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a b s t r a c t 

A popular approach for detecting network intrusion attempts is to monitor the network traffic for anoma- 

lies. Extensive research effort has been invested in anomaly-based network intrusion detection using ma- 

chine learning techniques; however, in general these techniques remain a research topic, rarely being 

used in real-world environments. In general, the approaches proposed in the literature lack represen- 

tative datasets and reliable evaluation methods that consider real-world network properties during the 

system evaluation. In general, the approaches adopt a set of assumptions about the training data, as well 

as about the validation methods, rendering the created system unreliable for open-world usage. This pa- 

per presents a new method for creating intrusion databases. The objective is that the databases should 

be easy to update and reproduce with real and valid traffic, representative, and publicly available. Using 

our proposed method, we propose a new evaluation scheme specific to the machine learning intrusion 

detection field. Sixteen intrusion databases were created, and each of the assumptions frequently adopted 

in studies in the intrusion detection literature regarding network traffic behavior was validated. To make 

machine learning detection schemes feasible, we propose a new multi-objective feature selection method 

that considers real-world network properties. The results show that most of the assumptions frequently 

applied in studies in the literature do not hold when using a machine learning detection scheme for 

network-based intrusion detection. However, the proposed multi-objective feature selection method al- 

lows the system accuracy to be improved by considering real-world network properties during the model 

creation process. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Machine learning techniques for performing anomaly-based

network intrusion detection have been extensively studied over

the years. Despite the extensive and promising results reported

in the literature [1] , pattern recognition in intrusion detection re-

mains mostly a research topic, rarely being deployed in real-world

(production) environments [2] . 

Typically, the main reason for using machine learning is the

assumption that it can detect new attacks. This is achieved by

specifying only the expected (normal, background traffic) while

considering the remaining activity as an intrusion attempt. How-

ever, when using a machine learning technique, during the system

training examples from all classes are normally required. In

other words, an anomaly-based system using a machine learning
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echnique must have a significant number of examples from all

he considered classes, and thus requires representative training

xamples [3] . 

The lack of public and updated training datasets, as well as

f specific evaluation methods that take the intrusion detection

roperties into account, makes it difficult to adopt anomaly-based

ntrusion detection in production environments. A typical machine

earning evaluation scheme relies on a test dataset. It assumes

hat the classifier’s accuracy rate obtained in the test dataset is the

ame as the accuracy rate obtained during its usage in production

nvironments. 

Unlike other fields, where machine learning is extensively used,

he field of intrusion detection involves significantly different char-

cteristics. Because of the highly variable and constant changes in

pen-world network traffic behavior [4] , to create a representative

raining dataset is a difficult task. Thus, normally researchers

ncorrectly assume an immutable network traffic behavior and

hus evaluate the conceived system on a single dataset, discarding

he open-world network traffic behavior characteristics [5] , such as
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on-site-specific, new (different) attack behaviors, highly variable

ontent (service), and continuously occurring changes in the traffic

ehavior. 

Several techniques have been proposed in the literature for

he creation of an intrusion dataset [3,6,7] . However, the most

requently used dataset [8] remains the well-known DARPA1998

ataset [9] , which is now almost 20 years-old. Most approaches

sed to create a public intrusion dataset attempted to statistically

odel the user behavior [10] . Normally, a typical and real user

s monitored during a certain period and its traffic characteristics

re reproduced in a statistically similar manner. Thus, a static

ser behavior is imposed during the monitored period. Thus,

hese approaches generate a site-specific traffic behavior that are

ifficult to reproduce. 

The great majority of research studies on the subject were

imed to improve the classifier accuracy on a specific dataset

3,11,12] , usually on KDD’99 [13] , which was created in 1999,

hrough the DARPA1998 database, with several limitations [14,15] ,

aking the obtained results unrealistic [1] . Moreover, little or

o effort has been invested in using the obtained models in

eal-world environments [2] . 

In addition to the problems inherent in the datasets that are

sed, other factors exist that indicates that the reported results

re not reliable. There are no guarantees that the accuracy ob-

ained during the model evaluation is also obtained in real-world

nvironments; the situation is aggravated when the dataset used

or creating the model is obsolete. 

Independently of the used dataset, the evaluation and model

reation method must consider the network intrusion environment

haracteristics. An open-world network traffic changes continu-

usly in terms of service, traffic content, attack, and scenario

rrangement. New attacks are discovered every day, and their be-

avior, and even that of known attacks, may change as a result of

vasion techniques. Thus, it cannot be assumed that the network

raffic behavior evidenced in a training dataset is to any extent

imilar to that in a production environment over time. 

In contrast to other detection fields, intrusion detection must

etect intrusion attempts with high accuracy rates because of the

igh cost of errors [1] . Therefore, during the creation process of

he intrusion model, researchers normally perform feature selec-

ion to improve its accuracy [3,13] . However, in general, because

f the restrictions in the dataset that they used, the authors of

hose studies did not consider the network characteristics during

he feature selection process. The main contributions of our paper

re as follows. 

• We propose a tool-based method that produces real and valid

network traffic in a controlled and reproducible environment

for creating intrusion databases. Our proposed method allows

the created database and dataset to be shared, as the collected

data contain no sensitive data. The variability problem inher-

ent in creating databases in a controlled environment [2] is

reduced by creating a complex but easy-to-reproduce client be-

havior. The attack traffic generation problem is solved by using

well-known standardized tools. Our method thus allows some

of the main problems raised by the authors of [6] [7] regarding

database creation for intrusion detection to be solved. 

• We examine in depth and propose a new and rich evaluation

method specific for the machine learning anomaly-based in-

trusion detection field, using our tool-based method to create

intrusion datasets. Our evaluation method provides ratings of

the performance of a system for different normal and attack

behaviors and scenario arrangements, used in production

environments. 

• We propose and evaluate a new multi-objective feature selec-

tion method that considers the network properties in intrusion
detection through using machine learning algorithms. Our pro-

posed multi-objective feature selection method allows a system

administrator to improve the system accuracy according to its

needs considering the different normal, attack, and scenario

behaviors. 

The remainder of this paper is organized as follows.

ection 2 presents the background. Section 3 provides a brief

verview of the related work on intrusion dataset creation

nd evaluation methods. Section 4 discusses the details of our

roposed method for intrusion dataset creation, our proposed

valuation method, and our multi-objective feature selection

ethod. In Section 5 an evaluation of our proposed method is

resented. Finally, Section 6 concludes this paper. 

. Background 

An intrusion detection system (IDS) is software that is aimed

o identify and classify malicious activities in an environment [3] .

 typical IDS is composed of four modules. (i) Event gatherer :

his module is responsible for collecting events from the environ-

ent for further monitoring, e.g., reading network packets from

 network interface card. (ii) Preprocessing : this module performs

he processing needed before the detection engine is run on the

ollected events, e.g., extraction of a set of features. (iii) Detection :

his module is based on the preprocessed event that the detection

ngine uses to decide whether an event is normal or an intrusion

ttempt. (iv) Alert : finally, if an event is considered as an intrusion

ttempt, this module generates an alert. 

Several approaches for classifying intrusion attempts have

ppeared in the literature. Currently, the most frequently used tax-

nomy, which is used in DARPA’s intrusion datasets, was defined

y Kendall [9] . According to Kendall, intrusions can be divided into

our classes as follows. (i) Probing attacks that gather information

bout a target; (ii) denial of service (DoS) attacks, that is, any

ttempt to prevent legitimate users from accessing a service or

ystem; (iii) remote to local (R2L) attacks that attempt to gain

ccess to a legitimate user’s account on a system; and (iv) user

o root (U2R) attacks, which occur when the attacker already has

chieved access to a legitimate user’s account and then attempts

o obtain administrator privileges. 

An IDS can be either network-based (an NIDS) or host-based

an HIDS); the IDS type determines which attack class it is able

o detect. An NIDS performs the detection at the network level,

etecting attacks such as a probing (e.g., port scan) and a network-

ased DoS attacks (e.g., synflood). Thus, an NIDS accesses the data

nly at the network level, e.g., network packets or network flows,

o perform the event classification. In contrast, an HIDS detects

pplication-based attacks, such as R2L (e.g., buffer overflow) and

2R (e.g., privilege escalation). An HIDS requires knowledge about

he applications running on the protected host, thus requiring

ccess to logs and other data about the system in order to perform

ts detection. 

In general, two approaches can be used during the detection

tage: signature and anomaly. The signature-based approach

onsists of searching well-known attack patterns in the received

vents. Each detected event is matched against the signature

atabase; if a known attack pattern is found, the event is classified

s an intrusion attempt. When a new vulnerability is discovered

nd reported, a related signature is created. The main drawback

f the signature-based approach is its inability to detect unknown

ttacks. 

In contrast, the anomaly-based approach is aimed to detect new

unknown) attacks by modeling the activities that are considered

ormal within a system and identifying possible attacks from be-

aviors that deviate from the known normal behavior pattern [2] .
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The event behavior is defined by a set of features extracted during

the preprocessing stage. In studies in the literature, anomaly-based

intrusion detection was in general treated as a pattern–recognition

problem [16] through machine learning techniques. 

Machine learning is aimed to assign a class (e.g., normal or

attack/intrusion) to an event. In the process, first events captured

from the environment are stored in a database. From each event in

the database, a set of features is extracted and stored in a dataset.

A machine learning algorithm is then used to infer a pattern from

the dataset and to create a model that represents such behavior.

However, events that present a behavior similar to that of other

classes may be wrongly classified, e.g., an attack that is similar to

a legitimate request. 

