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Automatic plant classification is challenging due to the vast biodiversity of the existing plant species in a
fine-grained scenario. Robust deep learning architectures have been used to improve the classification
performance in such a fine-grained problem but usually build models that are highly dependent on a
large training dataset and are not scalable. This paper proposes a novel method based on a two-view leaf
image representation and a hierarchical classification strategy for fine-grained plant species recognition.
It uses the botanical taxonomy as a basis for a coarse-to-fine strategy applied to identify the plant genus
and species. The two-view representation provides complementary global and local features of leaf
images. A deep metric based on Siamese Convolutional Neural Networks is used to reduce the depen-
dence on many training samples and make the method scalable to new plant species. The experimental
results on two challenging fine-grained datasets of leaf images (i.e., PlantCLEF 2015 and LeafSnap) have
shown the proposed method’s effectiveness, which achieved recognition accuracy of 0.87 and 0.96,
respectively.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Automated plant classification concerns the recognition of plant
images into botanical species by applying machine learning algo-
rithms [12,31,45]. The classification task may be performed on an
entire plant’s image or just on parts of it, such as branches, flowers,
fruits, leaves, or stems. This pattern recognition task’s main chal-
lenge is related to the vast biodiversity of the existing plant spe-
cies. It is possible to observe the likeness between different
species (high inter-class similarity) and sometimes significant dif-
ferences among samples belonging to the same species (high intra-
class variability). The blue dotted rectangle in Fig. 1 shows an
example of the possible similarity among different species. In con-
trast, the red line rectangle presents an example of the difference
between samples of the same species caused by shape, color, and
texture changes. Such variability is usually caused by the plant
maturity or even pose and illumination variation that may result
from the image acquisition process. On top of that, there is the
unbalancing data problem since some species are scarce in the
flora environment and the scalability constraint, as the number
of plant species being discovered by scientists is continuously
growing.

In the literature, one may find some important strategies to deal
with such difficulties inherent to the plant species recognition
[9,42,47,48]. However, in the last years, methods based on fine-
grained image classification (FGIC) have received special attention
from the scientific community [5,14,33,38]. Such methods consist
of discriminating between classes in a subcategory of objects, such
as birds, animals, or vehicle models. Different from the traditional
image classification methods, FGIC methods recognize coarse
classes firstly. Then, it goes further by discriminating fine classes
in which the classification difficulty is greater due to intra-class
and inter-class variability like those observed in plant species.
FGIC-based methods may explore the taxonomic relationship
between the plant classes, which are hierarchically organized
based on shared biological characteristics [32] into three levels of
abstraction: family, genus, and species. Exploring these characteris-
tics may help us distinguish very similar classes by first selecting
candidates in a coarse level of the hierarchy, which can be distin-
guished in the finest level of the hierarchy (coarse-to-fine strat-
egy). The visual recognition of leaves carried out by domain
experts is generally based on this hierarchical strategy, the so-
called ”plant taxonomy relationship” [35].

With this in mind, we propose in this paper a two-view similar-
ity learning strategy for the fine-grained plant classification, which
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Fig. 1. Intra-class and inter-class problem. Inter-class (blue dotted rectangle), has
species very similar and intra-class (red line rectangle) contains variations like
background, occlusion, pose, color, illumination and plant maturity stages inside
the same species.
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consists of two stages that exploit different views of the leaf
images. In the first stage, a coarse classification by plant genus is
carried out using a deep metric based on a Siamese Convolutional
Neural Network (S-CNN) to compute the similarity between a test-
ing sample and the reference images previously defined for each
plant genus. The deep metric learned from pairs of images provides
the distance between two image samples represented by an
unknown plant image and the genus reference images. At this
stage, the entire leaf image is used, i.e., the S-CNN model’s input
is the whole leaf image characterizing a global view in terms of
problem representation. The output of this stage is a ranked list
of the best genus reference candidates.

In the second stage, a fine classification of plant species is per-
formed. Similarly, an S-CNN is used as a deep metric. The similarity
is computed between the cropped test sample and the cropped ref-
erence images representing the plant species in the ranking genus
candidates list returned by the first stage. Here, a local representa-
tion (view) of the leaf image is used, i.e., the S-CNN receives as
input a cropped image extracted from the center of the leaf image.
The second stage’s output is a final ranked list of plant species
obtained by combining both stages’ results.

The rationale behind the two-view scheme is to provide differ-
ent representations of the problem. In the first view, the similarity
computed by the S-CNN takes into account global features
extracted from the entire leaf image (shape and color). In contrast,
in the second view, local features based on texture and the plant
veins are considered. Such a representation strategy allows us to
treat some specific issues of the leaf classification problem. For
instance, species of plants inside the same taxonomy level (e.g.,
genus) may look similar in terms of global features. Still, they pre-
sent imperceptible tiny local changes in their texture and vein pat-
terns that are important to characterize their species. Using a
hierarchical classification decreases the number of classes to be
evaluated in a coarse-to-fine strategy, reducing the complexity of
the plant recognition task.

We carried out extensive experiments and compared the pro-
posed method with state-of-the-art handcrafted approaches and
methods based on deep learning using different CNN architectures.
AlexNet[23], GoogLeNet[40] and VGG16[34] networks were
selected as baseline of plant leaf recognition model, and transfer
learning was used. For this purpose, a robust experimental protocol
was defined based on two challenging fine-grained datasets of
plant leaf images: PlantCLEF 2015 [19], and LeafSnap [24]. In most
experiments, the proposed method outperforms several existing
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methods by achieving superior classification accuracy using few
samples to compute the similarity between images. The learned
model proposed does not need to be retrained when new plant
species are added, which makes the proposed method highly
scalable.

The contribution of this paper is fourfold: (i) the two-view rep-
resentation of plant species enables the capture of the leaves’
coarse and fine features, which are very useful to distinguish
among different genus and different species, respectively; (ii) a
slight comparative evaluation between deep models (AlexNet,
GoogLeNet, and VGG16) and deep metric (S-CNN); (iii) the pro-
posed method exploits the natural hierarchy of the problem com-
bining coarse and fine representations into a hierarchical strategy
that reduces the complexity of the classification task as a lower
number of classes need to be disambiguated at each hierarchical
level; (iv) the proposed method is highly scalable as new plant spe-
cies can be easily added using few samples without retraining the
S-CNN models. This is highly desirable in plant classification,
where the number of new plant species is continuously growing,
and the new ones often have few examples for training.

The paper is organized as follows. Section 2 reviews the rele-
vant literature in plant classification. In Section 3, the proposed
method is described in detail. Section 4 presents our experimental
findings on plant classification. Finally, Section 5 presents our con-
clusions, future work perspectives, and final remarks.
2. Related Work

Recently, studies on plant classification based on image pro-
cessing have become an interesting research topic in computer
vision [4,5,11,17,46]. In the literature, there are many datasets that
can be employed to evaluate plant classification methods such as
Flavia [45], Foliage [20], Swedish [37], LeafSnap [24], PlantCLEF
[19], ICL [38], and MalayaKew [26]. These datasets represent the
problem domain well, exposing the many difficulties such as
fine-grained complexity, imbalanced distribution, large intra-
class variability, small inter-class variability, and noisy images.

One may find in the literature several contributions to plant
species recognition. Naresh and Nagendraswamy [29] introduced
a symbolic approach based on textural features extracted from leaf
images for plant species recognition. A modified local binary pat-
tern was proposed to extract features, and the classification was
performed using a simple nearest neighbor classifier. Besides, the
concept of clustering was used to define multiple class representa-
tives by grouping similar leaf samples using a threshold to create
clusters to decrease the intra-class variation. However, in their
experiments, they observed the need to incorporate features
extracted from other leaf views to improve the recognition accu-
racy. Aakif and Khan [1] proposed a shape-defining feature, which
is combined with morphological and Fourier descriptors. These
features were used with artificial neural networks. The method
was evaluated on a proprietary dataset of 14 classes and on Flavia
and ICL datasets. Their emphasis was more related to the perfor-
mance in terms of computational time than the recognition
accuracy.

