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A B S T R A C T

In this work, we investigate bird species identification starting from audio record-ings on eight quite challenging
subsets taken from the LifeClef 2015 bird task contest database, in which the number of classes ranges from 23 to
915. The classification was addressed using textural features taken from spectrogram im-ages and the dissim-
ilarity framework. The rationale behind it is that by using dissimilarity the classification system is less sensitive
to the increase in the number of classes. A comprehensive set of experiments confirms this hypothesis. Although
they cannot be directly compared to other results already published because in this application domain the
works, in general, are not developed ex-actly on the same dataset, they overcome the state-of-the-art when we
consider the number of classes involved in similar works. In the hardest scenario, we obtained an identification
rate of 71% considering 915 species. We hope the subsets proposed in this work will also make future bench-
marking possible.

1. Introduction

The bird monitoring has an important role to play in the control of
migratory flux of birds and in the bird species identification tasks.
Regarding migratory flux, Negret, (1988) points out that each bird
species has a particular migratory flux along the different seasons of the
year, which makes its identification even more challenging. Faria et al.,
(2006) describe several monitoring methods aiming to provide identi-
fication of existing birds species: line transect direct observation, bird
capture using mist nets, bird listening points, and identification based
on bird vocalization.

The mist nets usage is among the most widely used strategies to
perform bird species identification (Faria et al., 2006). Mist nets are
commonly made of polyester or nylon mesh dangling between two
poles, similar to a badminton net. If suitably installed, the net is sup-
posed to be invisible, consisting of an important tool for several pur-
poses, like monitoring species diversity, relative abundance, population
size, and demography. Although the usage of mist nets is an efficient
way to capture individuals in its own habitat, it can hurt the animals
when they collide with the net. In extreme cases, fragile animals may
even die. By this way, taking into account bird welfare concernments,
experts suggest that non-invasive techniques must be used from the

data collection up to the species identification. Besides that, it is very
unlikely that all the aimed species would fly over the area where the
mist nets are placed.

With the technological developments, several audio recording de-
vices became accessible, smaller, and frequently used. By this way, the
monitoring systems became able to capture bird calls and songs in their
natural habitat, in a less invasive way, without the need for physical
contact (Faria et al., 2006; Conway, 2011; Schuchmann et al., 2014).

The bird species identification starting from their vocalization is a
time-consuming task, which can be divided into three main steps:
equipment set up, sound recording, and data annotation (Conway,
2011). One example of how important is the use of technology in this
kind of application can be found in the project called “Os Sons do
Pantanal”1 (from the Portuguese “the sounds of Pantanal”), developed
in Brazil. In this project, researchers aim to perform bird acoustic
monitoring in an important zone, which includes the Pantanal biome
(Schuchmann et al., 2014). Taking into account that the project is de-
veloped on a quite huge area, the use of technological devices is crucial
to make the project viable, especially regarding data collection.

Even with the difficulties and challenges to record the bird sounds,
the bird sounds databases became more accessible to the research
community, fostering the development of new investigations related to
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species identification using bird vocalizations. The Xeno-canto2 project
is one example of this. In that project, a large database of bird vocali-
zation samples is shared such a way that researchers can make use of it
for the development of their works. The database is fed by professional
or amateurs ornithologists from all over the world. Recently, several
works have been developed using datasets taken from Xeno-Canto
(Lopes et al., 2011a; Lopes et al., 2011b; Marini et al., 2015; Lucio &
Costa, 2015; Zottesso et al., 2016).

The bird species identification can be addressed as a typical pattern
recognition problem, i.e., pre-processing, feature extraction (acoustic or
visual) and classification (Fagerlund, 2007). To the best of our knowl-
edge, the first works on bird species identification were reported in the
1990s (Anderson et al., 1996) (Kogan & Margoliash, 1998).

In this study, we extend some works previously developed aiming to
perform bird species classification using spectrograms (Lucio & Costa,
2015; Zottesso et al., 2016). Spectrograms has already been successfully
used on different audio classification tasks (Costa et al., 2011; Nanni
et al., 2016; Costa et al., 2012a; Freitas et al., n.d.). This time, we ad-
dress bird species classification taking into account a quite challenging
scenario with a much larger number of classes. For this purpose, the
dissimilarity framework will be used. One of the main advantages of
using dissimilarity is that it is not necessary to retrain the classification
model each time new classes (bird species) are considered in the clas-
sification problem.

The experiments were performed on the database used in the
LifeCLEF bird identification task 2015.3 Several subsets of the original
database were used, and the number of classes in these subsets ranges
from 23 to 915 species. The results obtained using the dissimilarity
framework are comparable to the state-of-the-art, and they overcame
the results without dissimilarity on all the datasets. Furthermore, the
classifiers developed using dissimilarity demonstrated to be less sensi-
tive to the increase in the number of classes. In the hardest scenario, we
obtained an identification rate of 71% considering 915 species.

In order to encourage other authors to compare their approaches
with this work, the list of audio recordings contained in each subset and
the spectrogram images used here were made freely available.4

The reminding of this work is organized as follows: Section 2 pre-
sents some related work described in the literature, Section 4 describes
the organization of the database used in the experiments and some
details about preprocessing and feature extraction, Section 5 details the
dissimilarity framework, Section 6 describes the experiments performed
and some discussion about the obtained results. Finally, the main
conclusions are drawn and some future works are pointed.