An intrusion model is created using a training dataset; for

the estimation of the classifier accuracy rate, a validation dataset

is used. The validation dataset is utilized for making possible

improvements to the intrusion model. The final version of the in-

trusion model is evaluated through a test dataset. For the process

to be reliable, each used dataset must contain different events.

During the tests, the false-positive (FP) and false-negative (FN)

rates are estimated. An FP occurs when a legitimate activity is

classified as an intrusion, whereas an FN occurs when an intrusion

is classified as a legitimate activity. 

The set of features used to obtain the intrusion model must

be discriminant because, on the basis only of the extracted set

of features, it must be possible to correctly classify events from

different classes. The f eature selection process is aimed to identify

the most relevant features in a feature set, allowing the classifier

accuracy to be improved and the computational load during the

event classification to be reduced. During the feature selection

process, two approaches may be applied: (i) filter, in which the

selected features are independent of the used classifier, or (ii)

wrapper, which is classifier-dependent. The wrapper approach

incurs the computational overhead of evaluating the candidate

feature subsets by executing the machine learning algorithm on

the dataset, using each subset under consideration. 

Because a complete search over all possible subsets of a fea-

ture set (2 N , where N is the number of features) may not be

computationally feasible, several authors have explored heuris-

tics for feature subset selection (e.g., the intrusion detection

accuracy). Genetic algorithms (GAs) are an interesting approach,

because they do not assume restrictive monotonicity and can use

multi-objective optimization. 

Solutions to a multi-objective optimization problem can be

expressed mathematically in terms of non-dominated points;

a solution is dominant over another only if its performance is

superior for all the considered objectives. A solution is said to be

Pareto-optimal if it cannot be dominated by any other solution

available in the search space. A popular multi-objective GA that

has been successfully applied to multi-objective feature selection

[17] is the non-dominated sorting genetic algorithm (NSGA-II)

[18] . NSGA-II uses a ranking selection method to emphasize good

points and a niche method to maintain the stable subpopulations

of the good points. It varies from simple GAs only in the operation

of the selection operator. 

In brief, a detection system’s reliability relies on an appro-

priately obtained training dataset. The expected properties for

an intrusion dataset are as follows [7] . (i) Realism : the dataset

should contain network traffic that can be observed in production

environments; (ii) validity : the dataset should contain well-formed

packets, with a complete client-server interaction; (iii) prior la-

beling : in the dataset, each event must be correctly labeled (as

belonging to a class, e.g., normal or attack), to allow correct classi-

fier training; (iv) diverse/high variability : the dataset should present

a diversity of services, client behaviors, and attacks; (v) correct im-

plementation : in the dataset, the attacks must follow a well-known
r “de facto” standard; (vi) ease of updating : the dataset should be

ble to incorporate new services and attacks that are discovered

very day; (vii) reproducibility : the dataset should allow experts to

erform a comparison between datasets; and, finally, (viii) without

ensitive data : the dataset should not reveal sensitive data to allow

he free dataset to be shared among researchers. 

Two approaches may be used for obtaining the datasets for an

IDS: in the first, the production environment is recorded and in

he second a controlled environment is created [19] . Production

nvironment monitoring allows traffic that is real and similar to

his environment to be obtained. However, because of privacy

oncerns it is not feasible to share the dataset. Moreover, the

reation of a database in a controlled environment using tools

llows it to be shared freely, but the approach suffers from traffic

nvariability problems [1] . The anomaly-based IDS literature lacks

 ground-truth dataset. 

. Related work 

Many research studies have been conducted since the anomaly-

ased detection paradigm was introduced by Denning [20] .

owever, despite the extensive amount of work, few applications

f any anomaly-based intrusion detection systems in produc-

ion environments have been reported. In recent years, some

esearchers have begun to question the applicability of the results

rovided in the literature. Gates and Taylor [1] argued that only a

ew anomaly-based IDS have been widely used. They considered

ainly the assumptions originating in Denning’s work. According

o them, the lack of appropriately obtained training data and

esting methodologies that consider the network properties, such

s continuous changes in content, volume, and attacks, is the main

eason why the anomaly detection approach is unsuccessful. 

Sommer and Paxson [2] conducted an extensive review of

ntrusion detection. They argued that the field is significantly dif-

erent from other fields in which the machine learning approach

as been successfully applied. They claimed that machine learning

s more effective for finding similarities than detecting outliers,

or instance. The high cost of errors inhibits its use in production

nvironments. The lack of available public and updated data

inders an appropriate system evaluation and comparison [21,22] .

ommer and Paxson [2] and Paxson and Floyd [4] reported that

eal-world environments present a significantly different behavior

rom the data the systems are normally trained. 

The reliability of an anomaly-based detection system relies on

n appropriately created training dataset. Normally, certain strong

ssumptions about the training data need to be adopted. Canali

t al. [23] created their dataset by collecting several Website

ontents from the Internet; they labeled each datum by using

tate-of-the-art tools and manually inspecting the data to ensure

hat the Website contents were correctly labeled. The authors as-

umed that most of the frequently visited Websites worldwide are

enign and that the distribution of feature values is different for

ach class of Website. The strongest assumption is that the dataset

sed to train the models presents the same feature distribution as

eal-world environments. 

Moreover, when a dataset is obtained in a controlled envi-

onment, the authors normally statistically reproduce the user

ehavior. Shiravi et al. [7] created user profiles on the basis of

he user behavior for each application during an observed time

nterval. Kendall [9] created a dataset by statistically reproducing

he user behavior in an air force environment. In general, these

pproaches lack upgradeability, wrongly assuming that network

raffic is immutable and considering that the user behavior can

e modeled [1,2] . Thus, the approach we propose in this paper is

imed to provide a publicly available intrusion database through
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Fig. 1. Proposed database creation method. 
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he use of well-known tools in a controlled environment, thus

roviding the properties expected from an intrusion database. 

Multi-objective feature selection has been addressed in several

elds, such as Quality of Service (QoS) constraints in multime-

ia content distribution [41] , handwritten digit recognition [42] ,

mong others [43] ; however, for intrusion detection purposes its

se remains rare. De la Hoz et al. [40] used a similarity measure-

ent of the predicted labels and the ground truth dataset for each

onsidered class as a different objective to be maximized. The

uthors were able to improve the accuracy while decreasing the

umber of features; however, they relied in the outdated KDD99

ataset. 

Viegas et al. [3] proposed a feature selection approach for find-

ng the best tradeoff between the intrusion detection accuracy and

he system energy consumption. The authors’ approach was able to

rovide up to a 93% reduction in energy consumption while incur-

ing only a 0.9% accuracy loss. To the best of our knowledge, this

tudy is the first to address the production environment properties

s a multi-objective problem in the intrusion detection field. 

. Proposed methods 

In this paper, we propose a new intrusion database creation

ethod that is aimed to present the properties expected from

n intrusion dataset. Moreover, through this proposed method,

 new and extensive evaluation method specific to the machine

earning field is proposed to validate the common assumptions in

he literature regarding NIDS. Finally, a new multi-objective fea-

ure selection method is proposed, which considers the expected

nomaly-based properties during the model creation process. 

.1. Database creation method 

The proposed intrusion database creation method is aimed

o ensure that a database contains the properties expected from

n IDS testing intrusion database. To achieve this, the proposed

ethod creates intrusion databases in a controlled environment

nd reproduces a user’s behavior through well-known tools. The

ethod considers two different users: the legitimate client and

he attacker. The traffic is generated considering the client-server

odel. For generating the server-side network traffic, the honeypot

echnique is used, whereas the client traffic is generated through

eal-world workload tools. Thus, real and valid traffic is generated

or the client-server communication. The attacks are generated

sing known, standardized, and widely used tools frequently

mplemented for system auditing. The traffic creation method is

hown in Fig. 1 and further described in the following sections. 

.1.1. Normal (background) traffic creation method 

It is recommended that the traffic included in an intrusion

atabase used for anomaly-based detection systems be real and
alid. Thus, the method used for its design must ensure that the

lient-server interaction occurs correctly, thereby guaranteeing

hat the client behavior evidenced in the database is similar to

hat observed in the real world. 

The normal (legitimate) traffic must be generated according

o two perspectives: the client and the server. The client is

esponsible for requesting the services available on the server,

hereas the server is responsible for providing the appropriate

esponse to each request in terms of content and service behavior.

t is expected that the provided services, as well as their request

ontents, are highly variable. 

Independent of the considered application, each user network

raffic behavior, in general, is random and does not follow a statis-

ical distribution when compared to that of a different application

ser [ 24 , 25 ]; for instance, the behaviors of two different users

rowsing a Web application are not similar. Thus, the proposed

ethod generates the normal (background) traffic by providing a

et of services, where each service has a set of contents that may

e requested ( Fig. 1 ). Each client performs a real and valid request

hrough a real-world workload tool; thus, real, and valid requests

re generated for the client side. Each client sends a request for

 previously defined service and a specific service content. After

he client-server communication, the client waits a variable time

nd transmits a new request for another service. Thus, the client

ehavior is modeled according to the observed application usage,

.g., a client browsing a Web page for a certain duration. 

In turn, the server must be able to interpret the received re-

uest and generate the appropriate reply. The use of tools specific

o the service being provided makes it difficult to update the

ntrusion database, whereas the use of a technique that mimics

he server responses allows the database to be updated easily.

hus, the honeypot technique was considered, which allows the

esponses of a vulnerable server to be mimicked, with automated

nd valid responses to be generated. 