Fine-grained recognition is a challenging problem that consists
of recognizing subordinate categories such as species of birds [15],
dog breeds [21] and flower species [3]. Over the past decade, fine-
grained recognition has achieved high-performance levels thanks
to the combination of deep learning techniques with large anno-
tated training datasets [44]. Some recent works have considered
deep learning techniques for fine-grained plant classification
[5,7,25]. In particular, Barré et al. [7] and Lee et al. [25] have shown
how convolutional neural networks (CNN) learn representations
from plant leaf images using a deconvolutional approach. The most
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important finding is that shape information alone is not a good
choice due to similar leaf contours, especially in closely related
species. Therefore, it is important to exploit other kinds of features
that may be present in leaf structure. Araújo et al. [5], explored two
types of feature representations of the plant leaf using deep mod-
els. The first representation considered the entire image of the
plant. After that, the central region of the image is cropped and
highlight as the second representation. The approach used a hier-
archical classification responsible for combining the outputs of glo-
bal (entire images) and local (cropped images) features. The
features are extracted by the GoogLeNet CNN model pre-trained
on the ImageNet dataset. As a result, the authors showed an effi-
cient use of the hierarchical classification instead of a traditional
classification. Moreover, the two representations of leaves con-
tributed to the complementarity of features. Despite that, in some
cases, the combination of hierarchy levels using product fusion
rule was not sufficient to discriminate species with similar charac-
teristics due to not control the number of categories taken to the
second level of the hierarchy. The CNN approach also depends on
a huge quantity of data to create a robust deep model to handle
unbalanced data. They achieved 0.86 using S metric in the final
recognition performance for PlantCLEF 2015 dataset employing
the data augmentation technique.

As observed in several works, CNN models usually need a high
amount of data for training [18,30,41]. For instance, Barbedo [6]
analyzed the impact of the number of training samples on a CNN’s
accuracy, and he found out that it requires a substantial number of
training data to provide solid results. Barré et al.[7] described an
approach based on CNNs for the plant classification, which
employs data augmentation based on low-level transformations
applied to the leaf images such as shifting, scaling, and rotation.
They correctly recognized 86.3% of the 184 species on the LeafSnap
dataset. The resulting CNN model needs to be retrained to include
new plant species, which is a time-consuming process. Barré et al.
[7] has also pointed out that most of the misclassified plants
belonged to species that show strong visual similarities. Zhu
et al. [48] introduced a two-way attention hierarchical model using
CNNs. The first attention way consists of recognizing the family
level based on plant taxonomy. The second attention way is to find
a discriminative part of an input image by a heat-map strategy.
They conducted experiments in Malayakew and ICL datasets, and
the CNN with Xception architecture achieved an accuracy of 99%
in both datasets. They used 90% of the datasets for training and
the 10% reminding to test. Although the authors stated that they
do not use any data augmentation strategy, they have balanced
the training dataset. Thus, each class has a roughly equal number
of samples.

A fine-grained classification approach may provide as output
just a single class probability or a set of classes so-called
‘‘confidence-sets”, which include the true class at a given confi-
dence level. To this end, an input image is classified, and the top-
k best-ranked classes are selected as the confidence-set. Sfar
et al. [33] proposed a hierarchical classification of plants, in which
they measured the posterior probabilities for each node of the hier-
archy and then created the confidence-set using a confidence
threshold. The experiments were carried out on four datasets,
where three of them have a balanced number of samples per class
in the training set. However, they observed a poor performance on
the PlantCLEF 2011 dataset, which is imbalanced, since their strat-
egy employed approach fails to recognize the species with few
training samples.

Wang and Wang [43] used a few-shot learning method based
on Siamese Convolutional Neural Network (S-CNN) to recognize
leaf plants. The Euclidean metric was used to measure the distance
between features. The structure of GoogLeNet inspired the S-CNN
used by [43]. They evaluated the proposed method on Flavia,
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Swedish, and LeafSnap datasets. They used a small number of
learning samples. The experimental results have shown that the
highest classification accuracies (95.32%, 91.37%, and 91.75% for
Flavia, Swedish and Leafsnap datasets, respectively.) were achieved
using models trained with 20 samples per class. Zhi-Yong et al.
[47] also used S-CNN for plant recognition. They proposed a spatial
structure using a deep metric. The S-CNN was used to learn an
embedding with similar and dissimilar pairs. Similar pairs were
formed using the same plants’ organs, and different species of
plants organize different pairs. They used the PlantCLEF 2015,
and the result was 0.84 using S metric, surpassing all other meth-
ods. It is worth mentioning that recurrent neural networks were
used to model the spatial structure. Recently, Figueroa-Mata and
Mata-Montero [13] proposed a way to learn a similarity metric
that discriminates plant species. They compared whether S-CNN
models are better than CNN models regarding the performance
and computational cost. Also, new species (20 leaves of Costa Rican
dataset) never seen by the model S-CNN were evaluated without
retraining the proposed model. In their first experiment, they con-
clude that for datasets with fewer than 20 images per species, the
S-CNN performed better than CNN in the context of plant recogni-
tion besides the fact of having a lower computational cost. The sec-
ond experiment has shown that S-CNN can generalize to other
plant species without retraining the model.

To the best of our knowledge, from the existing methods in the
literature [7,16,27,39], only Wang and Wang [43], Zhi-Yong et al.
[47] and Figueroa-Mata and Mata-Montero [13] have exploited
deep metrics to compute the similarity between plant images.
However, no previous work uses a two-view similarity scheme
combined with a fine-grained classification of plants. Plant hierar-
chy and similarity learning make our method more accurate and
scalable, as shown in the next sections.
3. Proposed Approach

We propose a fine-grained approach for the classification of
plant species from the leaf image. The coarse-to-fine classification
strategy unveils the plant genus in the first stage and then its spe-
cies in the second stage as illustrated in Fig. 2. In the first stage, a
coarse classification according to the plant genus is carried out
using a deep metric based on a Siamese Convolutional Neural Net-
work (named S-CNN (A)). It computes the similarity between a leaf
image Xl and reference images Xr previously chosen to represent
each plant genus. Features are extracted by the sub-networks of
the S-CNN (A) employing the entire leaf image, which is considered
the first view of the proposed approach. The rationale behind that
is to compute the similarity between a test image and the genus
reference images, assuming a global view of the plant, i.e., repre-
senting the leaf by general features such as the leaf shape and
color. The first stage’s output is the k-best genus candidates orga-
nized as a ranked genus reference list Rk, ordered by the similarity
distance. We determine the k-best genus candidates in the first
stage by computing the distance between the test image and each
genus’ reference. Then, we calculate wi as the frequency of the i-th
genus in the list of k-ranked candidates (Rk). We use such fre-
quency information in the second stage to weigh the genus in
the fusion process.

