
clients and server. We use a honeypot tool as server for 
the client requests; the server receives the requests, in-
terprets them, and provides proper replies, generating 
the background traffic (Fig. 6, Background Traffic). In 
this way, we can provide real responses to the clients in a 
controlled environment.  

To generate the client-side traffic, we use a specific 
workload tool for each service. The generated traffic 
consists of requests that could be observed in a real-
world network; they are all valid, well-formed packets, 
including both request and response messages. The be-
havior of each virtual client was defined to request one 
type of service with pseudo-random contents. Each client 
requests its predefined service indefinitely, with different 
contents and different time intervals between the re-
quests. 

3.2.2 Attack Traffic Creation Method 

To create the attack traffic, we used the same method 
proposed in [18], using well-known and de facto standard 
tools to generate the attacks (Fig. 6, Attacker Traffic). In 
this way, we ensure that the attacks are correctly imple-
mented and reproducible.  

 

Fig 5. Final class assignement using majority vote as classifier 
combination  
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TABLE 1 
SERVICES USED FOR BACKGROUND TRAFFIC GENERATION 
Service Description 

HTTP 

1,000 most visited worldwide websites were down-

loaded (www.alexa.com/topsites) and hosted on the 

honeypot; each HTTP client requests a pseudoran-

dom website from such set of content. 

SMTP 
Each SMTP client sends a mail with a 50-400 bytes 

subject and 100-4.000 bytes in the body. 

SSH 

Each SSH client logs into the honeypot host and 

executes a random command from a list of 100 pos-

sible commands. 

SNMP 
Each SNMP client walks through a predefined MIB 

from a predefined list of possible MIBs. 

DNS 
Every name resolution is also made to the honeypot 

server. 

 

TABLE 2 
ATTACK AND TOOLS USED IN BENCHMARK SCENARIOS 

Scenario Attack Tool Description 

Baseline 
(model-
known 
attacks) 

UDPScan Nmap Searches for open UDP ports varying the attack frequency and duration. 

SYNScan Nmap 
Searches for open TCP ports by sending TCP packets with the SYN flag set while vary-
ing the attack frequency and duration. 

NULLScan Nmap 
Searches for open TCP ports by sending TCP packets without flags set while varying 
the attack frequency and duration. 

TCPConnect Nmap 
Searches for open TCP ports by completing the three-way handshake while varying the 
attack frequency and duration. 

FINScan Nmap 
Searches for open TCP ports by sending TCP packets with the FIN flag set while vary-
ing the attack frequency and duration. 

XMASScan Nmap 
Searches for open TCP ports by sending TCP packets with the FIN, PSH and URG flags 
set while varying the attack frequency and duration. 

ACKScan Nmap 
Searches for open TCP ports by sending TCP packets with the ACK flag set while vary-
ing the attack frequency and duration. 

Similar 
attacks 

OS Fingerprint Nmap 
Identifies the OS of the target (https://nmap.org/book/osdetect.html) while varying 
the attack frequency and duration. 

Service Fingerprint Nmap 
Identifies the target’s services and their versions (https://nmap.org/book/man-
version-detection.html) while varying the attack frequency and duration. 

New 
attacks 

Vulnerability Scan Nessus Identifies service level vulnerabilities while varying the attack frequency and duration. 

 

 

Fig 7. Client distribution for each service in the deployed 
scenarios. 

3.3 Background Traffic Creation Process 

The following services were represented in our testbed 
environment: HTTP (Hypertext Transfer Protocol), 
SNMP (Simple Network Management Protocol), SMTP 
(Simple Mail Transfer Protocol), NTP (Network Time 
Protocol), and SSH (Secure Shell). DNS (Domain Name 
System) requests were also generated as a consequence 
of using the listed protocols. These services were selected 
because they reflect the most used network services 
nowadays, as specified in [38]. 

To create the honeypot server (Fig. 6), we used the 
honeyd [39] tool. To implement the clients, we used a 
workload tool automated with custom scripts. All tools 
are available at secplab.ppgia.pucpr.br/eeids. 