A set of predefined services are provided. Thus, every request,

egardless of the requested service, is correctly interpreted and

eceives a legitimate reply. Under this assumption, the proposed

ethod generates real, valid, and easy-to-update background

raffic (the expected properties are described in Section 2 ). The

omplete background traffic generation process is shown on the

eft side of Fig. 1 (Automated Client). 

.1.2. Attack traffic creation method 

The lack of an appropriate implementation guarantee is the

ain problem that has been reported to occur during attack

eneration. In general, researchers (see, e.g. [10] ) implement

 known attack according to their discretion, which makes an

ttack difficult to reproduce as there is no guarantee that the

mplementation follows a well-known defined standard. 

Immediately after a new attack becomes known and is

eported, entities specify it. Initiatives such as the Common

ulnerabilities and Exposures (CVE) include the details of new

ulnerabilities and the affected services. Im plementations that

re, for example, CVE-compatible, guarantee that an attack will

ehave as expected (reported). Thus, tools that follow well-known

tandards are auditable and can be assessed. 

Our approach, unlike those where the authors implemented

heir own version of the attacks, is based on the use of well-

nown and de facto standardized tools to generate the attacks.

his approach ensures that the implementation of all the attacks

ncluded in the database is dependable when they become public,

s the approach follows a well-known standard. The complete

ttack traffic generation process is shown on the right side of

ig. 1 (Automated Attacker). 
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Fig. 2. Proposed evaluation method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Proposed attack detection evaluation method. 

t  

o  

t  

T

 

t  

a  

e  

m  

a  

c  

t  

s

 

c  

a  

b  

T  

s  

S  

s  
4.2. Anomaly-based intrusion detection evaluation method 

Three steps are normally involved in a typical machine learning

evaluation method. Initially, the classifier model is created using a

trained dataset. Then, a validation dataset is used to improve the

created model. Finally, the model is evaluated by means of a test

dataset. Because of the lack of publicly available data in the NIDS

field, experts normally divide a single dataset into three parts.

Thus, a typical evaluation method assumes that the used datasets

resemble the production environment. 

However, this assumption does not hold in networked environ-

ments. The creation of an intrusion database that presents all the

possible behaviors in a production environment is not a feasible

task [1] . Even if it were possible to create a perfect database, it

would still not be effective because it would consider that network

traffic is immutable [2] . Thus, the proposed evaluation method

is aimed to validate the expected properties for any machine

learning algorithm when applied to the anomaly-based intrusion

detection area. 

It is a well-known problem that the intrusion detection

research community lacks public datasets for appropriately eval-

uating developed systems [26–29] . We propose a new evaluation

method specific to the intrusion detection field that uses our

proposed database creation method (described in Section 4.1 ). The

purpose is to validate the common assumptions reported in [ 1 , 2 ].

The overall process is shown in Fig. 2 and further described in the

following sections. 

4.2.1. Attack detection rate 

The most important assumption about an anomaly-based in-

trusion detection system is that it is capable of detecting new

attacks. The premise is that an attack, whether new or known,

shows behavior that is significantly different from that of a typical

system’s usage and, thus, can be identified by detecting outliers

[30] . However, incoming events are classified, in general, on the

basis of their similarity to the known and prior-labeled events in

the training dataset, according to a similarity metric. 

Thus, only new attacks that behave similarly to already known

attacks can be correctly classified. By definition, it is not possible

to train a machine learning detection technique using unknown

attacks. However, it is possible to measure an intrusion detection

system’s capability by controlling the events included in the test

datasets. A system can be trained with a limited type of attack and
ested with similar or completely different attacks. The definition

f the similarity of events is context-dependent and must be de-

ermined according to expert knowledge (described in Section 5 ).

he process is shown in Fig. 3 . 

Initially, an anomaly-based intrusion detection system is

rained with a limited set of attacks that are similar and present

n expected behavior during the system usage in production

nvironments ( Fig. 3 , Known Attacks). Then, the created detection

odel is evaluated using databases containing similar and new

ttacks ( Fig. 3 , Similar and New Attacks). Similar attacks in this

ontext are attacks with a high similarity to the attacks on which

he system was trained, whereas new attacks are attacks that are

ignificantly different from known attacks. 

The similar attack detection rate is defined as the system’s

apacity to detect events with behaviors similar to those of known

ttacks. This property is desirable in intrusion detection systems

ecause of the highly variable nature of networked environments.

hus, a system must be able to cope with similar attacks, as a

ingle database cannot contain all possible attacker behaviors.

imilar attacks may present a different pattern and can evade

ignature-based systems, where detection is performed by match-



E.K. Viegas et al. / Computer Networks 127 (2017) 200–216 205 

i  

m  

t  

a

 

d  

p  

b  

o  

s  

m  

a  

a

 

s  

d  

r  

w  

o  

b

 

c  

a  

s  

t

4

 

a  

t  

t

 

a  

s  

t

 

T  

t  

i  

t  

d  

n

 

c  

s  

m  

t  

d  

w  

e  

i

 

b  

d  

s

 

t  

s  

r  

t  

s

 

a  

e  

e

Fig. 4. Proposed background service content detection evaluation method. 

Fig. 5. Proposed background service detection evaluation method. 

4

 

c  

t  

f  

t  

w  

i  

a  

t

 

l  

c  

t  

o  

f  

t

 

e  

c  

c

4

 

t  

m  

e  

a  

f  

m

ng against well-known attack patterns. However, similar attacks

ay present the same or a similar behavior and should be de-

ected by an anomaly-based detection scheme if the used features

re adequately discriminant. 

The new attack detection rate defines the system capacity to

etect significantly different types of attacks; i.e., attacks that

resent a behavior that is completely different from any known

ehavior on which the system was trained. This type of incidence

ccurs in production environments, as it is not possible to train a

ystem with all known or new attacks. The used detection scheme

ust be able to relate the new attack behavior to the known

ttacks and correctly detect it, which is the premise when using

ny anomaly-based detection approach. 

During database creation for machine learning detection

chemes, the background traffic must also be generated. The inci-

ence of an attack affects the response of a service to legitimate

equests; e.g., one attack type can make a service unavailable,

hereas another can make a service reply only to a specific set

f requests. Thus, the occurrence of an attack can affect also the

ackground traffic detection rate. 

Note that databases must use the same background traffic

reation approach. Thus, this approach uses the background traffic

s the baseline, allowing it to identify the behavior of the same

et of services under each type of attack and the performance of

he detection engine while detecting such changes. 

.2.2. Background detection rate 

The background traffic is composed of two entities: the client

nd the server. The client generates requests according to the con-

ents and services provided by the server. Thus, the background

raffic may vary in content and the service requested. 

Because of the lack of publicly available data, researchers have

ssumed that network traffic is immutable [31] . Anomaly-based

ystems are normally tested using a single database, divided into

hree parts having the same background traffic behavior. 

It is known that network traffic continuously changes [ 1 , 2 ].

hus, it cannot be assumed that a behavior evidenced in a cer-

ain period during the intrusion database creation will remain

mmutable over time. The detection scheme must be able to track

he background traffic behavior changes while still performing its

etection at a reasonable rate, when a classifier model update is

ot possible. 

When evaluating an intrusion detection method, one must

onsider the database limitations. It is not possible to create every

ervice and content that will be evidenced in production environ-

ents. Thus, it is not feasible to create every possible background

raffic behavior. However, a detection scheme must be able to

etect different background traffic contents and different services,

ith their new type of content. To present such properties, the

valuation databases must be modified to allow them to be tested

n an anomaly-based system. 

Similar to the attack detection rate method ( Section 4.2.1 ), the

ackground detection rate method consists of restricting the used

atabases to two perspectives: the service content ( Fig. 4 ) and the

ervices ( Fig. 5 ). 

The service content detection rate is established by limiting

he client requests, which are divided into three groups: known,

imilar, and new content ( Fig. 4 ). However, the service detection

ate is established by restricting the number of services in the

raining database dataset and evaluating the classifier with a new

et of services not used during the training stage ( Fig. 5 ). 

In the evaluation of the background detection rate, the attacks

re used as the baseline. The same set of attacks is generated in

ach scenario, allowing the attack occurrence to be evidenced in

ach used service and its content. 
.2.3. Generalization evaluation 

Several methods have been proposed in the literature for

reating intrusion databases; however, despite extensive efforts,

hey are all exposed to the problems inherent in the method used

or their creation [32] . Thus, to evaluate the database used during

he system design, as well as the method used for event detection,

e need an evaluation method that uses a publicly available

ntrusion database. Thereby, the system evaluation using a publicly

vailable database provides a baseline comparison reference and

he generalization rate. 

The generalization is a desirable property for any machine

earning technique. The set of extracted features must allow the

lassifier to generalize the problem appropriately by distinguishing

he classes, regardless of the current environment in which it is

perating. Thus, the classifier model built from the set of extracted

eatures may be used in other environments that aim to detect

he same type of events. 

In this way, evaluation that uses a publicly available database

nsures that the conceived anomaly-based detection scheme

an operate independently of the environment in which it was

onceived. 

.2.4. Evaluation method summary 

The anomaly-based intrusion detection field faces challenges

hat are significantly different from those of other areas where

achine learning has been successfully applied [2] . The proposed

valuation scheme is aimed to test the expected properties of an

nomaly-based machine learning intrusion detection scheme. The

ollowing properties can be provided by the proposed evaluation

ethod ( Fig. 2 ): 
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• Detection rate for known, similar, and new attacks

( Section 4.2.1 ); 

• Detection rate for known and new services ( Section 4.2.2 ); 

• Detection rate for known, similar, and new services’ content

( Section 4.2.2 ); 

• Detection rate while operating in a different environment

( Section 4.2.3 ). 