In the second stage, given the k-best genus candidates found in
the first stage, a fine classification considering only the plant spe-
cies which belong to such best candidate genus is performed. Sim-
ilarly, an S-CNN is used as a deep metric, but now the S-CNN (B) is
computed on a different view of the leaf images that consider a
local representation (second view). For such an aim, the S-CNN
(B) receives as input a cropped image extracted from the center
of the leaf image. The idea behind this strategy is to perform a fine



Fig. 2. Overview of the S-CNN proposed method for fine-grained recognition of plant species from the leaf image.
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classification of plant species based on an adequate representation
of the leaf image that focuses on local details such as the texture
and the vein patterns that are usually present in the central part
of leaves. The second stage’s output is a ranked list F of plant spe-
cies, which is weighted by the first stage’s output, as shown in
Fig. 2. In the next sections, we present the proposed method in
detail.
3.1. S-CNN Learning

The similarity between the reference patterns and the leaf
image is computed in both representation stages of the proposed
method using an S-CNN [10]. The difference between the deep
metric learning of both stages is that the S-CNNs are trained in dif-
ferent taxonomic groups and views of the leaf image. At the first
stage, the S-CNN (A) is trained on the entire leaf image considering
the genus group, while in the second stage (S-CNN (B)), only a
square region that is taken from the central area of the leaf image
is used to train the species group. In other words, we have two sia-
mese nets, S-CNN (A) and S-CNN (B), similarly trained using differ-
ent views in each taxonomic group (genus-to-species strategy).

Both S-CNNs are composed of two sub-networks that are one of
the baselines CNN architectures presented in Section 3.2. Such
twin CNNs are pre-trained on the ImageNet dataset and have
shared weights. The original output layer of the pre-trained base-
line CNN has 1,000 units that compute the class scores. Such an
output layer is replaced by a layer that computes a distance metric
between the last fully connected layers of each Siamese twin (Eq.
1). An image pair (Xleft;Xright) is the input of the S-CNN (A) and
(B). We fine-tune the pre-trained baseline S-CNN model with pos-
itive and negative pairs of leaf images, minimizing the loss function
denoted in (Eq. 2). The positive and negative pairs are generated
from each leaf plant dataset samples (see Table 3) to train the S-
CNNs how to differentiate the leaf species. An overview of the iter-
ative training algorithm [36] used to learn the deep metric models
is presented in Algorithm1.
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Algorithm1: Training algorithm.

As one can see, for each training epoch, a Batch structure con-
taining image pairs and the corresponding labels (1-same class,
0-otherwise) is created using the image training dataset (XT ; yT)
(line 2). Then, the S-CNN extracts the feature vectors f l and f r from
the images Xleft and Xright , respectively. Line 7 computes the L1 dis-
tance between the extracted feature vectors (f l; f r), as denoted in
Eq. 1, where M is the feature map size.

L1ðf l; f rÞ ¼
XM�1

k¼0

jjf l;i � f r;ijj ð1Þ

According to [2], the L1 distance is consistently more preferable
than other distance metrics (e.g., Euclidean and cosine distance)
for high-dimensional vectors. For instance, when using a VGG16
to compose the S-CNN, we have feature vectors of 4,096 entries.
Besides, the work that gave worldwide visibility for Siamese Net-
works uses the L1 distance [22].

The computed distance (dw, in line 7) is the input of the last S-
CNN layer in which the loss is computed (line 8), as described in
Eq. 2.



Fig. 4. The architecture of GoogLeNet.

Fig. 5. The architecture of VGG16.
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Loss ¼ �½y logðdwÞ þ ð1� yÞ logð1� dwÞ� ð2Þ
where y is the image pair label (1 or 0). Finally, we update the net-
work parameters (line 9).

3.2. Pre-trained CNN Baseline

We have selected a pre-trained CNN model to compose our Sia-
mese Neural Network based on a set of experiments described in
Section 4.3.1. The following CNN architectures were evaluated:
AlexNet, GoogLeNet, and VGGNet.

Hinton and Alex Krizhevsky created AlexNet. The architecture
of AlexNet used in this work is shown in Fig. 3. The network archi-
tecture contains eight weighted layers, the first five being the con-
volutional layers, and the remains are three (3) fully connected
layers. Normalization and pooling layers follow the first two con-
volutional layers. A single pooling layer follows the last convolu-
tional layer. The third, fourth, and fifth convolutional layers are
connected directly. The second fully connected layer is provided
to the softmax classifier with the numbers of class labels. ReLU,
as the activation function of the first two fully connected layers
(fc6, fc7), generates 4,096 values. Finally, the output of the seventh
layer of 4,096 data is fully connected to the (n) neurons in the
eighth layer (fc8), which (n) represents the number of classes. After
training, it (fc8) outputs (n) floating-point values, the predicted
result.

GoogLeNet was the winner of the ILSVRC 2014 competition,
which carried out a top-5 error of 6.67%. It demonstrated the effi-
ciency to deal with tasks extremely hard for humans, achieving
good performance with a low error accuracy. GoogLeNet imple-
ments a different way of a network. It incorporates a modern sec-
tion, which is named as inception module. The inception module
uses variable receptive fields, which were created by different ker-
nel sizes. These receptive fields created operations that captured
sparse correlation patterns in the new feature map stack. GoogLe-
Net consisted of 22 layers in total, which was far greater than any
network before it. For instance, GoogLeNet drastically reduces the
number of parameters, which is only 1/12 of AlexNet. The overall
structure of the GoogLeNet network is shown in Fig. 4. As shown
in Fig. 4, the inception module (M1 until M9) is used on GoogLeNet.
The main idea of inception is to localize an optimal local sparse
structure and address it as an approximate dense component.
The inception module adopts multiple convolutions (1�1, 3�3,
5�5) mixed with the max-pooling layer, which then combines
the convolution and pooling results, making GoogLeNet different
from a traditional multi-channel convolution. To avoid the heavy
computation and over-fitting due to a large number of network
parameters in the fully connected layers, it directly uses the strate-
gies of averaging pooling and dropout after the inception module,
which plays a role in reducing the dimension, as well prevents
over-fitting to some extent. In this work, there are a total of nine
inception models in GoogLeNet architecture. One can find a more
detailed overview of this architecture in [40].

VGGNet, developed by Simonyan and Zisserman, was the run-
ner up of the 2014 ILSVRC competition. VGG has been upgraded
based on AlexNet. The entire network remains the size of 3�3 con-
volution kernel and 2�2 max-pooling sizes. The structure of VGG is
shown in Fig. 5. VGG contains five blocks of convolutional layers
Fig. 3. The architecture of AlexNet.
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interchanged with five max-pooling layers, followed by two fully
connected layers and an output layer. The first two blocks have
two convolutional layers with 64 and 128 filters, respectively.
The other two blocks have three convolutional layers with 256,
512, and 512 filters, respectively. All filters have size 3�3, and
the max-pooling layers have pool size and stride 2. VGG is the most
popular option in the literature for extracting features from
images. However, VGGNet has 138 million parameters, which
can be a bit difficult to employ. In the literature, extensions of
VGGNet are presented (VGG16 and VGG19). In our work was used
VGG16 which consists of 16 deep convolutional layers.
3.3. Hierarchical Classification Strategy

A coarse-to-fine classification is performed considering the
hierarchical botanic taxonomy of plants. To this end, in the first
stage of hierarchical classification schema in Fig. 2, the test leaf
plant is classified using S-CNN (A) model according to its genus,
then its species is defined with S-CNN (B) on the second stage.
For each species, we have randomly selected some supervised sam-
ples as reference images. The number of reference images per spe-
cies was experimentally defined (from 1 to 6). The reference
images for each genus are those selected for each of its species. A
ranked list (Rk) of the genus references is the output of the first
stage, generating the k-best genus candidates of our hierarchical
classification corresponding to the coarse classification step, which
is based on the global representation of the leaf image. The k-best
genus candidates are used to select the species to be evaluated in
the second stage of the hierarchical classification, which is done
considering the leaf image’s local representation. Finally, the genus
(coarse classification) and species (fine classification) are com-
bined to produce a final ranked list F of the best plant species’
hypotheses.