2. Related works

One of the first papers on bird species classification using sounds
was pro-posed by Anderson et al. (Anderson et al., 1996). In that work,
the authors employed Dynamic Time Warping (DTW) algorithm to
perform classification using only 2 bird species. The identification rate
reported was 98.1%. Kogan and Margoliash (Kogan & Margoliash,
1998) evaluated Hidden Markov Models (HMMs) and DTW on a data-
base composed of samples belonging to two different species. The best
accuracy was 92.5%. Cai et al., (2007) presented a work using Mel-
Frequency Cepstral Coefficients (MFCC) extracted from bird song. In
this case, the authors used only the corner known as a call. Neural
networks were used in the classification step and the accuracies were
98.7% and 86.8% using 4 and 14 species, respectively.

Lopes et al., (2011b) performed several experiments varying fea-
tures and classifiers. The used database consisted of sounds from three

species that were divided into five folds to perform accuracy by cross-
validation. The experiments were carried out on bird songs obtained
from the Xeno-Canto website. The best identification rates were 79.2%
using the full audio and 99.7% using pulses (i.e. small pieces of the
sound where the amplitude is highlighted). The authors achieved this
performance using Multilayer Perceptron (MLP) and features extracted
with MARSYAS5 framework based on timbre, including MFCC.

Marini et al., (2015) employed SVM classifier on a Xeno-Canto da-
taset with 422 audio samples labeled according to 50 species and di-
vided into five folds. The identification rate was calculated according to
a Top-N best hypothesis between 1 and 10, resulting in 45.9% on Top-1
and 86.97% on Top-10. The audio signals were preprocessed to remove
the quiet spaces between songs.

Lucio & Costa, (2015) describe a bird species recognition approach
using spectrograms generated by the corner of birds. In their work, 46
species taken from the Xeno-Canto database and three texture de-
scriptors (LBP, LPQ and Gabor Filter) were considered. The best iden-
tification rate achieved was 77.65% using Gabor Filter and SVM clas-
sifier. However, it is important to note that all the audio signals used in
this work were manually segmented in order to find the regions of in-
terest with bird songs and without external noises. Zottesso et al. ex-
tended the work presented in (Lucio & Costa, 2015) by automatically
segmenting the input signal. The same image texture descriptors were
used. The authors reported an identification rate of 78.97% using SVM
classifier and texture features extracted using Gabor Filters.

Albornoz et al., (2017) described experiments on a dataset com-
posed of audio recordings from South America labeled into 25 different
species. Part of these samples was taken from Xeno-canto database. The
audio signal was preprocessed using Wiener Filter to obtain noise re-
duction. Moreover, the Rabiner and Schafer method was applied to
detect acoustic activity in order to identify the sound of birds. Open-
SMILE toolkit was used to extract features and different classifiers were
evaluated. The best accuracy was 89.32%, achieved using MFCC fea-
tures classified with Multilayer Perceptron.

Zhao et al., (2017) addressed bird species identification using
samples of 11 bird species taken from Xeno-canto. The authors seg-
mented the audio signals using a scheme based on Gaussian Mixture
Model (GMM) to select the acoustic events more representative. The
spectrograms of these events were submitted to a Mel band-pass filter
bank. The output of each sub band was then parameterized by an Au-
toregressive (AR) model. Finally, it was used as features submitted to an
SVM classifier. The performance achieved was 93.9% for Precision and
91.7% to Recall to the unknown classes.

Chou et al., (2007) addressed bird species classification on a dataset
containing samples labeled on 420 different species taken from a
commercial Compact Disk (CD). In this experiment, the corner was
segmented into syllables and two-thirds of each vocalization were
randomly selected to compose the training set and one-third to test set.
Each set of syllables was modeled by an HMM to represent their fea-
tures. The authors used the Viterbi algorithm to classify the test set. The
best identification rate achieved was 78.3%.

Ntalampiras, (2018) proposed an approach using transfer learning.
In this case, the author used music to build the probabilistic models.
Ntalampiras, (2018) employed 10 bird species from Xeno-Canto data-
base to evaluate the proposed approach, using only bird calls with a
duration between 1249 and 1651 seconds and the identification rate
achieved was 92.5%

In the LifeCLEF 20166 (Goëau et al., 2016) bird identification task,
many teams of competitors employed concepts of deep learning in their
proposals. Using the same database already used in BirdCLEF 2015
competition, the winner team Sprengel et al., (2016) achieved an im-
provement of 14.1 percentage points of MAP score when compared to

2 http://www.xeno-canto.org/.
3 http://www.imageclef.org/lifeclef/2015/bird.
4 List of audio recordings and spectrogram images available at: https://sites.

google.com/din.uem.br/lifeclef2015birdtasksubsets.

5 Available at http://marsyas.info/.
6 http://www.imageclef.org/lifeclef/2016/bird.
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the winner of 2015 edition and this result was obtained by using deep
learning in the proposed approach. The authors used a convolutional
neural network with five convolutional layers and one dense layer for.
In a preprocessing step, the audio was decomposed to separate regions
of interest, which contain audible bird songs, and noisy regions, which
are not supposed to have bird sounds. After that, spectrograms of signal
from the regions of interest and from the noisy parts were computed.
Later, the spectrograms are divided into 3-seconds pieces. In this way,
these pieces of the signal part were used as samples in training/test set
in the neural network. The proposed approach reached an average ac-
curacy of 68.6% using the main species and 55.5% when all species are
employed.

More recently, one can observe some impressive results obtained in
LifeCLEF Bird Identification task 2017.7 Particularly, one can remark
some works that somehow used convolutional neural networks (CNN)
on the proposed approach. Before briefly describing some details of
those works, it is important to mention some details about the database
used in that contest. The dataset provided for training consists of
36,496 audio recordings containing 1,500 different bird species.