4.3. Multi-objective feature selection for intrusion detection 

To improve the detection rates mentioned above ( Section 4.2.4 ),

we propose a multi-objective feature selection method specific

to the intrusion detection field. This method considers that,

during the system development, the system designer takes into

account the following detection properties of the detection sys-

tem: attack ( attack rate ), normal ( normal rate ), and/or generalization

( generalization rate ). 

As described in Section 4.2.1 , an intrusion detection system

may face three distinct attack behaviors in production environ-

ments: known, similar , and new . During the classifier training, the

detection algorithm learns only the known behavior. However, in

production environments, the probability of each attack behavior

occurring is unknown. For instance, an IDS that was trained

with a network-based DoS attack behavior ( known ) may also face

application-level DoS attacks ( similar ) having an unknown occur-

rence probability. However, in the production environment, the

system administrator expects that an intrusion detection engine

is able to detect attacks according to the accuracy rate obtained

during the classifier testing, regardless of the current attack type

the system is facing. Thus, the attack detection rate in a production

environment can be calculated as 

at tac k rate = a v erage 

( 

at tack known 
rate , 

at tack similar 
rate , 

at tack new 

rate 

) 

(1)

where attack known 
rate denotes the system detection rate for known

attacks, attack similar 
rate denotes the detection rate for similar attacks,

and attack new 

rate denotes the detection rate for new attacks ( Fig. 2 ,

Attack Detection Evaluation). Thus, the system attack detection

rate ( attack rate ) is represented by the average detection rate of

known, similar , and new attacks in production environments. 

The same property is expected in a normal (background) traffic

perspective. The requested service, either known or new , must be

correctly detected, as well as its content: known, similar , and new .

Thus, the normal detection rate is established by 

normal serv ice 
rate = a v erage 

(
normal known serv ice 

rate , 

normal new serv ice 
rate 

)
(2)

normal content 
rate = a v erage 

( 

normal known content 
rate , 

normal similar content 
rate , 

normal new content 
rate 

) 

(3)

norma l rate = a v erage 

(
normal serv ice 

rate , 

normal content 
rate 

)
(4)

where normal known serv ice 
rate denotes the system detection rate for

known services, normal new serv ice 
rate denotes the detection rate for

new services, and normal known content 
rate , normal similar content 

rate , and

normal new content 
rate refer to the detection rate of known, similar, and

new services’ content, respectively. The system’s normal detection

rate ( attack rate ) is represented by the average detection rate of

normal serv ice 
rate and normal content 

rate . 

Finally, the generalization capacity of a system is directly

established by the system detection rate in another environment
 Fig. 2 , Generalization Evaluation). Thus, the generalization rate

 generalization rate ) is established by 

eneralizatio n rate = generalization 

public database 
rate (5)

It is important to note that attack ( attack rate ), normal

 normal rate ), and generalization ( generalization rate ) are con-

icting properties (objectives). For instance, an increase in

eneralization rate may decrease the intrusion detection rate for

ormal and attack events because of the increase in the general-

zation capacity (commonly referred to as the receiver operating

haracteristic curves for two class decision systems) [33] . 

Thus, the operating points must be established according to the

ystem designer’s needs. For example, the generalization property

ay be desired in systems that will be used in several different

nvironments (commercial products for instance); however, in

roprietary systems, this property may not be desired. The oper-

ting points and evaluation of objectives are further described in

ection 5.4 . 

. Evaluation 

In this section, we present the evaluation of our proposed

ethods for intrusion database creation, anomaly-based system

valuation, and multi-objective feature selection. Specifically, we

rst discuss the scenarios for each database used in our work

hat are used in the evaluation method described in Section 4.2 .

hen, using our proposed evaluation method, we present the

valuation of a set of methods for performing anomaly-based

ntrusion detection to confirm whether the assumptions in the

ntrusion detection literature do hold. Finally, the evaluation of the

ulti-objective feature selection method for intrusion detection

ystems is presented ( Section 4.3 ). 

.1. Intrusion database creation 

The following sections discuss the details of the application of

he intrusion database method described in Section 4.2 . An exten-

ive description of the background and attack traffic generation is

rovided. Then, the testbed network infrastructure is discussed in

etail. 

.1.1. Background traffic generation 

The most desirable property of an intrusion database is that

he background traffic is as realistic as possible. The normal

raffic must be highly variable, real, and valid. Background traffic

eneration is a complex and difficult task, mainly because of the

omplexity involved in modeling user behavior [34] , which is, in

eneral, random and application-dependent. The network traffic

enerated is dependent on the user demand for an application

nd is specific to the environment being reproduced. 

Taking these factors into account, we treated each client as

n entity with a pseudo-random behavior that does not follow

ny statistical distribution pattern, as reported in [4] . Each of our

lients showed a unique behavior when requesting a service. Each

lient might request one or more services. 

To achieve this property, we established a set of predetermined

ervices on the basis of the frequently used services discussed in

35] . The following services were considered to be generated on

he testbed environment: HTTP, SNMP, SMTP, NTP, and SSH. Every

ame resolution (DNS) was also generated as a consequence of

sing the listed protocols. 

To create the honeypot server ( Fig. 1 ), which executes the

erver-side applications, in the proposed method we used the

oneyd ( www.honeyd.org ) tool. To develop the client-side appli-

ation for use with the servers, we used a workload tool as the

ervice request tool. It is important to emphasize that the only

http://www.honeyd.org
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Table 1 

Services used for the background traffic generation. 

Service Description (Client behavior varying from 0 to 4 s interval) 

HTTP The 10 0 0 most visited Websites worldwide were downloaded using www.alexa.com/topsites and hosted on the honeypot server; each HTTP client 

requests a pseudo-random Website from this set of contents. 

SMTP Each SMTP client sends a mail with 50–400 bytes in the subject line and 100–4000 bytes in the body. 

SSH Each SSH client logs in to the honeypot host and executes a random command from a list of 100 possible commands. 

SNMP Each SNMP client walks through a predefined management information base (MIB) from a predefined list of possible MIBS. 

NTP The client performs time synchronization through the NTP protocol. 

DNS Every name resolution was also made to the honeypot server 

Table 2 

Tools used for attack network traffic generation. 

Category Attack type Tool used Description 

DoS SYN flood Hping3 Sends several requests to open TCP connections, varying the attack send frequency and the duration time 

UDP flood Hping3 Sends several UDP datagrams to an open DNS port, varying the attack send frequency, the duration time, and 

the size of each datagram 

ICMP flood Hping3 Sends several ICMP messages to the target, varying the attack send frequency, the duration time, and the size 

of each datagram 

TCP keepalive Slowloris Initiates several HTTP connections and keeps them open for a period, varying the number of connections to be 

opened 

SMTP flood Postal Sends several emails to an SMTP server, varying the duration time, body size, subject size, and frequency 

HTTP flood LOIC Sends several HTTP-get requests to a specific URL, varying the duration time and frequency 

Probing UDP scan Nmap Searches for open UDP ports, varying the attack send frequency and the duration time 

SYN scan Nmap Searches for open TCP ports by sending TCP packets with the SYN flag set while varying the attack send 

frequency and the duration time 

NULL scan Nmap Searches for open TCP ports by sending TCP packets without any flags set while varying the attack send 

frequency and the duration time 

TCP connect Nmap Searches for open TCP ports by completing the three-way handshake while varying the attack send frequency 

and the duration time 

FIN scan Nmap Searches for open TCP ports by sending TCP packets with the FIN flag set while varying the attack send 

frequency and the duration time 

XMAS scan Nmap Searches for open TCP ports by sending TCP packets with the FIN, PSH, and URG flags set while varying the 

attack send frequency and the duration time 

ACK scan Nmap Searches for open TCP ports by sending TCP packets with the ACK flag set while varying the attack send 

frequency and the duration time 

OS Fingerprint Nmap Identifies the OS from the target ( https://nmap.org/book/osdetect.html ) while varying the attack send 

frequency and the duration time 

Service Fingerprint Nmap Identifies the services and their versions from the target ( https://nmap.org/book/man- version- detection.html ) 

while varying the attack send frequency and the duration time 

All Vulnerability Scan Nessus Identifies service-level vulnerabilities while varying the attack send frequency and the duration time 
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urpose of using a workload tool in this work was to generate

alid and real requests. 

Each client requested the services hosted on the honeypot

erver; the emulated services and their client behaviors are

escribed in Table 1 . To ensure traffic variability, each client ran-

omly varied the requested content, according to the description

hown in Table 1 , and the time between the requests varied from

 to 4 s. The variation in the time between each request and in

he requested content was designed to mimic the non-modellable

ehavior of clients. By using this method, we could simulate a

ser browsing a Webpage and also sending an e-mail, for instance.

Every client generated a real and valid request for a service and

eceived a real and valid reply from the honeypot server. Thus,

ll the generated background traffic was real and valid. Finally,

o mitigate possible repetition in the generated traffic, we ran

ach of the scenarios for 30 m, a reasonable time considering the

equest variability shown in Table 1 . To allow the scenarios to be

eproduced, we logged the behavior for each client. 

.1.2. Attack traffic generation 

For the attack traffic generation, we considered the taxonomy

dopted by Kendall [9] . To validate the proposed method, we

onsidered two groups of attacks as our baseline attacks: probing

nd DoS. The attacks and tools used and their descriptions are

isted in Table 2 . 