To provide traffic variability, each client randomly 
varies the requested content according to the service 
description shown in Table 1. The time between requests 
varies between zero and four seconds. This method can 
approximately mimic the behavior of a user browsing a 
webpage and sending e-mails, for instance.  

To analyze the capability of the classifiers to detect 

the attacks, the simulation setup is composed of three 
distinct scenarios, with a duration of 30 minutes each. All 
the traffic is logged so that the scenario can be replayed 
later if needed. 

Each scenario consists of 100 interconnected clients 
that request one or more services to a single server. The 
number of attackers varies according to the scenario 
(Table 2), while the number of clients requesting each 
service is shown in the Venn diagram of Fig. 7. The 
honeypot server and the clients generating the normal 
background traffic use the Ubuntu 14.04 OS. The attacker 
machines run Kali Linux 1.0.0a. The honeypot server 
runs honeyd 1.5c. 
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TABLE 4 
ACCURACY FOR EACH SCENARIO USING THE OBTAINED 

CLASSIFIERS 
Classifier 
        

            Accuracy 

Scenario 

Baseline Similar New attack 

DT 99.97 % 98.62 % 64.66 % 

NB 99.75 % 99.23 % 57.38 % 

LDA 99.44 % 98.39 % 56.00 % 

Combination 99.75 % 99.14 % 70.29 % 

 

TABLE 5 
FEATURES GROUP 

Group No. of  

Attributes 

Description Example 

Header-

based 

30 Features extracted 

directly from the packet 

header 

SYN flag 

from TCP 

protocol 

Service-

based 

17 Features regarding the 

communication be-

tween two hosts on the 

network 

Bytes sent 

in the last 

two se-

conds 

Header-

based 

7 Features regarding the 

communication be-

tween two services on 

the network 

TCP con-

nection 

status 

 

TABLE 3 
GENERATED TRAFFIC FOR EACH SCENARIO 

Scenario Traffic (Packets) Database Size 

(Megabytes) Background Attack Total 

Baseline 28,618,365 36,628 28,654,993 8,476 

Similar 28,477,884 10,441 28,448,325 8,499 

New 28,391,914 17,753 28,409,667 8,512 

 

A single LAN network at 100 Mbps connects all hosts. 

The network speed allowed us to capture the generated 
traffic on a single host without dropping any packets 
[40]. Both normal requests and attacks are generated 
targeting the honeypot server (Fig. 6). The generated 
traffic is logged on the honeypot server itself.   

 

3.4 Rejection Method Evaluation 

To mimic a real-world environment, we considered three 
distinct scenarios (Fig. 2) representing a traffic profile 
that changes over time: (i) a known attack profile (base-
line dataset), (ii) a similar attack profile (similar dataset), 
and (iii) a new attack profile (new dataset). 

The baseline dataset is composed of normal back-
ground traffic and a known set of attacks (Table 2). This 
dataset is used to train the model and to establish the 
reference accuracy rate for the classifiers. 

After the attack model has been obtained, we use the 
other scenarios to evaluate the classifier’s ability to detect 
similar and different attacks that were not considered in 
the model training phase. Only the attack traffic changes 
across the scenarios; the normal traffic remains the same.   

The baseline scenario contains probing attacks, a kind 
of attack in which an opponent gathers information 
about a host in the network (such as open ports, service 
versions, and operating system fingerprints). In this 
baseline scenario, the attacks occur mainly at the net-
work protocol level. 

The second attack scenario also consists of probing at-
tacks; however, they aim at gathering application-level 
information. This kind of attack has a lower traffic con-
tent variation compared with the baseline dataset.  

Finally, the third attack scenario represents the occur-
rence of a new kind of attack, using exploit attacks. This 
dataset represents real-world environments where new 
attacks (not previously learned by the model) are discov-
ered over time. Table 2 presents the tools used to gener-
ate the attacks. 

To generate the databases, each scenario was de-
ployed for 30 minutes. The number of clients requesting 
each kind of service is depicted in Fig. 7. The behavior of 
each client is described in Table 1 and the attack profiles 
are shown in Table 2. The traffic amount for each scenar-
io is shown in Table 3. 