In the aforementioned contest, Fritzler et al. (2018), Linda
Cappellato and Ferro, 2017 used a pre-trained Inception-v3 convolu-
tional neural network to identify bird species in BirdCLEF 2017 con-
test. For that purpose, the authors fine-tuned the network by using
36,492 audio recordings made available for the participants of the
contest. After transforming the audio recordings into spectrograms,
they applied bandpass filtering, noise filtering, and silent region re-
moval. Data augmentation was also performed, and the authors claim
that results obtained by fine-tuning a pre-trained CNN are better than
those obtained by training a CNN from scratch. The obtained mean
average precision (MAP) score was 56.7% for traditional records and
the MAP score for records with background species on the test dataset
was 49.6%.

Kahl et al. (2018) used a variety of CNNs to generate features ex-
tracted from spectrograms of field recordings. All the 36,496 audio
recordings available on BirdCLEF 2017 training dataset were used. The
authors also applied data augmentation by using vertical roll, Gaussian
noise, noise samples addition, and batch augmentation. The best result
was obtained by averaging the results of seven different CNN models
created. They obtained a MAP score of 60.5% (official score) and 68.7%
considering only foreground species.

Fazekas et al. (2018) use a multi-modal Deep Neural Network
(DNN) starting from audio recordings and metadata as input. The audio
is fed into a Convolutional Neural Network (CNN) using four con-
volutional layers. The additionally provided metadata is processed
using fully connected layers. The authors also used data augmentation
and, in the best case, they obtained a MAP score of 57.9% considering
only the main species, and a MAP score of 51.1% on the traditional
recordings considering also the background species.

Finally, we briefly describe the Soundception (Sevilla and Glotin,
2018), the classification scheme which scored highest on all tasks in the
BirdClef2017 challenge. The creation of Soundception was based on the
deep convolutional network Inception-v4 tailored aiming to boost its
performance on bioacoustic classification problems. The authors also
used a data augmentation strategy and two attention mechanisms: a
temporal attention into the auxiliary branch, and a time-frequency at-
tention in the main branch. Soundception obtained a MAP score of
71.4% on bird species task.

As we can observe, comparing these works is not straightforward,
mainly because of the variation in the number of classes used. Some
works employ 2 classes while another uses 1,500 classes. The number of
samples used for training and testing also varies greatly. Hence, we may
notice a huge variation on the identification rates, which range from
45.2% to 99.7%. Just in case, we describe in Table 1 some summarized

information about related works described in this section in chron-
ological order.

3. Proposed method

The general scheme of the proposed method is illustrated in Fig. 1.
Through-out this section, we describe some details about the database
used in this work and introduce details about the main steps contained
in the approach proposed here.

Xeno-canto8 is a website dedicated to sharing bird sounds from all
around the world. It is also a collaborative project in which people can
submit their recordings of bird vocalization and contribute in identi-
fying species. In addition, it aims to popularize recordings with bird
sounds, improve accessibility to corners and disclose information about
bird songs.

Due to the great diversity of sounds made available by the Xeno-
Canto project, the LifeClef 2015 Bird Task (competition in which the
goal is to perform bird species identification based on bird vocalization)
presented a database of bird sounds containing 999 species taken from
Xeno-Canto repository, establishing some important requirements for
the classification task aiming to make it as close as possible to real-
world applications:

• The audio samples of the same species were obtained from different
birds present in different regions of the planet;

• Sounds have been recorded by several users who may not have used
the same combination of microphone and recording device;

• Audio signals were obtained from recordings made at various sea-
sons of the year and at different times of the day, besides having a
variety of noises in the environment (other birds, buzzing insects,
etc.);

• Species with only one bird's song while others species have over 50
samples;

• In the same species, file sizes can range from 119 KB to 17.8MB;

• There are many samples with duration of only one second;

• Occurrence of silent time interval where there is no bird song in the
audio signal.

In addition to the audio signals, information about the samples was
made available. Among them, we can highlight the species of bird,
which will be used in the classification of samples, and the type of
vocalization, which can be found as song or calls. Catchapole and Slater
(Catchpole & Slater, 2003) explain the differences between song and
calls. According to them, bird song tends to be longer, complex and
usually produced by males. It also appears spontaneously and is often
produced at long intervals during the day and more often at some times
of the year. On the other hand, bird call tends to be shorter, simpler and
produced by both genders throughout the year. The bird call is usually
related to specific functions like fights, threats, alarms and other types
of behavior. In this way, the samples of bird call were discarded because
they are not so typical of a species as the bird songs are.

The LifeClef 2015 Bird Task database is composed of bird songs
taken from species of South America. The complete database contains
33,203 samples from 999 possible species. The audio signal was stan-
dardized at 44.1 kHz in 16-bit and it was made available in WAV
format.

Due to the variation in the time and quantity of the samples avail-
able for each species in LifeClef 2015 database, in this work, we propose
different subsets based on the duration time (in seconds) of the samples
and in the number of samples per species. We believe these subsets can
be used as benchmarks for further comparison.

To create the subset #1, we performed a search on the LifeClef 2015
Bird Task database by filtering only song vocalizations aiming to find

7 http://www.imageclef.org/lifeclef/2017/bird. 8 https://www.xeno-canto.org/.
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species which have at least 10 audio samples with at least 30-seconds,
thus, 23 species were found. Then, we run a search for species with at
least 10 audio samples that lasted for 20-seconds or more, creating the
subset # 2, with 48 species. The same process was performed re-
peatedly with the minimum duration requirements of the audio samples
and the quantity of them per species to create eight subsets. The

number of species and samples found in each subset is presented in
Table 2.