Each attacker generated a specific attack type ( Table 2 ), and

o make the attacks highly variable, each attacker varied the
requency and duration during each testbed. A single machine

enerated each attack, allowing automatic class labeling based on

he network packet source IP address. It is important to note that

his approach does generate environment-specific features; e.g.,

n the basis only of the IP address, an anomaly-based system can

dentify every attack. Thus, the system being evaluated using our

atabases must be aware of this restriction and should not use

ny environment-specific features, such as the time-to-live (TTL)

nd IP address fields. In our opinion, this is not an issue, as these

ypes of features are not discriminant in production environments

nd should not be used at all during any system evaluation for

pen-world production usage. 

.2. Testbed environment 

The scenarios, which are described in more detail below, were

omposed of 100 interconnected client machines. The number of

lients was established to maximize the possible client behaviors

 Table 1 ). Each client was an Ubuntu 16.04 machine; the network

raffic was dependent on the workload tool used according to the

ervice being requested. A single honeypot server was used in

ach of the scenarios. The honeypot server was implemented using

he Honeyd 1.5c tool, installed on an Ubuntu 16.04 machine, mim-

cking a vulnerable Ubuntu 14.04 server. The attacker machines

an Kali Linux version 2.0; 16 machines were used to generate the

ttacks, with each attacker machine generating a single type of

ttack ( Table 2 ). 

http://www.alexa.com/topsites
https://nmap.org/book/osdetect.html
https://nmap.org/book/man-version-detection.html
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Fig. 6. Venn diagram of background service distributions among clients. 
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A single LAN network running at 100 Mbits/s connected the

machines. The defined LAN network speed allowed the generated

traffic to be recorded on a single machine without dropping

packets or mirroring the traffic [7] . All legitimate requests and

attacks were generated against the honeypot server ( Fig. 1 ); the

generated traffic was stored on the honeypot server. 

The establishment of a single LAN network allowed the cre-

ation and replication of our proposed scenarios to be simplified.

We consider that the system detection method must be tested.

A detection method that presents the desirable properties of

an anomaly-based detection system ( Section 4.2.4 ) must work

independently of the environment in which it was conceived. The

definition of more complex scenarios [ 2 , 7 ] would hamper the

replication of our proposed method. In the next sections, each of

the created scenarios is further described. 

5.2.1. Attack detection scenarios 

As stated in Section 5.1.2 , two attack categories were defined

as our baseline attacks: probing and DoS. Thus, six scenarios were

defined to generate databases to evaluate the attack detection rate

( Fig. 2 , Attack Detection Evaluation). 

In the attack detection scenarios, each client was responsible

for generating the background traffic for each client service re-

quest, as shown in the Venn diagram in Fig. 6 . The overlapping

circles denote the clients that generated both services. The distri-

bution among clients and services was designed to simulate the

traffic distribution described in [35] . 

The background network traffic remained immutable at the

content request and client level. However, the attacker traffic var-

ied according to each scenario, as described in Section 4.2.1 . For

each considered attack type, i.e., probing and DoS, three scenarios

were created. Each scenario was run for 30 m. The attacks started

at the 10th minute and lasted for 15 m (scenario time: the 10th

to the 25th minute), following the attacker behavior described in

Table 2 . Thus, it was possible to capture the environment behavior

without, with, and after the attacks. The network traffic distribu-

tion and the attacks used for each scenario are shown in Table 3 . 

Three levels of attack similarity were defined in the databases:

network-level vulnerabilities, service-level vulnerabilities, and

service-level exploitation. The first scenario was named known .

The purpose of the known scenario was to generate the classifier

model and to define the known detection rate while detecting

only the known attacks. Thus, only attacks at the network level,
ocusing on network protocol vulnerabilities, were generated. It is

mportant to note that the feature set used in this study (further

escribed in Section 5.3 ) was specifically designed in a previous

tudy to detect this type of attack [3] . The similar databases con-

ain attacks with a similar behavior but focusing on service-level

ulnerabilities. Finally, the new database has a new type of attack

hat focuses on service exploitation. 

The created attack databases mimicked the behavior seen in

roduction environments. Normally, when developing an anomaly-

ased NIDS, only attacks detectable by an NIDS are included in the

raining dataset. However, when used in production environments,

he system will face a wider range of attacks. The databases were

reated according to the method described in Section 4.1 and were

sed to validate the evaluation method described in Section 4.2 . 

.2.2. Background detection scenarios 

The background detection rate scenarios were generated using

he attacks as the baseline. Thus, two sets of attacks were used,

ach generated separately, resulting in different databases, allow-

ng correct method evaluation. The sets of attacks used consisted

f the probing ( known ) and DoS ( known ) attacks, shown in Table 3 .

To generate the services’ detection databases, the services were

ivided into two groups: known and new services. The known

ervices served HTTP and SNMP clients and the new services

erved SMTP, NTP, and SSH clients. Each scenario was executed for

0 m; the distribution of clients followed the Venn diagram shown

n Fig. 7 . 

Finally, to generate the content detection databases, the behav-

or of each client was modified. Three different behaviors were

efined, divided into known, similar , and new content request be-

avior. The client’s distribution followed the Venn diagram shown

n Fig. 6 , and the client’s behavior for each scenario is described

n Table 4 . The traffic distribution for each background detection

atabase is shown in Table 5 . 

.2.3. Discussion of the databases 

The proposed database creation method allowed real and

alid network traffic to be generated, as the honeypot generated

alid replies to each of the received requests. The event classes

ere automatically defined (labeled as a feature vector), to avoid

anual labeling and to provide an error-free approach because of

he number of packets to be evaluated. The automatic labeling was

etermined according to the source IP address for each network

acket. This was possible because the attacker’s machine generated

nly attack content. It is important to note that the IP address was

ot used as a feature value (see extracted set of features, Table 6 ).

hus, this knowledge does not affect the classifier model. Addi-

ionally, the use of manual class labeling or clustering techniques

36] was avoided, reducing the labeling error. 

Low variability or repeated traffic occurrences were mitigated,

s the client content requests, the time between each request,

nd the requested application were varied. The use of well-known

ools allowed the databases to be updated at each new vulnera-

ility (attack) report, as the used tool became responsible for the

etwork traffic update to ensure the correct attack implementa-

ion. To allow the deployed scenario to be reproduced, we logged

very client and attacker behavior. Finally, privacy problems did

ot occur, because the databases were obtained in a controlled

nvironment and the generated network traffic did not include

ny sensitive data. 

Using the proposed method, it was possible to create 16

atabases ( Tables 3 and 5 ), each of which was aimed to validate

he common assumptions adopted in the literature [ 1 , 2 ], as de-

cribed in Section 4.2 , and to present network-specific detection

ates. The following sections describe the machine learning steps

f the conceived anomaly-based IDS. 



E.K. Viegas et al. / Computer Networks 127 (2017) 200–216 209 

Table 3 

Network traffic distribution for attack detection scenarios. 

Scenario Attacks generated ( Table 2 ) Traffic (network packets) Size (MB) 

Background Attack Total 

Probing (Known) UDP scan, SYN scan, NULL scan, TCP connect, FIN scan, XMAS scan, and ACK scan 28,618,365 36,628 28,654,993 8.476 

Probing (Similar) OS fingerprint and service fingerprint 28,477,884 10,441 28,488,325 8.499 

Probing (New) Vulnerability scan 28,391,914 17,753 28,409,667 8.512 

DoS (Known) SYN flood, UDP flood, ICMP flood, and TCP keepalive 26,747,521 761,269 27,508,790 7.945 

DoS (Similar) SMTP flood and HTTP flood 40,278,594 26,390,723 66,669,317 12.143 

DoS (New) Vulnerability scan 27,522,317 3429 27,525,746 7.265 

Fig. 7. Venn diagrams for the background service detection rate scenarios showing the service distributions among clients. 

Table 4 

Client behavior for service’s content detection scenarios. 

Service Database 

Known contents Similar contents New contents 

HTTP Request a Webpage from 1 to 200 Request a Webpage from 1 to 500 Request a Webpage from 501 to 10 0 0 

SMTP Each SMTP client sends a mail with 50–400 

bytes in the subject line and 100–720 bytes 

in the body 

Each SMTP client sends a mail with 50–400 

bytes in the subject line and 10 0–180 0 bytes 

in the body 

Each SMTP client sends a mail with 50–400 

bytes in the subject line and 1801–40 0 0 

bytes in the body 

SSH Each SSH client logs in to the honeypot host 

and executes a random command from a list 

of 20 possible commands 

Each SSH client logs in to the honeypot host 

and executes a random command from a list 

of 50 possible commands 

Each SSH client logs in to the honeypot host 

and executes a random command from a list 

of 50 never-seen commands 

SNMP Each SNMP client operates through a 

predefined MIB from a predefined list of 

possible MIBS 

Each SNMP client operates through a 

predefined MIB from a predefined list of 

possible MIBS 

Each SNMP client operates through a 

predefined MIB from a predefined list of 

possible MIBS 

DNS Every name resolution is also defined in the honeypot server 

Table 5 

Network traffic distribution for background detection scenarios. 