4 EVENT REJECTION EVALUATION 

The datasets described in section 3.4 and the evaluation 
method presented in Fig. 2 were used to evaluate the 
proposed rejection method. Three energy-efficient classi-
fiers [17] were used during the evaluation: Decision Tree 
(DT), Naïve Bayes (NB), and Linear Discriminant Analy-
sis (LDA). The following sections describe how the classi-
fier models were built and how the proposed rejection 
method was evaluated. 

 4.1 Model Obtainment Process 

In our experiments, we have used two distinct detection 

approaches. First, a single classifier using the DT, NB or 
LDA algorithm; second, a combination of the three classi-
fiers using majority voting, as explained in section 3.1.2 
(Fig. 4). 

The naturally occurring amounts of packets corre-
sponding to normal and attack events are distinct, be-
cause most of the logged events are normal. However, 
during the dataset generation, we have selected the same 
number of events from each class. This allowed us to 
compute the classifier accuracy without the need for 
verification of false-positives and false-negatives during 
the model generation.  

Our stratification process consisted of randomly se-
lecting 25% of the events from the least frequent class, 
and then selecting the same number of events from the 
other class. The datasets were obtained using a stratifica-
tion process with 25% for training, 25% for validation, 
and the remaining events (50%) for testing. The test da-
taset is composed of events that were not used to obtain 
any classifier model.  

To obtain the classifier models, we used the Weka [48] 
framework version 3.7.12. For the NB classifier, all the 
numerical attributes were discretized according to the 
method proposed in [42]. The C4.5 decision tree algo-
rithm was used with a confidence factor of 0.25. The 
Fisher’s method [43] was used for the LDA classifier. 

After the models were obtained using the baseline da-
taset, they were tested in the three available scenarios. 
Each classifier had its average accuracy measured, as 
defined by the average of true-positive and true-negative 
rates. Table 4 presents the resulting accuracy in each 
scenario, for each single classifier in the combination 
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TABLE 6 
ACCURACY-REJECTION TRADEOFF FOR EACH DATASET USING THE POINTS MARKED IN FIG. 10 (SCENARIO). 

Rejection 

Rate 

Classifier 

(Normal Alpha, Attack 

Alpha) 

Dataset/Scenario 

Known attack Similar attack New attack 

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%) 

No  

Rejection 

DT (n.a., n.a.) 99.97 - 98.62 - 64.66 - 

NB (n.a., n.a.) 99.75 - 99.23 - 57.38 - 

LDA (n.a., n.a.) 99.44 - 98.39 - 56.00 - 

Combination (n.a., n.a.) 99.75 - 99.14 - 70.29 - 

Low 

Rejection 

DT (0.55, 0.18) 99.97 0.21 98.70 1.05 67.37 4.82 

NB (0.62, 0.27) 99.75 0.14 99.23 0.25 59.66 4.07 

LDA (0.64, 0.29) 99.44 0.14 98.48 0.31 58.15 3.98 

Combination (0.53, 0.16) 99.75 0.01 99.14 0.00 72.66 3.31 

Average  

Rejection 

DT (0.83, 0.37) 99.98 5.40 98.80 5.77 74.90 24.14 

NB (0.88, 0.51) 99.75 5.41 99.21 5.88 67.94 23.50 

LDA (0.88, 0.51) 99.65 5.71 99.65 6.00 66.37 24.99 

Combination (0.81, 0.25) 99.76 0.25 99.14 0.15 84.27 23.16 

High  

Rejection 

DT (0.90, 0.51) 99.99 37.27 99.87 25.79 99.92 59.57 

NB (0.90, 0.51) 99.96 37.34 99.92 25.42 99.92 59.61 

LDA (0.90, 0.51) 100.00 37.38 99.87 25.57 99.86 59.62 

Combination (0.90, 0.51) 99.95 37.27 99.92 25.38 99.86 59.52 

 

 

Fig 8. Accuracy-rejection tradeoff for the combination technique while detecting new attacks. 

scheme and also for the combined classifier, using the 
testing dataset and without the proposed rejection 
scheme. 