Using the criteria presented in Table 2, classes which had only one
sample were discarded. Hence, it was not possible to keep all the 999
species found in the original database, but rather 915.

Using the same criteria to create other subsets, the species found in
subset #1 also are part of subset #2, since the set of samples with 20
seconds or more also includes cases that are 30 seconds or longer.
However, the samples are not necessarily the same, as we have used a
random selection of samples. Thus, the species of subset #2 are part of
subset #3, and so on. Table 3 describes the eight subsets proposed in
this work.

These eight subsets were divided into folds, each one containing a
single sample per species selected randomly. Thus, the training and test
sets are balanced, avoiding that the trained model had more ability to
classify some species than others.

3.1. Noise reduction

As aforementioned, the Life Clef 2015 Bird Task dataset was

Table 1
Summary of the works described in the state-of-the-art.

Reference Year Feature/input and classifier Number of
species

Database Identification rate (%)

(Anderson et al., 1996) 1996 Spectrogram and DTW 2 Sounds from animals housed in wire cages 98.1a

(Kogan & Margoliash,
1998)

1998 DTW and HMM 2 Vocalizations recorded in laboratory 92.5a

(Cai et al., 2007) 2007 MFCC and MLP 14 Birds in Backyards, Australian Bird Calls, Voices of
Subtropical Rainforests and Data collected from
Samford sensors

86.8a

(Chou et al., 2007) 2007 HMM and Viterbi algorithm 420 Commercial Dataset 78.3a

(Lopes et al., 2011b) 2011 MFCC, KNN, SVM, MLP and j4.8 3 Xeno-Canto 99.7b

(Marini et al., 2015) 2015 MFCC and SVM 50 Xeno-Canto 45.9a

(Lucio & Costa, 2015) 2015 LBP, LPQ, Gabor filters and SVM 46 Xeno-Canto 77.6a

(Zottesso et al., 2016) 2016 LBP, SVM and Genetic algorithm 45 Xeno-Canto 78.9a

(Sprengel et al., 2016) 2016 Spectrogram and CNN 999 LifeCLEF 2016 68.8⁎c

55.5⁎⁎c

(Albornoz et al., 2017) 2017 LLD, MFCC, SVM, MLP and
random forest

25 Xeno-Canto and Birds of Argentina and Uruguay 89.3a

(Zhao et al., 2017) 2017 Gaussian Mixture Model and
SVM

11 Xeno-Canto 93.9⁎⁎⁎d

(Fritzler et al., 2018) 2017 Spectrogram and Inception-v3
CNN

1500 LifeCLEF 2017 56.7⁎c

49.6⁎⁎c

(Kahl et al., 2018) 2017 Spectrogram and CNN 1500 LifeCLEF 2017 68.7⁎c

60.5⁎⁎c

(Fazekas et al., 2018) 2017 DNN from audio and metadata 1500 LifeCLEF 2017 57.9⁎c

51.1⁎⁎c

(Sevilla and Glotin, 2018) 2017 Spectrogram and Soundseption 1500 LifeCLEF 2017 71.4⁎c

61.6⁎⁎c

(Ntalampiras, 2018) 2018 HMM and Reservoir Network 10 Xeno-Canto 92.5⁎a

⁎ Only foreground species.
⁎⁎ With background species.
⁎⁎⁎ To the unknown classes.
a Accuracy
b F-measure.
c Mean Average Precision (MAP).
d Recall.

Fig. 1. Proposed method general scheme.

Table 2
Subsets of the LifeClef database proposed in this work.

Subset Minimum time
(s)

Samples by
speciesa

Species
found

Total samples

#1 30 10 23 230
#2 20 10 48 480
#3 15 10 88 880
#4 10 10 180 1800
#5 05 10 349 3490
#6 05 06 614 3684
#7 05 04 772 3088
#8 05 02 915 1830

a Randomly taken samples.
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composed of audio recordings taken from the Xeno-Canto repository. In
Xeno-Canto database is common to note that the audio signals provided
do not have a pat-tern regarding the environment in which they are
recorded or recording devices used. There are audio recordings in both
unpopulated and populated regions, in urban areas or close to civili-
zation. In this way, other sources of sounds, such as winds, waterfalls,
streams, overlapping of audio with other animals or insects, cars,
people, and more can be noted alongside the birds singing. This be-
comes a big problem since most audio samples have a large amount of
noise.

In order to minimize the occurrence of noise and highlight the
sound of the birds, this work uses a strategy to reduce the prevalent
noise in the audio signals used in the classification process similar to
that used by Zottesso et al., (2016). First, a sample of the signal is
collected in order to identify its noise profile. This sampling is done
based on the first 400 milliseconds of the audio signal (size set em-
pirically). Once the signal noise profile is defined, the signal noise re-
duction as a whole occurs. This reduction is based on the subtraction of
the identified noisy profile of the original signal. To perform this step,
we use the noise removal tool provided with the software Sound eX-
change (SOX)9 version 14.4.1. Fig. 2(a) and (b) illustrate respectively
the spectrogram of the same audio signal before and after the noise
reduction process used here.

In this work, all subsets defined in the previous subsection under-
went a noise reduction step.