Database Scenario Generated Attacks Traffic (Packets) Size (MB) 

Background Attack Total 

Service Detection Known Probing (Baseline) 6260,424 34,239 6274,663 731 

New 36,807,285 37,973 36,845,258 12,325 

Known DoS (Baseline) 6874,239 753,838 7628,077 972 

New 37,273,872 812,384 38,086,256 12,738 

Content Detection Known Probing (Baseline) 25,240,803 35,782 25,276,585 7909 

Similar 26,216,937 36,245 26,253,182 7959 

New 30,600,739 38,235 30,638,974 8905 

Known DoS (Baseline) 27,376,278 746,287 28,122,565 8782 

Similar 28,241,742 784,972 29,02,6714 8932 

New 33,235,457 797,728 34,033,185 9748 
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.3. Model creation process 

To validate the detection system, it was necessary to build an

ntrusion model. This was made possible by using the created

atabases to extract the feature set, store the dataset, and then

enerate an intrusion model for each used classifier. 
For each network packet read from the Network Interface Card

NIC), a set of predetermined features was extracted and sent to

 classifier engine for classification. The set of features used in

his work was based on our previous study [3] . Table 6 presents

he 50 extracted features for each network packet, divided into

hree categories. All feature values were obtained by analyzing



210 E.K. Viegas et al. / Computer Networks 127 (2017) 200–216 

Table 6 

Extracted features set. 

Category Features 

Header-based ip_type, ip_len, ip_id, ip_offset, ip_RF, ip_DF, ip_MF, ip_proto, ip_checksum, udp_sport, udp_dport, udp_len, udp_chk, icmp_type, icmp_code, icmp_chk, 

tcp_sport, tcp_dport, tcp_seq, tcp_ack, tcp_ffyn, tcp_fsyn, tcp_frst, tcp_fpush, tcp_fack, tcp_furg, fr_length 

Host-based count_fr_src_dst, count_fr_dst_src, num_bytes_src_dst, num_bytes_dst_src, num_pushed_src_dst, num_pushed_dst_src, num_syn_fin_src_dst, 

num_syn_fin_dst_src, num_fin_src_dst, num_fin_dst_src, num_ack_src_dst, num_ack_dst_src, num_syn_src_dst, num_syn_dst_src, num_rst_src_dst, 

num_rst_dst_src, first_packet 

Service-based count_serv_src_dst, count_serv_dst_src, num_bytes_serv_src_dst, num_bytes_serv_dst_src, first_serv_packet, conn_status 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Traffic distribution on DARPA1998. 

Category Class Number of packets (representativeness) 

All Normal 28,426,093 (94.96%) 

DoS Synflood — Neptune 1507,319 (5.04%) 

Probing Port scan — Nmap 2211 (0.01%) 

Total 29,935,623 (10 0.0 0%) 
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the packet header values. The header-based category of features

was extracted directly from the network packet header; e.g.,

ip_type denotes the IPV4 type field value. The host-based and

service-based categories of features were extracted by analyzing

the communication history between two hosts or services. In

Table 6 , the suffix src_dst indicates the traffic flow in the client

to server direction, and dst_src that in the opposite direction. For

instance, the feature num_bytes _ src_dst counts the total number of

bytes sent from the client to the server. 

A 2 s time window was used to compute the time-based type

of features ( Table 6 , host-based and service-based features), as

in [10] . The feature extractor engine was implemented using

the C ++ language following the PCAP API using the libpcap

( www.tcpdump.org ) library; the implementation details were

further explained in our previous paper [3] . From each network

packet in the databases ( Tables 3 and 5 ), 50 features were ex-

tracted and the feature vector was written in a separate dataset.

Each feature vector entry was automatically labeled as normal or

attack, on the basis of the source IP address. It is important to

note that features that were scenario-specific were not considered

( Table 6 ), e.g., TTL and IP address source or destination. 

In the captured traffic, the ratio between classes was distinct

( Tables 3 and 5 ) and most events were normal. The generation

of a training and test dataset with an equal proportion of classes

allowed a valid accuracy rate to be obtained without the need to

verify the FP and FN rates during the model generation. Thus, a

stratification process was used so that each class was equally rep-

resented in the training and validation datasets. The stratification

process consisted of randomly selecting 25% of the events from the

class with fewer occurrences; then, the same number of events

was randomly selected from the other classes. The datasets were

obtained using this stratification process, with 25% of the events

being used for training, 25% for validation, and the remaining

events for testing. The entire dataset was used for testing when

it was not used to generate a model ( Fig. 2 , similar and new

datasets). 

For the model building process, the Weka ( www.cs.waikato.ac.

nz/ml/weka/ ) framework version 3.8.0 was used. Two classifiers

were used during the evaluation tests: naïve Bayes (NB) and

decision tree (DT). For the NB classifier, all numerical attributes

were discretized according to the method of Fayad and Irani [37] .

The C4.5 DT algorithm was used with a confidence factor of 0.25. 

5.4. Model evaluation 

To evaluate the proposed anomaly-based system evaluation

method ( Section 4.2 ) and multiple objective feature selection

method ( Section 4.3 ), two classifiers were used: DT and NB (note

that FP denotes the number of normal instances (normal client

network packets) wrongly classified as attacks, whereas FN is

related to the number of attack instances wrongly classified as

normal.) 

To obtain the generalization capacity ( Fig. 2 , Generalization

Evaluation), we used the publicly available DARPA1998 database

[9] . Despite its well-known problems [7,10,14] , DARPA1998 is
till extensively used in studies in the literature (see, e.g., [8] )

nd provides a reasonable benchmark for research studies. The

atabase consists of a nine-week air force environment simulation.

he data of the first seven weeks are used for training and of

he last two weeks for testing. For each day, DARPA1998 provides,

mong other files, a tcpdump file containing the network packets

nd a description file describing the classes for each connection. 

For the evaluation tests, only the DARPA1998 training data were

sed; the feature extractor was modified to label the network

acket classes according to the description file. The connection

lasses were divided according to Kendall’s [9] taxonomy; two

ttack groups were considered: probing and DoS. Table 7 presents

he network traffic distribution for the used classes in DARPA1998.

The rates presented for the attack and normal datasets were

btained using the test dataset ( Section 5.3 ), which was built using

he aforementioned stratification process. The following subsec-

ions present and discuss the results obtained using the traditional

ntrusion detection techniques and the proposed multi-objective

eature selection method. 

.4.1. Traditional model building process 

The traditional model building process was divided into two

roups: in one ( selection ) the traditional feature selection was

erformed and in the second ( no-selection ) it was not. 

The selection group relied on the traditional feature selection

ethod, as described in [3,38,39] . For this purpose, a wrapper-

ased GA feature selection method was used, the objective of

hich was to increase the accuracy in the validation dataset. The

A was used with 100 generations and 100 populations for each

eneration, a mutation probability of 3.3%, and a 60% crossover

robability. The no-selection group used the 50 extracted features

 Table 6 ) during the model building process. The classifiers were

eveloped using the Weka framework. 

To perform the traditional model building process, we consid-

red the approach normally used in studies in the literature [3] .

he no-selection and selection groups were trained, validated, and

ested using the known datasets ( Fig. 2 , Known Attacks, Known

ervices, and Known Services’ Content ), whereas the generated

odels were evaluated using the remaining datasets ( Fig. 2 ). The

resented rates were obtained from the test dataset, when the

ataset was also used for training ( Fig. 2 , Known datasets ), and

rom the entire dataset, when the dataset was used only for the

ests ( Fig. 2 , Similar, New , and Publicly Available datasets). The

btained attack detection rates are presented in Table 8 . 

The DT and NB classifiers could obtain a reasonable high

ccuracy rate in both the Probing and the DoS attack known datasets.

http://www.tcpdump.org
http://www.cs.waikato.ac.nz/ml/weka/
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Table 8 

Rates obtained for attack detection scenarios ( Table 3 ). 

Attacks Classifier Model Building Method Dataset 

attack known attack similar attack new 

Accuracy (%) FP (%) FN (%) Accuracy (%) FP (%) FN (%) Accuracy (%) FP (%) FN (%) 

Probing Decision Tree no-selection 99.99 0.02 0.00 98.62 0.04 2.72 64.66 0.09 70.59 

selection 99.99 0.00 0.02 93.70 0.04 12.57 53.30 0.00 91.39 

multi-objective (attack) 99.82 0.23 0.12 99.41 0.11 1.07 99.76 0.09 0.38 

multi-objective (normal) 99.93 0.01 0.13 99.27 0.04 1.42 74.56 0.05 50.83 

multi-objective (generalization) 99.88 0.15 0.09 99.66 0.11 0.57 96.34 0.16 7.17 

multi-objective (all) 99.87 0.13 0.13 99.29 0.04 1.38 96.12 0.02 7.73 

Naïve Bayes no-selection 99.75 0.27 0.22 99.04 0.15 1.76 57.38 0.18 85.06 

selection 99.99 0.01 0.00 99.37 0.00 1.26 65.72 0.02 68.54 

multi-objective (attack) 99.61 0.72 0.07 99.35 0.46 0.84 98.61 0.38 2.39 

multi-objective (normal) 99.88 0.12 0.12 98.80 0.19 2.22 62.18 0.14 75.51 

multi-objective (generalization) 99.47 0.66 0.41 96.90 2.68 3.52 90.92 2.32 15.84 

multi-objective (all) 99.67 0.45 0.21 97.76 1.26 3.22 92.03 1.13 14.80 

DoS Decision Tree no-selection 99.97 0.01 0.06 99.95 0.03 0.08 75.61 0.00 48.77 

selection 99.99 0.00 0.03 99.96 0.03 0.06 51.11 0.00 97.78 

multi-objective (attack) 99.99 0.01 0.01 99.91 0.15 0.03 92.59 0.23 14.59 

multi-objective (normal) 99.98 0.01 0.02 99.90 0.14 0.05 79.35 0.00 41.31 

multi-objective (generalization) 99.98 0.01 0.03 99.94 0.03 0.09 74.27 0.00 51.46 

multi-objective (all) 99.98 0.01 0.02 99.93 0.04 0.10 90.08 0.00 19.84 

Naïve Bayes no-selection 99.90 0.09 0.11 97.76 0.79 3.69 57.29 0.00 85.41 

selection 99.95 0.01 0.05 98.95 0.09 2.00 50.70 0.00 98.60 

multi-objective (attack) 99.92 0.00 0.15 98.10 1.96 1.83 88.68 0.70 21.94 

multi-objective (normal) 99.35 1.17 0.13 98.95 0.09 2.00 51.92 0.00 96.15 

multi-objective (generalization) 98.94 0.10 2.06 98.03 1.39 2.55 54.78 0.00 90.43 

multi-objective (all) 99.93 0.00 0.13 98.65 1.73 0.97 81.33 0.35 36.99 
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he average accuracy and FN rates for the known attacks for

oth Probing and DoS were 99.87% and 99.93% for the no-selection

roup and 99.99% and 99.97% for the selection group, respectively.

he traditional feature selection process ( selection ) improved the

lassification accuracy for known attacks by an average of 0.08%. 