All classifiers presented a reasonably good perfor-
mance when used in the baseline testing dataset. The 
best accuracy rate, 99.97% was obtained with the DT 
classifier. The worst classifier accuracy rate, 99.44%, was 
achieved by LDA, although it was only 0.53% lower than 
DT. When evaluated with the similar scenario, the classi-
fiers were able to detect events with an average accuracy 

drop of 0.88% compared to the baseline scenario. For 
new attacks, however, the accuracy decreased on average 
by 37.64%. The best accuracy rate when detecting new 
attacks was obtained with the combination/voting classi-
fier, with an accuracy of 70.29% (Table 4). None of the 
used classifiers or methods were able to maintain their 
baseline accuracy when detecting similar or new attacks. 
If such classifiers were used in a real-world environment, 
their accuracy would likely drop over time due to chang-
es in the traffic or attack profiles.   

4.2 Evaluation of the Proposed Rejection Method 

Our proposed rejection method aims at maintaining the 
classifier reliability over time even in the absence of 
model updates. To achieve this goal, our class assign-
ment (Fig. 4) must reject potentially wrong classifica-
tions. Therefore, the evaluation tests aim at checking the 
detection accuracy, while still rejecting as few events as 
possible. 

Due to the number of used features (54 features, Table 
5), evaluating all possible values of ∝ for each feature 
and profile similarity (section 3.1.2, Fig. 3) was infeasible. 
Therefore, we have performed two tests for each final 
class assignment (Fig. 4). The first test, named Different 
Alpha, used different ∝ values (Fig. 3) for each feature 
group (header-based, service-based, and host-based, 
Table 5), whereas the second test (named Same Alpha) 
used the same ∝ for all features. The profile similarity 
varied from 0% to 100% in 1% increments. The rejection 
rate is the ratio between the number of rejected instances 
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Fig. 9. Tradeoff between the accuracy improvement for new 
attacks and the rejection of known and similiar attacks. 

 

Fig. 10. Tradeoff between Accuracy and rejection rate, for each 
classifier in new attacks dataset. 

and the total number of instances in the test set. The 
accuracy rate vs rejection rate tradeoff using the com-
bined classifiers for the detection of new attacks is shown 
in Fig. 8. 

It is possible to note that in most cases there is a direct 
relation between accuracy and rejection, regardless of the 
∝ technique (Fig. 8, Different Alpha and Same Alpha). 
One may notice that different distributions of feature 
values allowed improving the accuracy rate while reject-
ing fewer instances. The classifier combination scheme 
was able to reach an accuracy rate of 100% while reject-
ing 59.52% of instances in the new attack dataset. 

All evaluated classifiers were able to reach an accura-
cy of 100% at the cost of a 60% rejection rate for the new 
attack dataset (attacks not previously known to the mod-
el). The combination classifier provided the best accuracy 
with a minimum rejection rate considering all scenarios, 
outperforming the best single classifier (DT) by about 5% 
in the low rejection rate setting, and by about 10% in the 
average rejection setting (Table 6).  

In the real world, it is not possible to choose a differ-
ent set of thresholds for each event, because the classifier 
is unable to determine whether an event is a known at-
tack, a similar attack, or a new one. Therefore, the choice 
of a set of thresholds must be made taking into account 
the tradeoff between accuracy and rejection rate. Fig. 9 
shows the accuracy-reject tradeoff between the accuracy 
in detecting new attacks and the rejection rate for known 
and similar attacks, using the same set of thresholds 
during the detection. The graph shows that it is possible 
to maintain the accuracy for the detection of new attacks, 
but at the cost of an increased rejection rate for known 
and similar attacks. For instance, it is possible to main-
tain the accuracy rate at 95% in a scenario with new at-
tacks, at the cost of rejecting 31% in average of the events 
in the other two scenarios (known and similar attacks).  

The set of thresholds should be established according 
to the user goals. If certain lenience for accuracy is ac-
ceptable, fewer events will be rejected, but the class as-
signment will be more susceptible to errors. Table 6 
shows the accuracy-reject relationship for each dataset, 

for the rejection settings highlighted in Fig. 10, using the 
same set of thresholds. Four rejection rate settings (no 
rejection, low rejection, average rejection, and high rejec-
tion) were selected for the new attacks dataset. The same 

set of thresholds were used in the other scenarios to in-
vestigate the rejection rate impact for the known and 
similar attack datasets. The obtained results are shown in 
Table 6.  