It is worth mentioning that the references for a genus are ran-
domly selected from the training samples but contemplating each
of its species. For this purpose, the selection algorithm tries to have
at least one reference for representing each species inside the
genus. For example, the genus Prunus has three (3) species, so
the algorithm randomly took two (2) different samples of each spe-
cies to form the set of six (6) references. It is important to say that
the datasets used have a maximum of 6 species per genus. How-
ever, even if a genus has more species than the number of refer-
ences considered in the system, we can see promising results
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(see our experiments with less than six references in Tables 7 and
8). In most cases, visual characteristics are relatively similar for
families and genus in plant species context.

With this hierarchical classification, we can better deal with the
inter-class and intra-class variations observed in the plant species
context. For instance, in Fig. 6a, four samples of plants are plotted
in the global view space without considering the plant hierarchy.
In such a scenario, the discrimination must be carried out among
all species, making more difficult the discrimination between spe-
cies with similar characteristics, which increases the complexity of
the problem. The hierarchical strategy alleviates the intra-class and
inter-class problems, clustering the leaves which have similar
characteristics. For instance, by grouping the similar leaves in
Fig. 6b, we can see that the species belong to three different genus
groups (G1;G2 and G3). When the hierarchy is considered (the
genus is used), the classification process becomes more manage-
able, mainly distinguishing species between the genus G2 and G3.

Besides, we observe that some species of the same genus may
be a likeness, like those that belong to G1. This motivation is why
we proposed using an additional representation of leaf (local view)
joined with coarse-to-fine hierarchical classification in this work.
The rationale behind that is to perform some regional analyses of
the leaf image (Fig. 6c) c) to deal with such a possible low variabil-
ity in terms of shape and color between similar species inside some
genus (G1).

3.4. Fusion Schema

The final classification is given by the fusion of the outputs of
the first and second hierarchical stages. The first stage’s output is
a ranking list Rk, representing the genus reference candidates for
a given test sample Xl provided by the S-CNN (A) trained on the
global view representation of the leaf image. It is important to
remember that we can have up to six references by each genus,
depending on the number of reference samples defined. Thus, Rk

is a ranking list with k genus references, where each Gij is the jth
reference of the genus i. Thus, we can compute each genus refer-
ence frequency that appears in Rk, which is used to weight (w)
the output of the second stage. In the second stage, the similarity
value Si between the cropped test image (Xl) and the reference
image (Xr) of species inside each genus Gi present in the ranking
list Rk is provided by the S-CNN (B). Now, considering the local
view representation of the leaf image. Finally, the second stage’s
output is a list of species F ordered by the score f, computed as
described in Eq. 3.

f ¼ wi � SiP
wi

ð3Þ

where wi is the frequency weight of genus ith computed in the first
stage.
Fig. 6. a) Different species (a, b, c and d) with similar characteristics are plotted in
the global view space; b) The similar categories are separated into three groups that
represent the genus taxonomy (G1;G2 and G3); c) Very similar species are
discriminated in the local view space.
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With such a fusion schema, we combine global and local views
of the leaf image, considering a hierarchical strategy that reduces
the number of species in the second stage, decreasing the classifi-
cation complexity. The global score is the output of SCNN-A, while
the local score is the output of SCNN-B. We evaluated different
rules (sum, product, and majority voting) to combine the global
and local scores produced in the system’s first and second stages.
The best results were observed when using the schema based on
Eq. 3. As mentioned, the genus frequency is used as the weight
for their respective species. The rationale behind this is that the
correct species usually belongs to the genus that most appear in
the candidates’ list. Thus, we use such a frequency as a weight in
the second stage, being important information in the final species
decision.
4. Experimental Results

This section describes the datasets and experiments used to
evaluate the proposed method.

4.1. Datasets

We have evaluated the proposed approach on two fine-grained
datasets: PlantCLEF 2015 and LeafSnap. Table 1 presents the orig-
inal number of classes, training, and testing images available in
each dataset. The reason for choosing these two datasets is that
both have a wide variability of plant leaf species, representing a
challenging scientific task. These datasets’ images were gathered
by various photographers in globally distributed locations, engag-
ing mixed conditions of background, position, color, and lighting,
factors that significantly influence the images’ quality. Moreover,
both datasets are imbalanced, and for some plant species, there
are few samples available for training. Since one of this paper’s
goals is to classify plant species with a small number of labeled
samples, we have evaluated using only six images per class for
training the models. It corresponds to the minimum number of
training samples per species found in these datasets. Table 2 shows
the total number of training images per taxonomic groups (fami-
lies, genus, and species) when considering only six samples per
class in each dataset to be used in the S-CNN proposed method.

We generated training subsets from the training images of
Table 2, which have more non-similar pairs than similar ones, as
recommended Melekhov et al.[28]. Table 3 shows the number of
positive and negative samples in our training subsets. A positive
sample pair (label 1) means that two images belong to the same
category while a negative sample pair (label 0) means that two
images belong to different categories.

The PlantCLEF 2015 dataset already has a pre-defined test set
made up of 221 leaf images. On the other hand, for the LeafSnap
dataset, we randomly choose 15 images per class to compose the
test set, totaling 2,760 leaf images.
Table 1
Original numbers of classes and images for each taxonomic group of the PlantCLEF
2015 and LeafSnap datasets.

Number of

Dataset Taxonomic Training Test

group Classes Images Images

PlantCLEF Family 29
2015 Genus 43 6,527 221

Species 60
Family 35

LeafSnap Genus 73 23,147 2,760
Species 184



Table 2
Original numbers of classes and images for each taxonomic group of the PlantCLEF
2015 and LeafSnap datasets.

Number of

Dataset Taxonomic Classes Images

Group Train Test Train Test
PlantCLEF 2015 Family 205 29

Genus 260 43 12,605 221
Species 351 60

LeafSnap Family 35 35
Genus 73 73 7,719 2,760
Species 184 184

Table 4
Recognition accuracy (%) of different architectures considering entire images (just
global view).

Taxonomic group Model Accuracy (%)

AlexNet 71.98
Species GoogLeNet 73.30

VGG16 75.09

Table 5
Individual classification considering each taxonomic group: Family, Genus and
Species and different views: global and local with multiple-resolutions: 32�32,
64�64 and 128�128.

Taxonomic Accuracy (%)

Group Global View Local View
32�32 64�64 128�128

Family 69.51 63.01 60.47 59.16
Genus 85.89 67.33 64.41 62.35
Species 75.09 74.00 72.35 71.18
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4.2. Pre-processing

We use a two-step based pre-processing. First, we remove
unwanted structures from the leaf, and then we crop the filtered
image. The filtering process originally presented in [5] is used.
First, a copy of the leaf image is converted to gray-scale, followed
by a threshold operation using Otsu’s method. Afterward, a top-
hat technique is applied to remove unwanted objects as the leaf
stem. Finally, the bounding box is used to detect just the leaf from
the filtered image. The final image resolution was 224�224 pixels.

In the second step, the image containing just the leaf is cropped
on its center using the algorithm proposed in [8]. We used different
cropped image resolutions like 32�32, 64�64, and 128�128. The
idea is to evaluate the performance of the S-CNN architecture con-
sidering different input resolutions.

4.3. Analysis and Experiments

We start this section by presenting four critical analyses that
were necessary to define the proposed method. Section 4.3.1 eval-
uates the CNN architectures (AlexNet, GoogLeNet, and VGG16Net)
considered alternatives to composing the used S-CNN. Section 4.3.2
is used to design the coarse-to-fine hierarchy classification. In Sec-
tion 4.3.3, the configuration of the two-view hierarchical classifica-
tion is defined. Following, Section 4.3.4, a fourth analysis shows the
importance of the proposed two-view representation of the leaf
images.

Additional experiments were performed to evaluate the pro-
posed method. In Section 4.3.5, we have an overall performance
evaluation. Section 4.3.6 shows some analysis using the proposed
method for plant species recognition. Besides, we evaluated the
proposed approach regarding the impact of unbalanced data (Sec-
tion 4.3.7), scalability, and stability (Section 4.3.8). Finally, in Sec-
tion 4.3.9, we compare the proposed method with the state-of-
the-art.