3.2. Automatic segmentation of audio signal

Besides the presence of noise, most of the audio signals available
have some time stretches in which there is no sound of birds. This time
interval elapses between the bird's song since it does not sing con-
tinuously throughout the entire audio signal. Thus, the application of a
method to detect segments of interest becomes extremely important in
order to obtain better results, because, according to Evangelista et al.,
(2014), it is necessary to use the most representative parts of the audio
signal in order to obtain better results in the classification stage. Even
though in some specific cases, this time interval could be used as a
feature for bird species identification.

To extract these important segments, the segmentation technique
used by Zottesso et al., (2016) was applied to all samples of the subsets
used in this work. According to the authors, the process basically
consists of:

• Extraction of two sequences with audio signal features, one based on
Signal Energy and another in the Spectral Centroid;

• For each sequence, two thresholds are estimated dynamically using
the histogram of sequence values and local maximum;

• A threshold criterion is applied to separate the segments that have
meaningful sound content from the others with little or no sound
content;

• Joining the segments identified in the previous step.

Fig. 3 shows one example of the audio signal before and after the
seg-mentation process.

In this work, when referring to the segmented database, it means
that the audio samples that are part of it have passed through this
segmentation approach.

3.3. Zoning approach

In the experiments carried out in this work, it was observed that the
texture present in the Spectro of bird songs taken from different species
does not present a uniform content along the time and frequency axes.
Thus, a strategy was proposed to divide the spectrograms into zones so
that it was possible to highlight information in specific regions of the
spectrogram.

The idea of image zoning is to extract local information from each
region and try to highlight the features of different frequency bands
(Costa et al., 2011). One specific feature vector is taken from each re-
gion created by linear zoning and consequently, this vector will be used
to train a classifier. One classifier is created individually for each zone,
and their final scores can be combined based on some fusion rules
proposed by (Kittler et al., 1998).

Two types of zoning are experimented in this work, vertical and
horizontal. Vertical zoning aims to segment the spectrogram with re-
spect to time. Horizontal zoning makes it possible to extract features in
different frequency bands.

In the vertical zoning, zones of the same size are established in the
image of the spectrogram, corresponding to periods of time with the
same duration. The size of each zone depends on the length of the audio
signal and the number of vertical zones established (3, 5 or 9). The
Fig. 4(a) illustrates a division into three vertical zones.

The use of horizontal zoning allows describing contents of the signal
which remains at specific wave frequencies. In other words, this
strategy aims to capture local features.

The horizontal zoning can be performed in the linear way or taking
into account the Mel scale of frequencies (non-linear way). Linear zones
divide the image into regions of equal size. The limits depend on the
number of zones that are created. Fig. 4(b) shows the zoning of the
spectrogram into three linear zones. Some values of linear zones have
been defined empirically in this work, they are 1, 3, 5, and 10.

In Mel-frequency, the divisions represent frequency bands that are
directly related to the frequencies perceived by humans. There are 15
different frequency bands (regions) and each has its limits, which in
Hertz (Hz) are: 40, 161, 200, 404, 693, 867, 1,000, 2,022, 3,000, 3,393,
4,109, 5,526, 6,500, 7,743 and 12,000 (Umesh et al., 1999). The higher
limit in the zoning of the image depends on the frequency upper limit
set in the generation of the spectrogram from the audio signal. Fig. 5
exemplifies a spectrogram with a frequency limit of 11,000 Hz and the
creation of 15 regions according to the Mel-frequency division.

3.4. Feature extraction

Texture is notably the main visual content one can see in the
spectrogram image. In light of this, we decided to use successful texture
descriptors presented in the image processing literature. Taking into
account the good performances obtained in previous works in which
textural content of spectrograms have been used, in this work we
decided to use Local Binary Pattern (LBP), Robust Lo-cal Binary Pattern
(RLBP), and Local Phase Quantization (LPQ). Table 4 describes the
dimensionality of the feature vectors produced by these texture de-
scriptors.

In the following sub-sub-sections one can find a brief report about
how these texture descriptors were used in this work.

3.4.1. Local binary pattern (LBP)
Local Binary Pattern is a well-known texture descriptor that have

been successfully used in works developed on different application

Table 3
Description of the generated subsets.

Subset Conjunction Number of species

#1 23 23
#2 species in #1+25 48
#3 species in #2+40 88
#4 species in #3+92 180
#5 species in #4+169 349
#6 species in #5+265 614
#7 species in #6+158 772
#8 species in #7+143 915

9 http://sox.sourceforge.net/
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domains, as: face recognition (Ahonen et al., 2006), music genre re-
cognition (Costa et al., 2011), manuscript writer identification and bird
species classification (Lucio & Costa, 2015; Zottesso et al., 2016). It is
important to remark that LBP has obtained good performances in all
these works.

According to Ojala et al., (2002), LBP operates on the local neigh-
borhood of a central pixel to find a local binary pattern. The feature
vector which describes the textural content of the image corresponds to
the histogram of local binary patterns found in all pixels of the image.
There are two main parameters that can be changed to capture the LBP
from an image. The first one is the number of neighboring pixels that
will be taken into account for the central pixel, the second one is related

to the distance between the central pixel and its neighbors. These values
are respectively known as P and R.

In this work, we decided to use 8 neighbors at a distance equal to 2,
since with this setup good results have been obtained by several re-
searchers in dif-ferent application domains, including on works were
audio classification tasks using spectrograms were assessed (Lucio &
Costa, 2015; Bertolini et al., 2013; Costa et al., 2012b). This particular
setup is commonly described as LBP8;2, and in its most well successful
form, in which only uniform patterns are discerned in the histogram, it
is composed of 59 features.