The Average Rejection setting presented the best accu-
racy-reject tradeoff. The rejection method was able to 
improve the classification accuracy by 13.98% for new 
attacks while rejecting only 0.25% known attacks and 
0.15% similar attacks, using the combination classifier 
(Average Rejection, Table 6). The combination classifier 
produced, in average, the best results when compared to 
the single classifiers at the same rejection rate interval. In 
summary, the proposed rejection method allowed the 
detection of new attacks while maintaining the classifi-
er’s overall reliability. 

4.3 Comparison with other Rejection Approaches 

Finally, two commonly used rejection approaches that 
rely on class probabilities, the Chow’s rule [23] and the 
Class-related Reject Threshold (CRT) [24], were com-
pared to our proposed method. Chow’s rule defines a 
single rejection threshold for all classes, whereas CRT 
uses a different threshold for each class. For evaluation 
purposes, the combination classifier was used because it 
presented the best results (Table 6). The three approaches 
– CRT, Chow and the proposed approach – were evalu-
ated using the New Attacks dataset. We used rejection 
rates from 0% to 100%. Fig. 11 shows the accuracy-reject 
tradeoff comparison for the evaluated approaches. 

The proposed approach outperformed both existing 
techniques, CRT and Chow’s rule. The traditional rejec-
tion approaches were not able to identify behavior 
changes and increased the classification confusion; the 
assigned class probabilities were high even for misclassi-
fied instances. In contrast, our approach was able to op-
erate with fewer misclassifications in the presence of 
traffic behavior changes, reaching 100% accuracy while 
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Fig. 12. Power measurement platform with application under 
test. 

 

Fig. 11. Accuracy-rejection tradeoff, for the combination 
classifier in the new attacks dataset, using the evaluated 
rejection techniques. 

rejecting 60% of the events. 

4.4 Discussion of the Proposed Rejection Method 

The conceived scenarios reproduce three common situa-
tions in real-world intrusion detection systems. The 
Known scenario represents the environment behavior 
when the system was conceived, including all possible 
behavior variations that were known a priori. The Simi-
lar scenario represents the occurrence of attacks similar 
to those already known by the classifier. Finally, the New 
scenario represents the environment after an extended 
period of time, when new attacks (which were not pub-
licly known when the model was trained) are created. 

We presented an evaluation method that takes into 
account such situations. All tested detection schemes 
were able to detect known and similar behaviors with a 
reasonably high detection rate (an average accuracy of 
99.72% for known behaviors and 98.84% for similar be-
haviors). However, when the system faces previously 
unseen attacks, its accuracy drops significantly (to an 
average of 62.08%). To ensure the classification reliabil-
ity, we proposed the use of simple lower and upper 
thresholds, obtained from the feature distributions ob-
served during the model training phase.  

Due to the large number of used features, we have an-
alyzed the contribution of distinct features according to 
their feature group. Our proposed embedded-friendly 
rejection method was able to guarantee the system relia-
bility with a low accuracy-reject tradeoff, improving the 
accuracy in 13.98% for new attacks while rejecting only 
0.25% of known behaviors using a classifier combination 
scheme. 

Our experiments revealed other factors that should be 
taken into account by the anomaly-based intrusion detec-
tion community. A machine-learning classifier works by 
identifying similar behaviors and must have representa-
tive instances from all of the considered classes [25]. The 
assumption that a classifier will be able to detect new 
attacks only holds when their behavior is similar to the 
one used during the classifier training.  

A machine learning detection system becomes unreli-

able when the traffic behavior changes. In our work, we 
have dealt with such issue by rejecting potentially non-
reliable classifier decisions. However, in the literature, 
such effect is often ignored [26]. Network traffic is con-
sidered static, and the common machine learning evalua-
tion schemes are adopted without taking into its dynam-
ic characteristics.  