For the PlantCLEF 2015 dataset, the overall results are com-
puted using the average classification score S proposed in [19].
The S metric is defined in Eq. 4 and represents a score related to
the rank of the correct species in the list of retrieved species.
Table 3
The number of positive and negative samples of the training subsets used in the
proposed S-CNN method.

Taxonomic Positive Negative
Dataset Group Samples Samples

PlantCLEF 2015 Family 200 300
Genus 400 600
Species 800 1,200

LeafSnap Family 300 450
Genus 600 900
Species 1000 1,500
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S ¼ 1
U

XU

u¼1

1
Pu

XPu

p¼1

1
Nu;p

XNu;p

n¼1

Su;p;n ð4Þ

where U is the number of users (who have at least one image in the
test data), (Pu) is the number of individual plants observed by the u-
th user, (Nu;p) is the number of pictures taken from the p-th plant
observed by u-th user, and (Su;p;n) is the score between 0 and 1
which is equal to the inverse of the rank of the first correct math
for the n-th pictures taken from the p-th plant observed by u-th
user.

For the LeafSnap dataset, the recognition accuracy is computed
by Eq. 5.

acc ¼ number of correctly classified samples
total number of samples

ð5Þ
4.3.1. Evaluating different pre-trained models
The recognition accuracy of AlexNet, GoogLeNet, and VGG16 is

shown in Table 4. The last dense layer of each CNN was adapted to
contemplate the number of classes (plant species) of each dataset.
Stochastic gradient descent (SGD), with a momentum of 0.9, was
used to fine-tuning these deep models. Besides, a learning rate of
0.001 was set with a decay of 0.5 at every 512 iterations in a total
of 2,048 iterations. Hyper-parameters like batch size and the num-
ber of iterations were defined empirically as 32 and 2,048, respec-
tively. We consider the classification of species based on entire
images (global view). The experiments were conducted on the
PlantCLEF 2015 dataset using the original dataset presented in
Table 1. For the results on Tables 4–6, the original training dataset
was divided using a randomly stratified strategy into training (70%)
and validation (30%) subsets. We can observe that VGG16 provided
Table 6
Diverse combination of coarse-to-fine hierarchical classification, according with
taxonomic groups and representation of plant leaf views.

Model ID Hierarchical View Accuracy

# combination Global Local (%)

VGG16 1 Family + Species
p

60.21
2 Family + Species

p
62.76

3 Family + Species
p p

67.55
4 Genus + Species

p
64.33

5 Genus + Species
p

78.98
6 Genus + Species

p p
83.11
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better results under the same experimental conditions, showing an
accuracy of 75.09%.

4.3.2. Plant family, genus and species classification
This section evaluates how to define the coarse and fine levels

of the proposed hierarchical strategy. To this end, we performed
the classification of leaf images using the pre-trained VGG16
model, taking each taxonomic group (family, genus, and species)
individually and considering different views: global and local.
Table 5 shows the results observed on the PlantCLEF 2015 valida-
tion dataset.

As we can see, the local view individually has a worse perfor-
mance than the global one for all taxonomic groups, indicating that
we must avoid the local view in the first level (coarse) of the hier-
archy. Table 5 demonstrates that the VGG16 model is better when
using the genus compared to family and species. To better under-
stand the results of plant species recognition per each taxonomic
group, confusion matrices are presented in Figs. 7 (i) and 8 (i). They
consider family groups for better visualization and only two plant
families (Salicaceae and Rosaceae) with the corresponding species.
Still, in Table 5, we can see that for the local view representation
is better the use of cropped images of resolution 32�32 compared
to 64�64 and 128�128.

Fig. 7 (i) shows the confusion matrix using the families Sali-
caceae and Rosaceae of the PlantCLEF 2015 test set. The worse accu-
racies were observed for the species S.cinerea, C.monogyna, and
S.torminalis. We notice that the family model cannot properly clas-
sify the leaf species that have different types of features inside the
same family. The S.cinerea (Fig. 7 (D)) provided a false negative
Fig. 7. Performance of VGG16 trained on Family groups: (i) confusion

Fig. 8. Performance of VGG16 trained on Genus groups: (i) confusion matrix (ii) Species
Sorbus and Prunus.
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error with C.germanica (Fig. 7 (F)). This confusion may have been
caused by the green body color and fine shape, which is quite dif-
ferent from the remaining species inside the Salicaceae family. On
the other hand, C.monogyna (Fig. 7 (E)) and S.torminalis (Fig. 7
(G)) have characteristics dissimilar from leaves inside of Rosaceae
family, causing misclassification. In any case, we can see that the
confusions inside the family group are between species that con-
tain different attributes in terms of color, shape, and features.

Fig. 8 (i) shows a confusion matrix for the same two families
Salicaceae and Rosaceae. Using a VGG16 trained on the plant genus,
instead of on the family, we separate the species in genus groups
represented by the dotted lines in Fig. 8 (ii). By separating them,
we have inside the Salicaceae family, two genus (Populus and Salix)
and for Rosaceae family, three genus (Crataegus, Sorbus and Prunus)
were formed. We observe in Fig. 8 (i) that the VGG16 model
trained with genus increases recognition performance due to a bet-
ter leaf features separability. However, the greatest confusions
occur with similar species inside the same genus (highlighted with
red dotted lines in the Fig. 8 (i)). Normally, the species inside the
same genus have similar visual characteristics, such as the shape.
For instance, the three most similar species are P. nigra (Fig. 8
(A)), P.alba (Fig. 8 (B)) and P. tremula (Fig. 8 (C)) represented by
the genus named as Populus. This similarity is reflected in local
confusions since these three species have curved boundaries and
the same shape sketch. Despite the similarity between species,
the hits in the confusion matrix provided by the VGG16 trained
on the genus (Fig. 8 (i)) is better from that considering the
VGG16 model trained on family (Fig. 7 (i)).
matrix (ii) Species separated by Families: Salicaceae and Rosaceae.

separated by Families: Salicaceae and Rosaceae and Genus: Populus, Salix, Crataegus,



Fig. 9. Performance of VGG16 trained with local-view representation on Genus
groups: (i) confusion matrix (ii) Species separated by Families: Salicaceae and
Rosaceae and Genus: Populus and Prunus.

Fig. 10. Two-view representation - the feature maps along the layers of the S-CNN
for entire and cropped images.
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These preliminary experiments indicate that the coarse-to-fine
strategy must consider the genus in the first level of the hierarchy
strategy instead of family or species. The results are also better
using global view in the first level than local one as shown in
Table 5. However, there are still mistakes related to species very
similar in appearance (like those presented in red dotted line in
Fig. 8 (i)), that require additional effort to be classified. To deal with
this problem, we propose the two-view representation of the leaf
image in which global and local features are combined in a hierar-
chical classification schema.

4.3.3. Configuration of two-view hierarchical classification
Table 6 shows the use of the taxonomic groups in a diverse pool

of hierarchical combinations and which view is used in each level
of the hierarchy. For instance, in ID #1, we evaluate the hierarchy
classification using Family + Species, which means the Family tax-
onomic group is used to train the VGG16 model in the first level of
the hierarchy, and the Species taxonomy group is trained posteri-
orly. So, the solution is tested in a coarse-to-fine hierarchy way.
In the fourth column of Table 6, we choose which type of view (glo-
bal or local) is used in each level of the hierarchy to evaluate diver-
sified combinations. Whether two marks are selected in the fourth
columnmeans that the global view is used in the coarse level of the
hierarchy and local view in the fine one. Otherwise, one mark, only
the marked view is used in both levels.