However, in the similar attack datasets, it was possible to

bserve an increase in the FN rates. The worst classifier was DT

ith the selection method, which showed a 12.57% FN rate on

he Probing database, whereas NB with the no-selection method

howed a 3.69% FN rate. On average, the FN rate increased by

.97% and 2.06% with the selection and no-selection approach,

espectively. Thereby, it can be stated that the current approaches

n the literature can detect similar attacks with a small increase

n the FN rate, 3.01% on average. In most cases, the selection

pproach decreased the FN rate for detecting similar attacks;

he only case where the FN rate increased was that of DT on

he Probing database, which showed a 9.85% rate. The FP rates

emained almost unchanged, with an average increase of 0.09%

ith both model building methods; thus, it is possible to note

hat the used services ( Table 1 ) still present the same or similar

ehavior under different attacks. Finally, for detecting new attacks,

he FN rates significantly increased. 

The best FN rate was obtained by NB with the selection method

ith a 68.54% FN rate on the Probing dataset, whereas a 48.77%

N rate was obtained by DT with the no-selection method on the

oS dataset. The results show the inability of machine learning

ethods to detect new attacks in the evaluated scenarios. Neither

f the classifiers could maintain the obtained rates during the

odel testing on known attacks. The anomaly-based assumption

or detecting new attacks was not evidenced during the evaluation

ests, where the traditional detection approaches were used: the

N rate as compared to that of the testing phase, was increased by

2.46% and 89.05%, on average, for the no-selection and selection

ethods, respectively. 

The obtained background detection rates are presented in

able 9 . Each classifier and model building method could detect

nown services and known services’ content, reaching an average

 

P rate of 0.13% and 0.08%, respectively. The selection method

mproved the FP rate by 0.25% on average for known services’

ontent and by 0.14% for known services. 

For detecting new services, the FP rate greatly increased; in

eneral, the selection method increased the FP rate significantly:

0.82% on average against 6.03% with the no-selection method.

owever, for detecting similar and new services’ content, the

election method showed an average FP rate of 0.68% for both sim-

lar and new services’ content, whereas the no-selection method

howed an FP rate of 1.50% and 3.06% for similar and new services’

ontent, respectively. 

Finally, Table 10 shows the generalization evaluation performed

n DARPA1998. A significant increase in the FP and FN rates can

e observed when the model was used in a different scenario.

everal observations can be made from Tables 8–10 regarding the

raditional model building methods: 

• Both classifiers, regardless of the model building method used,

could detect known events (attacks, services, and services’

content). The worst detection rates were 99.75% for known

attacks, 99.67% for known services’ content, and 99.98% for

known services. 

• None of the classifiers could maintain its obtained accuracy

on the model building dataset for detecting new attacks. The

anomaly-based assumption for detecting new attacks was not

evidenced when the machine learning technique was used. 

• The traditional machine learning technique was able to detect

similar attacks ( Table 8 ; 1.97% and 3.95% FP rate increase for

the no-selection and selection methods, respectively), making

it a viable approach for detecting possible intrusion attempts,

provided that the attacks present a similar behavior. 

• In general, there was an FP increase for detecting new services

( Table 9 ; 13.42% average FP rate); however, the accuracy loss

was less than that observed for detecting new attacks ( Table 7 ;

80.77% average FN rate). 

• A small increase in the FP rate was evidenced for detecting new

services’ content ( Table 9 ; 2.80% and 0.67% FP rate increase for

the no-selection and selection methods, respectively); however,
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Table 9 

Rates obtained for normal detection scenarios ( table 5 ). 

Attacks Classifier Model building method Dataset 

normal known content normal similar content normal new content normal known service normal new service 

Accuracy 

(%) 

FP (%) FN (%) Accuracy 

(%) 

FP (%) FN (%) Accuracy 

(%) 

FP (%) FN (%) Accuracy 

(%) 

FP (%) FN (%) Accuracy 

(%) 

FP (%) FN (%) 

Probing Decision 

Tree 

no-selection 99.94 0.12 0.00 99.97 0.05 0.00 99.98 0.04 0.00 99.96 0.05 0.02 92.93 14.12 0.02 

selection 10 0.0 0 0.00 0.00 98.89 2.22 0.00 98.74 2.51 0.00 99.99 0.01 0.00 99.34 1.31 0.00 

multi-objective (attack) 99.90 0.20 0.00 99.81 0.37 0.00 99.73 0.54 0.00 99.91 0.14 0.03 98.50 2.98 0.03 

multi-objective (normal) 99.99 0.01 0.00 99.99 0.01 0.00 99.99 0.01 0.00 99.97 0.01 0.05 99.92 0.11 0.05 

multi-objective (general) 99.92 0.07 0.09 98.85 2.22 0.09 97.30 5.31 0.09 99.86 0.23 0.05 86.41 27.13 0.05 

multi-objective (all) 99.95 0.08 0.02 99.93 0.11 0.02 99.96 0.07 0.02 99.94 0.05 0.02 99.84 0.27 0.05 

Naïve 

Bayes 

no-selection 99.67 0.52 0.14 98.31 3.23 0.14 96.90 6.05 0.14 99.83 0.31 0.03 96.96 6.05 0.03 

selection 99.99 0.02 0.00 99.81 0.37 0.00 96.96 0.08 0.00 99.99 0.01 0.00 79.43 41.15 0.00 

multi-objective (attack) 99.54 0.93 0.00 98.08 3.93 0.00 96.55 6.90 0.00 99.37 1.27 0.00 96.06 7.87 0.00 

multi-objective (normal) 99.94 0.04 0.08 99.92 0.09 0.08 99.91 0.11 0.08 99.97 0.02 0.03 99.46 1.05 0.03 

multi-objective (general) 99.56 0.68 0.22 97.88 4.03 0.22 95.02 9.74 0.22 98.73 2.41 0.13 98.88 6.12 0.13 

multi-objective (all) 99.61 0.64 0.13 98.13 3.60 0.13 96.55 6.77 0.13 98.94 2.05 0.08 96.50 6.92 0.08 

DoS Decision 

Tree 

no-selection 99.99 0.03 0.00 99.98 0.04 0.00 99.97 0.05 0.00 98.98 0.02 0.02 99.78 0.43 0.02 

selection 10 0.0 0 0.01 0.00 99.97 0.07 0.00 99.98 0.04 0.00 10 0.0 0 0.01 0.00 98.27 3.46 0.00 

multi-objective (attack) 99.96 0.03 0.04 99.94 0.08 0.04 99.90 0.15 0.04 99.93 0.09 0.04 93.33 13.29 0.04 

multi-objective (normal) 99.98 0.03 0.02 99.99 0.01 0.02 99.98 0.02 0.02 99.99 0.00 0.02 99.98 0.02 0.02 

multi-objective (general) 99.96 0.06 0.02 99.97 0.05 0.02 99.98 0.03 0.02 99.97 0.05 0.01 99.98 0.04 0.01 

multi-objective (all) 99.96 0.03 0.05 99.92 0.11 0.05 99.91 0.13 0.05 99.94 0.07 0.05 99.92 0.12 0.05 

Naïve 

Bayes 

no-selection 99.50 0.36 0.65 98.33 2.69 0.65 96.63 6.08 0.65 99.64 0.20 0.51 97.99 3.50 0.51 

selection 10 0.0 0 0.00 0.00 99.98 0.04 0.00 99.95 0.09 0.00 10 0.0 0 0.00 0.00 81.30 37.35 0.00 

multi-objective (attack) 98.91 0.49 1.69 98.07 2.16 1.69 98.71 0.89 1.69 99.35 0.29 1.02 92.37 14.23 1.02 

multi-objective (normal) 99.99 0.00 0.03 99.98 0.02 0.03 99.98 0.02 0.03 99.99 0.00 0.03 99.82 0.34 0.03 

multi-objective (general) 98.93 0.04 2.11 98.32 1.26 2.11 97.20 3.48 2.11 98.93 0.02 2.12 91.91 14.06 2.12 

multi-objective (all) 99.86 1.20 0.08 98.98 1.95 0.08 98.09 3.74 0.08 99.77 0.13 0.32 98.73 1.74 0.32 

Table 10 

Rates obtained for generalization evaluation. 