5 CLASSIFIERS IMPLEMENTATION  

To evaluate the energy consumption of our classifiers 
and the proposed rejection scheme, we have implement-
ed the anomaly-based intrusion detection schemes in 
both software (SW) and hardware (HW). The next sec-
tions describe the implementation of each platform. 

To properly measure the energy consumption of our 
SW algorithms, we developed an energy measurement 
platform described in [18] and shown in Fig. 12. It allows 
isolating the energy consumed by the measured applica-
tion from the consumption of other tasks running in the 
CPU. The platform is composed of a hardware environ-
ment, a measurement application, and an instrumented 
kernel (using a kernel-level probe module, or KPM). The 
KPM detects when the monitored software is running 
and triggers a signal in the motherboard’s parallel port; 
while this signal is asserted, we know that the monitored 
software is running. We used a DN2800MT Atom moth-
erboard with an N2800 CPU, 4 GB DDR3 RAM, and a 
500 GB hard drive. 

5.1 Software 

The SW version of the proposed intrusion detection 
scheme is implemented as a sequence of four modules: 
Packet Capture, Feature Extractor, Classifier, and Rejec-
tion Logic. The output of each module is used as an input 
by the next one.  

The Packet Capture module acquires network packets 
from the network interface and filters them. The network 
packets are collected using the libpcap library [44]. In our 
experiments, we capture all TCP, UDP and ICMP net-
work packets. 

The filtered network packets are sent to the Feature 
Extractor module, which extracts 54 features from the 
packet headers (Table 5). Service-based and host-based 
features are extracted using a hash table for performance 
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TABLE 7 
POWER CONSUMPTION OF THE PACKET CAPTURE AND 

FILTER BLOCK 

Implementation Power (mW) 

Packet capture and filter in SW 617.2 

Packet capture and filter in HW 226.3 

 

 

Fig. 13. Block diagram of the HW implementation of the 
combination classifier. 

reasons. The network packet fields are used as keys for 
the hash function, and the hash value is used as an index 
into a table of cumulative feature values. This allows the 
feature history calculation to be performed as a cyclic, 
limited size list. The feature extractor implementation is 
described in more detail in [18]. The feature values are 
assembled into a feature vector and sent to the Classifier 
module, which classifies the network packet as normal or 
attack.  

Finally, the Rejection Logic module computes the fea-
ture similarities for each decision and rejects them or not. 
The class assigned to the packet is the class with most 
occurrences among the accepted classifier outputs.  

The proposed scheme was implemented in C++. To 
acquire the network packets, libpcap version 1.3.0 was 
used. The classifiers in the detection engine are a direct 
implementation of the classifiers provided by the Weka 
framework (Section 4.1). 

5.1 Hardware 

The hardware version of the proposed intrusion detec-
tion scheme was implemented as a system-on-a-chip 
(SoC) in an FPGA (Field Programmable Gate Array) 
device. The hardware that defines the system operation 
is implemented inside the FPGA; the only external com-
ponent is an Ethernet PHY chip. The main processor is a 
32-bit Altera Nios II soft-core CPU. The CPU uses both 
custom and ready-made peripherals and an internal bus 
to process the incoming data. The program and data 
memories are implemented using on-chip memory – 
dedicated memory blocks available in the FPGA. The 
hardware was designed in VHDL and synthesized in 
Quartus 13.0SP1 for an Altera Cyclone IV FPGA 
(EP4CGX150N).  

The network system is able to operate at gigabit 
speed. The packets are received on the Ethernet PHY 
chip and processed in the Ethernet MAC module. The 
frames are stored in the on-chip memory via DMA. 

The CPU firmware was coded in C and is responsible 
for five main tasks: configuring the receive DMA, con-
figuring and managing the Ethernet MAC core, allocat-
ing packet descriptors in the on-chip memory, coordinat-
ing the bus data transfers between the modules, and 
processing system interrupts. 

When a network packet is received, an interrupt trig-
gers a routine that copies the packet header to the feature 

extractor register bank. Next, the feature extractor mod-
ule processes the received header and extracts the 54 
features (Table 5) used by the classifiers. Finally, the 
classifiers analyze the feature values and label the incom-
ing frame as normal or attack (Fig. 13). The output of 
each classifier is used as an input to a corresponding 
rejection logic block. Each rejection block uses the class 
value and the extracted feature values to determine 
whether the classifier output should be rejected.  