The lowest performances are achieved when the combinations
are carried out with the family taxonomic group as the first level
of the hierarchical classification (ID #1, ID #2, and ID #3), even
though using different views. The individually poor performance
for the family taxonomic group achieved in Table 5 makes all com-
binations that use the family group have the worst accuracy.
Because of a hierarchy classification propriety, the error persists
in the following classification levels independent of which taxon-
omy or type of view is used. The ID #4, ID #5, and ID #6 start
by using genus in the first level (coarse) of the hierarchical classifi-
cation and species secondly (fine). The performance has a soft
advance with ID #5 and ID #6. Despite ID #4 remains the poor
performance due to the use of local view in both levels of hierar-
chy, ignoring discriminating characteristics like leaf shape and
boundary. ID #5 uses global features for both levels. The errors
occur in the second level. Inside the same genus, species with sim-
ilar characteristics are hard to discriminate using global view only.
Finally, ID#6 brings the best result by use two-view in a hierarchi-
cal classification strategy.

Assuming the results without hierarchical classification in
Table 5, we have a performance of 75.09% using species as final
output. Using the hierarchical combination (Table 6), we increase
the accuracy by 3.89 percentage points with ID #5 for the same
case (global-view), confirming the assumption that the hierarchy
strategy can improve the performance of classification. Besides
using ID #6, we increase by 8.02 percentage points, further
enhancing the classification by adopting a local view of the plant
leaf image in a two-view hierarchical coarse-to-fine classification
solution.

Finally, in Fig. 9, we evaluate the impact of using the local view
in the second level of the hierarchy. To show the effectiveness, we
plot the confusion matrix for specific cases in which the error per-
sists when used just global views. The specific cases have already
been presented in Fig. 8 (i) highlighted by dotted red lines and
were plotted in a new confusion matrix in Fig. 9 (i) with a new rep-
resentation (local view) in the Fig. 9 (ii). We noticed an increase in
the performance results in almost all species when the local view is
employed. This occurs because, in terms of global features (general
characteristics), the species inside the same genus (red dotted lines
in Fig. 8 (ii)) are very similar. However, when plotted in a local
view (Fig. 9 (ii)), they present tiny and discriminate differences
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among species. The performance using local view extract features
in detail (patterns veins and texture of leaf plant) able to distin-
guish similar species. Comparing with ID #5 in Table 6 that uses
just global view in both levels, the results improve by 4.13 percent-
age points when adopting the local view in the second level of hier-
archy (ID #6). In these experiments, we consider the top class
returned in the hierarchical classification to pass to another level.
Thus, after this previous analysis, we defined our S-CNN proposed
approach as genus-to-specie hierarchical classification, using
genus as coarse classification and species as the fine classification.
Employing global view and local view for the first and second
levels of hierarchy respectively as seen in the scheme of Fig. 2.
4.3.4. Analysis of the two-view representation
As we may see in Table 6, the two-view representation (ID #6 in

that table) is a promising alternative to boost the classification per-
formance for the proposed hierarchical classification. With the
experiments presented in the last two sections, we gain two essen-
tial intuitions regarding leaf features. Firstly, leaf shape alone is not
the right choice for identifying plants because of the common
occurrence of similar leaf contours, especially in closely related
species. In these situations, the venation pattern is a more power-
ful discriminating feature. Secondly, the strategy of combining glo-
bal and local features presented in the leaf images is promising.
However, what does CNN learns in each view (entire image and
cropped image)? To answer this question, we explored the CNN
layers of each view in Fig. 10.

We observed that, at each CNN layer, similar information is
extracted but from different perspectives. Similarly, in the sense
that both models provide in the first layers more low-level fea-
tures, while in the deeper layers, we can observe more class-
specific features. Different perspectives since the models have as
inputs different views of the plant leaf. For instance, the first con-
volutional layer tends to extract low-level features like borders.
However, it is clear the complementarity between the two net-
works. The global view provides the whole leaf’s edges (shape
information), while the local view provides venation-like features.
Similar complementarity can be visually observed between each
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corresponding layer. In general, the entire leaf image (global view)
provides features related to the leaf image’s general shape and tex-
ture. On the other hand, the features extracted from the cropped
leaf image (local view) tend to capture inherent local patterns of
venation. Such a general-to-specific leaf representation allows us
to combine information from the leaf shape and venation, as usu-
ally done by plant taxonomists.
Fig. 11. Classification accuracy considering different number of references (Nr) and
sizes for the ranking list of genus reference candidates (Rk) in the first stage (coarse)
of hierarchy using the PlantCLEF 2015 dataset.

Fig. 12. Average number of species provided by the coarse stage, when using (Nr=6)
concerning different sizes of genus references candidates returned in the ranking
list (Rk).
4.3.5. S-CNN performance evaluation
In this section, the proposed S-CNN hierarchical classification

based on a two-view similarity scheme is evaluated. Tables 7 and
8 present the results for PlantCLEF 2015 and LeafSnap datasets,
respectively. The best results for both datasets were achieved using
six reference samples per class (Nr=6) and 30 genus reference can-
didates in the ranked list Rk. In the second stage, the accuracy is
computed considering the first result returned in the list F of spe-
cies (top-k = 1). We reached a 1.0 accuracy rate with top-k = 5 for
both datasets as reported in Table 9.

It is important to notice that the number of references Nr has a
significant impact on the results. Therefore, we show in Fig. 11 dif-
ferent Nr values over different genus references candidates Rk. It is
expected that as the ranking list Rk grows, the performance should
increase. However, we notice that there is a decrease in perfor-
mance when using Rk=50. This is directly related to the coarse-to-
fine hierarchical classification, in which at the coarse stage, we
define how many species references will be taken to the fine stage
using the genus reference candidates that appear in the ranking list
Rk.
Table 7
Average classification score (S) of the S-CNN proposed method for the PlantCLEF 2015
dataset.

Hierarchical Stage ðRkÞ Number of References (Nr)

1 3 6

1st (Genus) 5 0.72 0.77 0.77
1st (Genus) 15 0.86 0.84 0.81
1st (Genus) 30 0.98 0.96 0.95
1st (Genus) 50 0.99 0.98 0.98
2nd (Species) 1 0.81 0.86 0.87

Nr: number of reference samples per class in the classification phase.

Table 8
Overall accuracy (acc) of the S-CNN proposed method for the LeafSnap dataset.

Hierarchical Stage ðRkÞ Number of References (Nr)

1 3 6

1st (Genus) 5 0.91 0.92 0.95
1st (Genus) 15 0.96 0.96 0.98
1st (Genus) 30 0.99 0.98 0.98
1st (Genus) 50 0.99 0.98 0.97
2nd (Species) 1 0.91 0.95 0.96

Nr: number of reference samples per class in the classification phase;

Table 9
Final accuracy of the S-CNN proposed method considering Nr=6, Rk=30 in the first
stage (genus) and top-k=1, 3 and 5 in the second stage (species). VGG16 baseline is
comparable for each dataset using top-5 results.