Fig. 2. Example of audio signal spectrogram before and after the noise reduction process.

Fig. 3. Example of audio signal before and after automatic segmentation.

Fig. 4. Examples of vertical and horizontal zones.
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3.4.2. Robust local binary pattern (RLBP)
Aiming to make the LBP texture descriptor even more efficient,

Chen et al., (2013) proposed a slight change in the way on how the
uniform patterns are considered to make the LBP histogram. The ra-
tionale behind it is that if one, and just one, bit in the binary pattern
taken from a central pixel makes the pattern nonuniform according to
LBP definition, this binary pattern should also be considered as a uni-
form pattern on RLBP. It makes the binary pattern occurrence a bit
more flexible. According to the authors, it is typically related to the
occurrence of some noise in the image.

Considering that the database used in this work is deeply affected by
the occurrence of noise, we decided to assess the performance of the
RLBP texture descriptor in the classification task investigated here.

Similarly to LBP, we have used 8 neighbors at a distance 2 of the
central pixel. Therefore, it is referred as RLBP8;2 and the feature vector
generated is 59-dimensional.

3.4.3. Local phase quantization (LPQ)
LPQ was originally proposed intending to be a texture descriptor

robust to the blurring occurrence. However, surprisingly it has achieved
a good performance even in situations where the images are not
blurred. In addition, several works already published has demonstrated
the good performance of this descriptor in texture classification tasks
(Bertolini et al., 2013; Costa et al., 2013).

In this work, the features were extracted by using a 3 3 sized
window, the correlation coefficient was set to 0:90 and the Short-Term
Fourier Transform (STFT) was used with a uniform window. By this
way, the obtained features vector corresponds to a histogram composed
of 256 values (features).

4. The dissimilarity approach

In this work we have used the dissimilarity framework, presented
Cha & Srihari, (2002), Pavelec et al., (2008) and Hanusiak et al.,
(2011).This approach has been successfully used in the solution of
problems related to identification and verification tasks, especially
when many classes are involved in the problem.

The dissimilarity is a dichotomy model in which an n-class problem
is reduced to a binary problem. As far as we know, the bird species
classification problem (a typical multi-class problem) is being addressed
using dissimilarity for the first time in this work, and this is one of the
main contributions of this work.

This dichotomic transformation is illustrated in Fig. 6(a) and (b).
The former one shows several samples labeled on five different classes
distributed in a two-dimensional space, in which each sample is re-
presented by a feature vector (f1; f2). The latter one shows the dis-
tribution of dissimilarity vectors, obtained by calculating the difference
between the feature vectors of two samples.

As one can see in Fig. 6, the dissimilarity vectors are labeled ac-
cording to two different classes: positive (+) or negative (*). The po-
sitive label is assigned to dissimilarity vectors obtained from two fea-
ture vectors of samples belonging to the same class. On the opposite
way, the negative label is associated to dissimilarity vectors obtained
from feature vectors belonging to different classes (Bertolini et al.,
2013). Suppose there are two vectors Vi and Qi in the feature space,
labeled lV and lQ respectively. Assume further that Zi is the dissimilarity
feature vector obtained from Zi= |Vi Qi| where |.| refers to the absolute
value. Observe that the dimensionality of Zi is the same of Vi and Qi.

Fig. 5. Spectrogram zoning according to Mel-frequency scale.

Table 4
Dimensionality of texture descriptors vectors.

Texture descriptor Feature vector length

LBP 59
RLBP 59
LPQ 256

Fig. 6. Fig. (a): Samples in the feature space in a problem with five classes. Fig. (b): Samples in the dissimilarity space where (+) stands for the vectors associated to
the within class and (*) stands for the vectors associated to the between class.
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In this work, we propose to extract texture feature vectors from
spectrograms obtained starting from bird call recordings. Therefore, we
aim to use these feature vectors to create positive and negative dis-
similarity vectors combining both feature vectors associated to the
within class and to the between class, respectively. In this way, we
assume that dissimilarity vectors obtained using feature vectors from
the same class should have their values close to zero because those
vectors are supposed to be similar. In the opposite way, dissimilarity
vectors obtained using feature vectors from different classes should
have their values far from zero (Bertolini et al., 2013).

4.1. Generation of dissimilarity feature vectors

The dissimilarity approach falls on binary classifiers to discriminate
between positive and negative classes. It is worth reminding that po-
sitive samples are obtained between feature vectors belonging to the
same class whereas negative examples are obtained from samples of
different classes.

Aiming to generate the positive samples, we computed the dissim-
ilarity vectors among R positive samples (references) of each species. In
this case, the value of R may vary considering the number of segments
of texture extracted from each spectrogram. This number varies ac-
cording to the number of horizontal zones (Zh) and vertical zones (Zv),
which resulted in (R = Zh × Zv × Class) different combinations. The
same number of negative samples can be generated by computing the
dissimilarity between references of one species against references from
others species.

Considering, for example, 10 species in the training step, with three
horizontal zones (Zh= 3) and three vertical zones (Zv= 3), we would
have 90 (10× 3×3) positive samples and 90 negative samples
(10× 3×3). Fig. 7 illustrates this process. In the top of the Fig. 7,
positive samples were created using three samples (bird corners) from
the same species, thus, feature vectors are extracted from the reference
images, in this example one per image (Zv=Zh= 1). Based on these
three vectors, three dissimilarity vectors are computed (positive sam-
ples). These are positive dissimilarity vectors, which are expected to
have components close to 0. A similar process is depicted in the bottom
of the Fig. 7, in the case feature vectors taken from different classes, are
used to create the negative dissimilarity vectors. In such case, it is ex-
pected that their components will be far from 0.