The rejection limits are implemented as constants in-
side the blocks. When five or more of the normalized 
attribute values lie outside the allowed limits (Fig. 10, 
Average Rejection Point thresholds), the output of the 
rejection logic block is true, meaning that the class output 
should be rejected. The reject output of the combination 
classifier is true only when all the three individual reject 
outputs are true. 

6. EXPERIMENTAL RESULTS 

We have measured the energy consumption and data 
throughput of each module, including the Packet Cap-
ture, Feature Extraction, and Detection Engine modules 
(the detection engine includes our proposed rejection 
method). To evaluate the packet capture module, the 
packets from our baseline scenario (Table 3) were sent 
using the Tcpreplay tool [66] running on a remote com-
puter. To measure the power consumption of the soft-
ware implementation, we used our power measurement 
platform (Fig. 12). To measure the consumption of the 
hardware implementation running on the FPGA, we 
used Altera’s Power Monitor tool. This tool measures the 
FPGA consumption using onboard ADCs and sends the 
results continuously to a PC via JTAG. 

The energy consumed per operation (capture, extrac-
tion or classification of each packet) was calculated with 
(2), where Prunning denotes the motherboard or FPGA 
power consumption while the algorithm is running, and 
Pidle denotes the motherboard or FPGA baseline power 
consumption. We discount the baseline consumption 
because our goal is to compare the two approaches. To 
calculate the throughput, we used (3).  

The processing time in HW is calculated from the 
clock frequency (50 MHz for all circuits) and the number 
of clock cycles required to complete an operation. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝐽 

  
(𝑃       − 𝑃    ) ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
    2  

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡  𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
                 3  

Table 7 shows the measured power consumption, in 
SW and in HW, to capture and filter the packets from the 
network interface. Although they are functionally identi-
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TABLE 8 
ENERGY CONSUMPTION AND THROUGHPUT OF EACH MOD-

ULE 

Algorithm 
Energy (uJ/packet) Throughput (packets/s) 

SW HW SW HW 

Feature Extractor 1.873 1.078 363,875 534,815 

Decision Tree 0.3809 0.0839 979,220 2,489,333 

Naïve-Bayes 2.948 0.941 164,882 92,140 

LDA 1.223 1.172 382,193 68,795 

Combined classifier 4.271 1.540 111,641 66,452 

 

TABLE 9 
LOGIC RESOURCES UTILIZATION AND TIMING PERFORMANCE 

OF THE HW CLASSIFIER IMPLEMENTATIONS  

Classifier LEs 
Memory 

bits 
Multipliers #cycles 

Fmax 

(MHz) 

Decision 

Tree 
1,247  0 0 45 112.0 

Naïve-Bayes 3,640  36,864  14 486 44.8 

LDA 8,608  0 14 606 41.7 

Combination 13,384  36,864  28 606 40.3 

 

cal, the HW implementation uses only 36.7% of the pow-
er used by the SW version (226.3 mW vs 617.2 mW). This 
difference in power consumption suggests that the HW 
version of this module can provide significant energy 
savings. 

Table 8 shows the energy consumption and through-
put of each module, including the feature extractor, the 
three single classifiers (DT, NB, and LDA), and the com-
bined classifier. As for the energy spent to process a 
packet, all HW implementations require less energy than 
their SW counterparts do. The HW versions use between 
22% (DT classifier) and 96% (LDA classifier) of the ener-
gy used by their SW equivalents. As for the throughput, 
only the DT classifier is faster in HW. 

Table 9 shows the FPGA logic resources used by the 
HW implementation of each module. The area (in logic 
elements, or LEs) of the combination classifier (13,384 
LEs) is approximately the same as the sum of the indi-
vidual classifiers (13,495 LEs). The only classifier that 
requires dedicated memory blocks is LDA (36 kB). The 
combination classifier requires as many clock cycles as 
the slowest individual classifier (LDA, 606 cycles), and its 
maximum operating frequency (40.3 MHz) is slightly 
lower than that of the slowest classifier (LDA, 41.7 MHz). 