Dataset Method Top-1 Top-3 Top-5

PlantCLEF 2015 S-CNN 0.87 0.94 1.0
VGG16 0.78 0.81 0.85

LeafSnap S-CNN 0.96 0.99 1.0
VGG16 0.88 0.90 0.93
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The idea behind Fig. 12 is to show the number of species (in
average) that is sent to the second stage of the system when con-
sidering different sizes (k values) for the ranking list Rk of genus
candidates generated in the first system stage. The species selected
are those that belong to the genus candidates in the list. However,
the number of species may vary according to list size. For instance,
with Nr ¼ 6 (number of references), the average number of species
processed in the second stage for Rk ¼ 50, 30, and 15 is 9, 5, and 3,
respectively. Such an analysis gave us some idea about decreasing
the classification complexity in the second stage when we reduce
the size of the list of genus candidates.
4.3.6. Analysis of the S-CNN proposed method
Fig. 13 shows a spider web chart in which one can see the per-

centage of correctly recognized leaf images by each species consid-
ering the S-CNN proposed method using just one-view (global
representation in both levels of hierarchy), with two views (global
and local representations) and the pre-trained VGG16 model. We
considered the S metric results on the PlantCLEF 2015 test dataset.
According to Fig. 13, the S-CNN two-view proposed method (red
line) improves the classification rates of several species compared
to the one-view purpose (blue line). The use of the local view
applying cropped leaf images was suitable to reduce the conflict
between species, corroborating with the preliminary experiment
handled in Section 4.3.3. For instance, the eighth species, named
quercus cerris, has 0.0 of accuracy when using just the one-view
representation. On the other hand, it increased to 0.55 when we
used the two-view proposed method. As we can see, when just
one view is considered, the quercus cerris is confused with quercus
petraea, quercus rubra, and quercus pubescens. Fig. 14 shows the
leaves quercus cerris, quercus petraea, quercus rubra, and quercus
pubescens species respectively. Noticeably, the four species in the
Fig. 14 have similar morphological characteristics, which explains
the confusion when just one view is adopted.



Fig. 13. Comparison of the proportion of correctly recognized leaves of each species
at the coarse-to-fine classification using one-view (S-CNN one-view), the proposed
method using two-view (S-CNN two-view) and pre-trained VGG16. 60 species are
evaluated from PlantCLEF 2015 dataset.

Fig. 14. Samples of confused species (global representation): a)quercus cerris; b)
quercus petraea; c)quercus rubra; d)quercus pubescens.

Table 10
Final accuracies for VGG16, S-CNN using one-view (global) and S-CNN proposed
method for each dataset, PlantCLEF 2015 and LeafSnap.

PlantCLEF 2015 LeafSnap
Approach (S) (acc)

VGG16 0.78 0.88
S-CNN one-view 0.81 0.92
S-CNN two-view 0.87 0.96
proposed method
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However, it is important to observe that the accuracy has
dropped off for few species using the S-CNN two-view proposed
method. This is the case of the forty-eighth species in Fig. 13. It
is the betula pendula specie. Observing the output of the two-
view proposed method for related species, we found confusion
between it and the betula betulus and betula avellana. They have
very similar texture and vein patterns as shown in Fig. 15.

Finally, we compare S-CNN approaches with the pre-trained
VGG16 method presented in Section 4.3.3. Table 10 shows the final
accuracies of VGG16, S-CNN two-view proposed method, and the
S-CNN using one-view on the test set for both datasets: PlantCLEF
2015 and LeafSnap. The final results improved the recognition
rates for the two-view S-CNN, in which we assure the effectiveness
of the proposed method.
Fig. 15. Samples of confused species (local representation): a)betula pendula; b)
betula betulus and c)betula avellana.
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4.3.7. Impact of unbalanced data
Table 11 shows the impact of unbalanced data in the species

accuracy when using the S-CNN proposed method and the pre-
trained VGG16model. As we can see, the second and third columns
show the number of training images per species used for both
models. It is important to say that the VGG16 model is trained
using the original number of training samples shown in Table 1
for the PlantCLEF 2015 dataset, while the S-CNN model is trained
using only six samples per class.

We observed that for almost all species, the performance of the
S-CNN model is equal or better than the VGG16. Most of the mis-
takes of the VGG16 model occur in the species with few samples
for training. As one may see, L. triphylla species (bold line in
Table 11) has nine samples for training and seven samples for test-
ing, it is most difficult for the VGG16 to generate an appropriate
model to discriminate L. triphylla among all species with so few
samples for training. On the other hand, for the same case (L. tri-
phylla species), the S-CNN model trained with only 6 samples
was able to recognize 6 out of 7 test samples correctly. The reason
is that the S-CNN is not trained to learn a regular classifier of plant
species but a distance metric to provide the similarity between two
images (reference and test image). Therefore, the S-CNN model is
capable of dealing with unbalanced data. Consequently, the S-
CNN uses a total of 360 images to train the model employing just
six samples per class, and achieved a total of 182 hits. In contrast,
the VGG16 hit 147 test samples using 6,527 training samples with
an unbalanced number of samples per class.

We also performed experiments considering the unbalanced
data on the LeafSnap dataset. Table 12 shows the use of different
sizes of training samples, starting from 1, 3, 6, 10, 15, 25, and
between 30 to 300 samples per species. For testing the LeafSnap
dataset, we select randomly 15 samples by each class to compose
the testing set. Concerning the first experiment (#1) in Table 12, it
is difficult to get a good classifier in both cases since the S-CNN
needs more than one pair of positive and negative samples to train
and update the loss function to converge the model, while the
VGG16 model requires a substantial number of training samples
to provide solid results. The main advantage of the S-CNN is
observed in the experiments #2 and #3, in which it outperforms
widely the VGG16 using few training samples. The performance
of the S-CNN starts to fall in the experiments #4, #5, #6, and #7,
due to a huge quantity of image pairs (positive and negative) gen-
erates to train, causing over-fitting in the Siamese network. Differ-
ently, the performance of the VGG16 starts to increase in the
experiment #6, achieving 0.84 of accuracy (acc) when using 25
training samples per species. In experiment #7 we have the best
result for VGG16 with 0.88 of accuracy, when between 30 and
300 training samples were used. However, S-CNN outperforms
the VGG16 in experiment #3, reaching 0.96 of accuracy using just
six training samples per class. These last experiments corroborate
the ability of the S-CNN to deal with unbalanced data.
4.3.8. Stability and Scalability
Since the final result may be affected by the random selection of

reference samples used to represent the plant species, we have



Table 11
Species and number of training and test images from the PlantCLEF 2015 dataset. Hits are the quantity of correct prediction per species held by the proposed S-CNN approach or
VGG16.

Training Hits Training Hits

Species VGG16 S-CNN Test VGG16 S-CNN Species VGG16 S-CNN Test VGG16 S-CNN

V. opulus 60 6 9 8 8 M. papyrifera 115 6 1 1 0
V. tinus 243 6 3 3 3 M. carica 116 6 1 1 1
L. styraciflua 61 6 3 3 3 M. rubra 88 6 1 1 1
A. prostrata 6 6 1 0 1 Fra. excelsior 60 6 9 4 5
A. cotinus 165 6 4 3 3 Fra. ornus 73 6 1 1 1
A. pistacia 157 6 1 1 1 Fra. vahl 132 6 7 4 4
I. aquifolium 84 6 1 1 1 O. europaea 311 6 1 1 1
H. helix 264 6 9 5 6 S. bulgaris 101 6 3 2 3
R. aculeatus 290 6 25 22 23 P. hispanica 119 6 5 4 4
A. trichomanes 6 6 1 0 1 C. monogyna 197 6 3 2 2
A. vulgaris 6 6 1 0 1 C. germanica 50 6 1 1 1
B. glutinosa 51 6 2 2 2 P. avium 67 6 2 2 2
B. pendula 122 6 6 2 4 P. mahaleb 56 6 3 2 3
B. betulus 124 6 4 3 3 P. spinosa 46 6 1 1 1
B. avellana 148 6 2 1 1 U. minor 382 6 2 2 2
C. australis 190 6 4 1 1 Po. alba 197 6 2 1 2
F. cercis 142 6 2 2 2 Po. nigra 222 6 2 1 2
F. robinia 109 6 3 3 3 Po. tremula 97 6 4 3 4
Q. cerris 125 6 9 2 5 S. cinerea 24 6 2 2 2
Q. sylvatica 96 6 2 1 2 A. pseudo. 44 6 3 2 3
Q. pubescens 104 6 6 3 2 A. sacchar. 42 6 5 2 4
Q. sativa 77 6 2 2 1 A. negundo 111 6 1 1 1
Q. petraea 76 6 1 1 1 A. platanoides 67 6 5 3 5
Q. rubra 48 6 2 1 2 A. campestre 160 6 13 9 12
G. genarium 19 6 1 1 1 A. monspess 167 6 1 1 1
Gi. biloba 127 6 9 8 9 L. triphylla 9 6 7 2 6
L. nobilis 151 6 3 2 3 A. altissima 82 6 4 1 3
L. tulipifera 70 6 2 1 2 T. baccata 10 6 2 1 2
T. tilia 71 6 4 2 3 S. torminalis 36 6 3 3 3
T. cordata 28 6 3 1 2 B. davidii 126 6 1 1 1

Table 12
Accuracy achieved for different quantity of training images per class (data size) using
S-CNN proposed method and VGG16 model for LeafSnap dataset.