5. Experiments and discussion

In this section we describe the experiments and results obtained

using the proposed approach on the eight subsets described in Section
4. Table 5 describes some details about the eight subsets used in this
work.

In all experiments, regardless of the subset used, the data was split
into 50-50 for training and testing. In the testing set, the samples were
divided into folds, each one containing at least one sample per species.
The identification rates presented following were obtained by calcu-
lating the average between these folds.

In order to reduce the time taken to train the SVM models, since the
amount of dissimilarity vectors is quite huge, some experiments were
performed to find suitable values for C and Gamma (γ).

In order to find favorable values for these parameters, we have
performed training using the subsets #1, #2 and #3.

In this work, various kernels functions were evaluated, and the best
results were achieved using the Gaussian kernel. Thus, we have used in
all experiments the Gaussian kernel with C = 8 and γ = 2.

In order to compute the Top-N identification rates, was have per-
formed the fusion between the predictions scores of the classifiers ob-
tained from different zones by using the Sum Rule. Since by comparing
the Sum, Max, Product, Average and Median rules, the Sum Rule
showed the best results in most cases. Fig. 8 depicts the combination
strategy, proposed by Kittler et al. in (Kittler et al., 1998).

This section is divided into two Subsections. Subsection 6.1 de-
scribes results obtained with all the texture descriptors and zoning
approaches assessed in this work. In the Subsection 6.2 we present the
results obtained in different subsets employing the texture descriptor
and the zoning approach with the best performances.

Fig. 7. Dissimilarity Framework. Positive Samples: dissimilarity among samples of the same specie to generate the positive samples. Negative Samples: dissimilarity
among samples from different species to generate the negative samples.

Table 5
Number of samples in the training and test sets used in different subsets.

Subset Species Samples in train set Samples in test
set

Number of
samples

Validation
#1 23 05 05 10
#2 48 05 05 10
#3 88 05 05 10

Test
#4 180 05 05 10
#5 349 05 05 10
#6 614 03 03 06
#7 772 02 02 04
#8 915 01 01 02
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5.1. Evaluation of texture descriptors and zoning schemes

The texture descriptor used in the feature extraction step can
strongly influence system performance. In this work, we firstly per-
formed some experiments in order to compare the results obtained with
LBP, RLBP, and LPQ. Table 6 describes the results obtained for each
descriptor. In these experiments we used the subset # 3, with 88 species
and spectrograms split into 3 vertical zones and 15 horizontal zones
created according to the Mel scale frequency bands. The subset #3 was
chosen in this experiment because it contains the subsets #1 and #2
and contains a representative number of species. In addition, the SVM
classifier was performed using the RBF kernel, the parameters C and γ
were set to 8 and 2, respectively. By analyzing the obtained results, we
can observe that LBP performed better than RLBP and LPQ. In addition,
the number of features extracted using LBP is equal to the number of
features of RLBP and smaller than the number of features of the LPQ,
implying in a shorter processing time. Thus, the LBP was chosen as the
texture descriptor to be used in the following experiments.

The number of vertical and horizontal zones influences the amount
of pos-itive and negative dissimilarity vectors that can be created.
Table 7 presents the results obtained varying the number of vertical
zones in 3, 5 and 9, and the horizontal zones were assessed without
division (none zoning) and with 15 non-linear zones defined according
to the Mel scale. For this, the features of the subset #3 (88 species) were
extracted using the LBP texture descriptor. The SVM classifier was used
with the same parameters used in the previous experiment. The best
results were obtained when three vertical zones were used. The ex-
periments with five and nine zones did not present satisfactory results.

One can suppose that the low performance obtained using 5 and 9
vertical zones may have occurred because of the lack of content in
many of the created zones.

Thus, the texture descriptors generated from these slices do not
describe any content of interest, leading to dissimilarity and classifi-
cation fail.

Table 8 summarizes the results obtained by varying the number of

horizontal zones, setting three vertical zones. The subset #3, the LBP
and SVM classifier configured with C=8, γ = 2 and RBF kernel were
used. The best results were obtained with the Mel-scale, using fre-
quency bands of different sizes related to those perceived by humans.

Corroborating results already obtained in music genre classification
(Costa et al., 2012a) and in bird species identification tasks, the use of a
suitable division in the creation of horizontal zones seems to be decisive
to achieve the best possible identification rates.

The experiments carried out so far were developed aiming to find
the ideal parameters to evaluate the process of bird species identifica-
tion in different subsets. After performing several tests and analyzing
the results described in the previous tables of this subsection, the fol-
lowing definitions were considered: 3 vertical zones, 15 horizontal
zones (Mel scale), LBP texture descriptor, C = 8, γ=2 and RBF kernel.
Thus, the Subsection 6.2 shows the performance achieved on 8 different
subsets using these configuration settings.

5.2. Subsets evaluation

Once we have defined the optimal parameters, now we describe
experiments conducted aiming to evaluate the impact of the audio
sample duration and number of classes on system performance.

Table 9 shows the results obtained using the eight subsets proposed
in this work. Note that when the dissimilarity approach is used, it is
possible to achieve good identification rates even with a significant
increase in the number of classes. Moreover, it is possible to observe
that even decreasing the duration of the audio samples to five seconds
(on subsets # 5 to # 8) and increasing significantly the number of
classes (from 23 to 915), the proposed approach keeps identification
rates above 70%.