Attacks Classifier Model building method Accuracy (%) FP (%) FN (%) 

Probing Decision Tree no-selection 86.97 15.20 10.85 

selection 90.38 8.86 10.36 

multi-objective (attack) 81.55 31.80 5.11 

multi-objective (normal) 86.79 15.78 10.63 

multi-objective (general) 98.42 2.89 0.27 

multi-objective (all) 96.25 7.24 0.27 

Naïve Bayes no-selection 75.93 48.12 0.00 

selection 78.56 33.29 9.59 

multi-objective (attack) 83.77 32.43 0.00 

multi-objective (normal) 68.75 7.91 54.59 

multi-objective (general) 97.29 5.43 0.00 

multi-objective (all) 96.43 7.15 0.00 

DoS Decision Tree no-selection 38.98 30.47 91.57 

selection 99.41 0.00 1.18 

multi-objective (attack) 94.56 10.89 0.00 

multi-objective (normal) 85.23 29.54 0.00 

multi-objective (general) 99.90 0.20 0.00 

multi-objective (all) 99.36 1.29 0.00 

Naïve Bayes no-selection 82.71 34.56 0.01 

selection 84.26 31.19 0.29 

multi-objective (attack) 81.82 29.28 7.09 

multi-objective (normal) 93.53 12.77 0.05 

multi-objective (general) 99.66 0.52 0.16 

multi-objective (all) 95.23 8.57 0.97 
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in most cases, the classifiers were able to correctly distinguish

the classes. 

• When using the obtained classifiers in a different environment

( Table 10 ), the detection accuracy significantly decreased, even

for detecting known attacks; in most cases, the model became

scenario-dependent. 

The proposed evaluation method allowed the common as-

sumptions presented in the literature to be verified. Moreover, it

allowed rich intrusion detection properties to be obtained from

the intrusion detection, which helps experts determine whether

their systems are reliable for open-world usage or not. 
During the evaluation tests using the traditional machine

earning model building techniques it was observed that, when a

lassifier faced known events, it presented a reasonable accuracy

ate. The results showed a decrease in accuracy when a classifier

aced similar events; the effect on accuracy further increased

hen a classifier faced new attacker and client behaviors. The

ext subsection evaluates our proposed multi-objective feature

election method ( Section 4.3 ). 

.4.2. Multi-objective feature selection 

In our proposed multi-objective feature selection method for

ntrusion detection systems ( Section 4.3 ), we used the well-known
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Table 11 

Rates obtained for each considered objective. 

Attacks Classifier Model building method attack rate normal rate gen rate 

Probing Decision Tree no-selection 87.76 98.56 86.97 

selection 82.33 99.39 90.38 

multi-objective (attack) 99.66 99.57 81.55 

multi-objective (normal) 91.25 99.97 86.79 

multi-objective (general) 98.63 96.47 98.42 

multi-objective (all) 98.43 99.92 96.25 

Naïve Bayes no-selection 85.39 98.33 75.93 

Selection 88.36 95.24 78.56 

multi-objective (attack) 99.19 97.92 83.77 

multi-objective (normal) 86.95 99.84 68.75 

multi-objective (general) 95.76 98.01 97.29 

multi-objective (all) 96.49 97.95 96.43 

DoS Decision Tree no-selection 91.84 99.74 38.98 

Selection 83.69 99.64 99.41 

multi-objective (attack) 97.50 98.61 94.56 

multi-objective (normal) 93.08 99.98 85.23 

multi-objective (general) 91.40 99.97 99.90 

multi-objective (all) 96.66 99.93 99.36 

Naïve Bayes no-selection 84.98 98.42 82.71 

Selection 83.20 96.25 84.26 

multi-objective (attack) 95.57 97.48 81.82 

multi-objective (normal) 83.41 99.95 93.53 

multi-objective (general) 83.92 97.06 99.66 

multi-objective (all) 93.30 99.09 95.23 
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SGA-II [18] algorithm. As previously described ( Section 4.3 ), we

onsidered three objectives during our model building process:

he attack rate ( Eq. (1 )), normal rate ( Eq. (4 )), and generalization rate 

 Eq. (5 )). NSGA-II operates by minimizing the objectives; thus, for

he purposes of our tests, we considered the obtained error rate

n our evaluation tests. The same set of parameters used by the

raditional feature selection process was used ( Section 5.4.1 ): 100

enerations and 100 populations for each generation, a mutation

robability of 3.3%, and a 60% crossover probability. 

As stated in Section 4.3 , the desired objective must be defined

ccording to the administrator’s needs. Thus, for test purposes,

our operation points were chosen: attack, normal, generalization ,

nd all . Each chosen operating point presented the lowest error

ate related to its objective: attack presented the lowest attack rate 

 Eq. (1 )) error rate, normal presented the lowest normal rate ( Eq.

4 )) error rate, generalization presented the lowest generalization rate 

 Eq. (5 )) error rate, and finally, all presented the lowest error rate

onsidering all objectives. 

The obtained objective rates are presented in Table 11 . The pro-

osed multi-objective feature selection achieved the best results

n all cases for detecting its considered objective. 

The multi-objective (attack) operation point improved the

ttack rate in all cases. As compared to the traditional selection

ethod, it improved the attack rate by 17.33% and 10.83% for the

T and NB classifiers on the Probing dataset, respectively, while

mproving it by 13.81% and 12.37% for the DT and NB classifiers

n the DoS dataset, respectively. On average, the multi-objective

attack) improved the attack rate accuracy by 10.49% and 13.59% for

he no-selection and selection methods, respectively. As compared

o the other operation points, multi-objective (attack) improved the

ttack rate accuracy by 5.54% on average. 

In the individual attack detection accuracy ( Table 7 ), a signif-

cant improvement can be observed. The multi-objective (attack)

perating point significantly improved the detection of similar

nd new attacks. On average, it improved by 0.77% and 0.27%

or similar attacks as compared to the traditional model building

ethods and the other operating points, respectively. For the de-

ection of new attacks, the multi-objective (attack) operating point

nabled the detection of new attacks in most cases, improving

he detection rate of new attacks by 35.44% as compared to the
raditional model building methods and by 16.25%, on average, as

ompared to the other operating points. 

Finally, it is possible to note a tradeoff between the attack rate 

bjective and the other objectives. In most cases, the multi-

bjective (attack) operation point reduced the accuracy of the

ther objectives; as compared to the other operation points, the

nly case where the objective was improved was for the DT clas-

ifier on the Probing dataset, showing an improvement of 0.78% on

verage for the normal objective. On average, the tradeoff between

bjectives when the attack objective was considered was −0.62%

or normal detection and −7.65% for the generalization objective. 

The multi-objective (normal) operation point slightly improved

he normal rate objective as compared to the other techniques in

ll cases. The multi-objective (normal) operation point improved

he detection of normal events on average by 1.74% and 1.44% as

ompared to the traditional model building methods and the other

perating points, respectively. These small accuracy improvements

ccurred as a result of the models’ capacity to detect normal

vents with little or no effect on accuracy ( Section 5.4.1 ). It is

ossible to note a significant tradeoff between the detection of

ormal events and attack events, and generalization. On average,

s compared to the other operating points, when the multi-

bjective (normal) operation point was considered the detection of

ttacks was reduced by 6.87%, whereas the model generalization

apacity decreased by 10.11%. 

The multi-objective (generalization) operation point significantly

ncreased the generalization rate in all scenarios. As compared to

he traditional model building techniques, the multi-objective

generalization) operation point presented, on average, a 19.17%

igher accuracy rate, while it was increased, on average, by 10.21%

s compared to the other operation points. Regarding the multi-

bjective (generalization) operation point tradeoff, on average, it

as evidenced that there was a decrease in the attack detection

ate of 6.48% and 8.35%, whereas for the normal detection, there

ere an increase of 0.32% and a decrease of 0.99% for the tra-

itional model building methods and the other operating points,

espectively. Thus, to provide generalization, a significant tradeoff

etween attack and normal detection rates is required. However,

he most important point pertaining to generalization was that an

ld benchmark database was used, because if the generalization
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Fig. 8. Multi-objective operation points for probing attacks. The operation points are shown in terms of the objective error rate; the operation points for each objective are 

chosen according to their lowest error rate point. 
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rate results are good, it means that the proposed database is

equivalent to the old one. Therefore, we can use an updated

database to test recent attacks. 

Finally, the multi-objective (all) operation point was aimed to

improve all the considered objectives. When considering all the

objectives, an improvement of 9.49% was shown: the average

detection rate was 97.42%, whereas the average detection rate for

all the objectives using the traditional model building methods

was 87.93%; when the other operating points were considered, the

average detection rate was 93.68%. 

Fig. 8 shows the operation points through our method for the

detection of probing attacks. It can be noticed that the generaliza-

tion capacity increases while the attack detection rate decreases.

However, the detection of normal events does not significantly

decrease the system generalization capacity. Similar behavior was

observed for the detection of DoS attacks. 

6. Conclusion 

The constantly increasing number of network threats demands

security approaches that are reliable. Thus, over the last few

years, a great number of research studies has been conducted on

anomaly-based intrusion detection; however, despite the promis-

ing results, this technique is hardly used in production. To improve

this situation, this paper presented three contributions for devel-

oping reliable anomaly-based intrusion detection systems. Initially,

we proposed a new tool-based intrusion database creation method

that is aimed to produce databases that can easily be updated,

reproduce real and valid traffic, are representative, and are pub-

licly available. Through the proposed intrusion database creation

method, a new evaluation scheme specific to the machine learning

intrusion detection field was presented. This scheme allowed each

of the common assumptions in the literature to be validated,

such as that new events and new services are detected. Finally,

to provide a reliable anomaly-based intrusion detection system,

we presented and evaluated a multiple objective feature selection

method. The evaluation approach allows a system administrator

to establish the real capacity of a system for detecting each of the

common properties in any production environment. 

All the data presented in this paper are publicly available for

download at: https://secplab.ppgia.pucpr.br/trabid . 
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