Experiment Dataset Size S-CNN VGG16

Training Testing (acc) (acc)

#1 1 15 0.51 0.53
#2 3 15 0.85 0.52
#3 6 15 0.96 0.53
#4 10 15 0.94 0.65
#5 15 15 0.92 0.78
#6 25 15 0.91 0.84
#7 [30–300] 15 0.88 0.88
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evaluated the stability of the proposed method in such a situation.
With that in mind, we performed five executions of the proposed
method with different plant samples as references (without repe-
titions). We performed a data augmentation for species with few
training samples using rotations in the original leaf image as pre-
sented in [5]. Table 13 shows the results of the five executions
for the PlantCLEF 2015 and LeafSnap test sets. As one can see,
the method performance is stable even using different sets of
references.

The scalability of the proposed method can be evaluated by
considering plant species unseen during the training step. For such
Table 13
Executions with distinct sets of reference images, six references are randomly
selected to compose the reference sets for each dataset, PlantCLEF 2015 and LeafSnap.
Av = average performance.

Dataset Execution

1 2 3 4 5 Av

PlantCLEF 2015 0.87 0.86 0.84 0.85 0.87 0.86
LeafSnap 0.96 0.94 0.93 0.95 0.93 0.94
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an aim, in the proposed method, it is just necessary to add refer-
ence images of the new species to be considered. Therefore, one
of the proposed method’s main advantages is that it does not
require retraining the S-CNNs, avoiding such a time-consuming
process.

We experimentally evaluated the impact on the system recog-
nition performance by considering incrementally new plant spe-
cies not seen during training. For this purpose, we prepared
small subsets with 12, 50, 100, 150, and 184 plant species using
the LeafSnap dataset. For each new subset added, we computed
the performance of the system originally trained on the PlantCLEF
2015 dataset (60 species), with and without a retraining process.
As expected, we always observed the best performance with the
system retraining. However, we noticed a small loss in perfor-
mance (up to 0.4) when considering unseen species, as shown in
Fig. 16. As we can see, the accuracy before considering unseen
classes was 0.87 for the 60 classes of the PlantCLEF 2015 dataset.
After adding 12, 50, 100, 150, and 184 new species, which belong
to the LeafSnap dataset, the accuracy dropped to 0.86, 0.85, 0.83,
0.82, and 0.81, respectively. It is important to note that even add-
ing 184 unseen species (new ones) from another different dataset,
the proposed method sustained an accuracy close to that achieved
Fig. 16. System scalability considering unseen and seen leaf species.
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for only 60 species. This behavior is impressive since the model
never saw these new species during training. The S-CNNs can com-
pute the similarity between the new references and the test
images. With these results, we can say that the proposed method
scales relatively well. Besides, they also indicate that the system
performed well in the case of a cross dataset evaluation.

Table 14 shows the necessary time to classify a single leaf image
for a growing number of species. For calculating the computational
time, we look at just the test phase. We observed that the compu-
tational time grows slower than the linear function as the number
of reference images grows.

4.3.9. Comparison with the State-of-the-Art
We compared the result achieved by the proposed method with

those achieved by related works, which have also used either
PlantCLEF 2015 or LeafSnap datasets, as shown in Table 15. Six
out of eight of the recent approaches for plant recognition use
CNN models [39,27,16,5,7,9], while the other two works use S-
CNN models [47,43]. As we can see in Table 15, in a previous work
[5], we reported almost the same results with a CNN approach on
PlantCLEF 2015 dataset. It worth mentioning that there are no sig-
nificant differences regarding the accuracy. However, the novel
approach proposed here works better in unbalanced data scenar-
ios, using the S-CNN architecture trained on few samples, which
avoid a substantial computational cost of using a data augmenta-
tion strategy as previously employed in [5]. Another important
improvement is that the proposed method is easily scalable, and
new plant species can be easily integrated into the S-CNN models
without retraining them.

In [47] to address the fine-grained problem, a piece of addi-
tional information is used considering multi-views of the plant
organs like a leaf, entire plant, and flowers. Our method uses just
the leaf features to extract two different representations (global
and local features) that minimize the difficulty related to species
with similar characteristics. Wang and Wang [43] showed the
power of S-CNNs to represent unbalanced categories using a small
subset of samples per class. However, the authors evaluated the
experiments using just ten (10) plant classes with different small
Table 14
Computational time for classify one leaf plant considering the scalability of classes.

Number of Time
Classes Dataset (sec)

60 PlantCLEF 2015 0.2010
72 PlantCLEF 2015 + LeafSnap 0.3965
110 PlantCLEF 2015 + LeafSnap 0.9276
160 PlantCLEF 2015 + LeafSnap 1.3830
210 PlantCLEF 2015 + LeafSnap 1.6789
244 PlantCLEF 2015 + LeafSnap 1.8458

Table 15
Comparison with the state-of-the-art for leaf classification for PlantCLEF 2015 and
LeafSnap datasets.

PlantCLEF 2015 LeafSnap
Reference Approach (S) (acc)

Sungbin [39] CNN 0.76 -
Lee et al. [27] CNN 0.80 -
Araújo et al. [5] CNN 0.86 -
Ghazi et al. [16] CNN 0.84 -
Zhi-Yong et al. [47] S-CNN 0.84 -
Barré et al. [7] CNN - 0.86
Bodhwani et al. [9] CNN - 0.93
Wang and Wang [43] S-CNN - 0.91
Proposed Method S-CNN 0.87 0.96
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training subsets (5, 10, 15, and 20 training samples), whose better
results were observed with twenty (20) samples by class. Differ-
ently, our S-CNN based method uses only six (6) training samples
per class and is evaluated on well-known datasets with a huge
quantity of classes. The use of the S-CNN with two-view represen-
tation in a hierarchical classification helps increase the perfor-
mance using a minor subset of training samples. Differently from
all these methods, we have combined a fine-grained strategy with
a two-view representation of the leaf image. As one may see, the
proposed method outperforms the related works, besides produc-
ing a scalable solution.

5. Conclusion

We proposed a novel method based on a two-view leaf image
representation and hierarchical classification strategy for fine-
grained plant species recognition. The botanical taxonomy is used
to drive a coarse-to-fine classification strategy to identify the plant
genus and species. The two-view representation of a plant leaf can
improve recognition performance using global (shape and color)
and local features (texture and plant veins). A deep metric based
on an S-CNN was used to reduce the dependence of the proposed
method on a large amount of training samples. Besides that, the
S-CNN makes the proposed method scalable and new plant species
can be easily integrated into the S-CNNmodels without the need of
retraining them.

The experiments on two challenging fine-grained datasets of
leaf images (PlantCLEF 2015 and LeafSnap) confirmed the effec-
tiveness of the proposed method - the recognition accuracy over
those two datasets reaches 0.87 and 0.96, respectively. As future
work, we plan to deal with auto-encoders to learn representations
inside an S-CNN architecture with hierarchical property for leaf
plant recognition.
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