Hyperparameters C and γ found using samples randomly taken from

Fig. 8. Methodology used for combining classifiers.

Table 6
Evaluation of the texture descriptors LBP, RLBP and LPQ in the subset #3.

Descritor Top 01 Top 05 Top 10

LBP 0.914 0.982 0.986
RLBP 0.905 0.980 0.986
LPQ 0.911 0.977 0.982

Table 7
Identification rates obtained from the variation of vertical and horizontal zones.

Vertical Horizontal Top-1 Top-5 Top-10

03 None 0.570 0.857 0.914
03 15 (Mel) 0.914 0.982 0.986
05 None 0.041 0.077 0.116
05 15 (Mel) 0.018 0.061 0.148
09 None 0.032 0.068 0.127
09 15 (Mel) 0.025 0.059 0.157

Table 8
Identification rates varying the number of horizontal zones.

Zones Top-1 Top-5 Top-10

None 0.570 0.857 0.914
03 0.755 0.911 0.950
05 0.852 0.941 0.968
10 0.902 0.966 0.977
15 (Mel) 0.914 0.982 0.986

Table 9
Identification rates using the proposed approach in the eight different subsets.

Train and test Classes Top-1 (σ) Top-5 Top-10

#1 23 0.895 ± 0. 059 0.991 1.000
#2 48 0.875 ± 0. 029 0.975 0.991
#3 88 0.920 ± 0. 036 0.981 0.990
#4 180 0.848 ± 0. 011 0.935 0.954
#5 349 0.793 ± 0.027 0.900 0.928
#6 614 0.749 ± 0.012 0.872 0.902
#7 772 0.722 ± 0.005 0.858 0.896
#8 915 0.701 ± 0.000 0.824 0.865
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subsets #1, #2 and #3.
From Table 9, we also can note that on subsets from #1 to #5 all the

results are above 79% for Top-1. In these cases, there are five samples
for each species both in training and testing sets. Moreover, taking into
account subsets from #1 to #4, the approach presented even better
results. In this second case, all samples have at least 10 samples and a
minimum time of 10 seconds.

Taking into account other experiments previously reported in other
works, e.g., on music genre classification or even on bird species clas-
sification, we have empirically defined the number of columns per
second on the spectrogram image. In this sense, we have used 27 col-
umns on the image for each second of the audio signal, hence, a sample
with 10 seconds generates an image with 270 pixels wide (time). Using
three vertical zones and minimum time of 10 seconds, each slice has at
least 90 pixels wide. Initially, we believed that the factors that con-
tribute to the robustness of the system are the minimum audio duration
(10 seconds), and the minimum number of training samples (5 sam-
ples). However, since the number of samples from one subset to another
increases considerably, it is difficult to conclude that the time and
number of samples are the only factors that influence system perfor-
mance.

We can observe in Table 9 that the performance on the subset # 3 is
0.92 for Top-1 and on the subset # 4 the identification rate is 0.848. In
this case, the number of species practically doubled, and the perfor-
mance dropped only 7.2 percentage points. From the subset #5 to #7,
we also doubled the number of classes, and the drop was 7.1 percentage
points. Thus, we can conclude that in addition to the impact of time and
number of samples, the number of species used can have a high impact
on system performance.

The main contribution of the dissimilarity approach is that the
model does not need to be retrained whenever new classes are added to
the classification system. Table 10 describes the results achieved using
the eight different models to classify the eight subsets proposed in this
work.

We can note that not always a model trained using more classes will
reach the best results. Another interesting point is that when using the
subset # 6 for training, we got the highest accuracy in databases with
the highest number of classes. Another interesting point is that the best
identification rates have always been obtained by using one subset for
training and another subset for testing. Besides, if we have a model with
a greater diversity of classes we probably have more impact than when
we have audio signals with a longer duration.

It is worth of noticing that these results were obtained using a larger
number of species from Xeno-Canto database, while the best results in
the state-of-the-art use a reduced number of classes. As aforementioned,
it is difficult to compare the results reported in this study with other
works, because they do not necessarily use the same datasets. However,
we can point out that the winner of the LifeClef 2015 bird task obtained
a mean average precision close to 45% on the whole database.

6. Conclusion

In this work, we have addressed bird species identification starting

from audio recordings using spectrograms and the dissimilarity fra-
mework. The experiments were carried out on eight different subsets of
the LifeClef bird task 2015 contest, in which the number of classes
ranges from 23 to 915.

Spectrogram was chosen as the source to extract the feature because
it has been successfully used in many other audio classification tasks.
Regarding the dissimilarity framework, it was used because the po-
tential benefits using this strategy are twofold: this framework removes
the need for retraining the model each time a new class is introduced in
the classification system; dissimilarity has shown to keep good perfor-
mance rates even when the classification problem involves a large
number of classes.

Although the obtained results cannot be directly compared to other
results, because the subsets used here were assessed for the first time in
this work, the results lead us to believe that the proposed method is
among the best ever presented. In the most challenging scenario eval-
uated, with 915 classes, we have obtained an identification rate of 71%.
In order to encourage other researchers to compare those approaches
with the method the list of the audio clips used in each dataset used
here and also the spectrogram images extracted from the audio were
made available.

As a future work, we aim to develop experiments using features
obtained with deep learning. We also intend to investigate the com-
plementarity between those features with handcrafted (i.e. LBP) fea-
tures under the dissimilarity based method proposed here. In addition,
we aim to evaluate our approach on the more recent version of
LifeCLEF database, composed of 1,500 bird species.
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