7. RELATED WORKS 

Over the past years, anomaly-based intrusion detection 
using classifiers has been extensively studied due to its 
ability to detect new attacks [45]. However, as noted in 
[3] and [25], there is a lack of real-world applicability in 
the works found in the literature. Although several stud-
ies present promising results and reasonably high detec-
tion rates [2], most do not deal with the practical aspects 
of network-based intrusion detection, such as detection 
throughput, traffic profile changes, and energy consump-
tion [25]. 

Because real-world network traffic is highly variable 
and context-dependent [26], approaches modeling the 
traffic behavior through statistical methods [33] [34] will 
fail if they assume that the network traffic is static. Shira-
vi et al. [33] deal with changes in network behavior by 
creating abstract distribution models for applications and 
detailed descriptions of intrusions. In their approach, 
each client has a specific profile that was statistically 
modeled according to real network traces from several 
services. However, this approach leads to a database 
environment that is too specific and hard to maintain, 
because the environment must be reanalyzed for each 
model update.  

Several authors have proposed the sanitization of real 
network traces in order to provide intrusion databases as 
realistic as possible [35] [36] [37] and to distribute them 
publicly. However, as noted in [46], sensitive data can 
still be extracted in spite of traffic sanitization processes. 
To overcome these problems, the approach used in our 
work obtains the data using well-known tools in a con-
trolled environment. We mimic the profile changes by 
generating different scenarios with different traffic char-
acteristics.  

To the best of our knowledge, our work is the first to 
address the classifier reliability in the presence of traffic 
profile changes. 

To minimize the energy consumption and maximize 

the system throughput, several authors use hardware-
based implementations. Das et al. [19] developed an 
FPGA architecture composed of a feature extraction 
module and a detection module, using the Principal 
Component Analysis technique to detect port scan (prob-
ing) and syn flood (DoS) attacks. The throughputs 
achieved for extraction and detection were 21 and 23 
Gbps, respectively, using a Xilinx Virtex-II XC2V1000. 
However, the authors used the outdated KDD’99 dataset 
to validate their implementation.  

A software and hardware comparison was performed 
in [17]; the authors showed that the hardware version of 
the decision tree algorithm consumed only 0.03% of the 
energy used by its software counterpart. In our previous 
work [18], energy savings were pursued at the feature 
extraction module  by considering the energy required to 
extract the selected set of features. The subject of 
maintaining the classification reliability in hardware 
implementations was not considered in any work in the 
literature. 

8. CONCLUSION 

The growing number of embedded systems connected to 
the internet has increased the demand for security solu-
tions that are energy efficient and provide classification 
reliability, detection accuracy, and throughput. Anoma-
ly-based intrusion detection using machine-learning 
classifiers is an increasingly popular approach to detect 
network attacks. 

In order to evaluate the applicability of the proposed 
solution, we conceived a testbed environment that mim-
ics real-world network characteristics. Using our test 
scenarios, we presented a new rejection method that 
addresses network profile changes over time by defining 
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an assigned class 𝑝𝑟𝑜𝑓𝑖𝑙𝑒           level according to the 
current feature values. By using our proposed approach, 
we were able to reject a small number of known and 
similar events (0.25% and 0.15% respectively) while still 
improving the classification accuracy by 13.98% when 
detecting new attacks.  

To improve the classification accuracy and reduce the 
rejection rate, we evaluated a combination of various 
independent classifiers using a majority-voting scheme. 
The combination approach improved the classification 
accuracy by an average of 0.39% and 10.94% for similar 
and new profiles respectively, when compared to the 
single classifier approach. The combination approach 
provided improved reliability while still rejecting fewer 
instances. 

Finally, we have evaluated a hardware implementa-
tion of the proposed solution that provides reliable intru-
sion detection and is more energy-efficient than the cor-
responding software version. Our hardware implementa-
tion (feature extractor plus combination classifier) con-
sumed only 42.6% of the energy required by the corre-
sponding software version (2.6 uJ vs. 6.1 uJ, respectively). 
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