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CHAPTER 1.4

MATCH TRACKING STRATEGIES FOR FUZZY ARTMAP
NEURAL NETWORKS

Eric Granger1∗, Philippe Henniges1, Robert Sabourin1 and Luiz S. Oliveira2

1Laboratoire d’imagerie, de vision et d’intelligence artificielle, École de technologie
supérieure (ETS), Montreal, Canada

2Dept. de Informática Aplicada, Pontif́ıcia Universidade Católica do Paraná
(PUCPR), Curitiba, Brazil

Training fuzzy ARTMAP neural networks for classification using data from com-
plex real-world environments may lead to category proliferation, and yield poor
performance. This problem is known to occur whenever the training set contains
noisy and overlapping data. Moreover, when the training set contains identical
input patterns that belong to different recognition classes, fuzzy ARTMAP will
fail to converge. To circumvent these problems, some alternatives to the net-
work’s original match tracking (MT) process have been proposed in literature,
such as using negative MT, and removing MT altogether. In this chapter, the
MT parameter of fuzzy ARTMAP is optimized during training using a new Parti-
cle Swarm Optimisation (PSO)-based strategy, denoted PSO(MT). The impact on
fuzzy ARTMAP performance of training with different MT strategies is assessed
empirically, using different synthetic data sets, and the NIST SD19 handwritten
character recognition data set. During computer simulations, fuzzy ARTMAP is
trained with the original (positive) match tracking (MT+), with negative match
tracking (MT-), without MT algorithm (WMT), and with PSO(MT). Through a com-
prehensive set of simulations, it has been observed that by training with MT-,
fuzzy ARTMAP expends fewer resources than with other MT strategies, but can
achieve a significantly higher generalization error, especially for data with over-
lapping class distributions. In particular, degradation of error in fuzzy ARTMAP
performance due to overtraining is more pronounced for MT- than for MT+. Gener-
alization error achieved using WMT is significantly higher than other strategies on
data with complex non-linear decision bounds. Furthermore, the number of in-
ternal categories required to represent decision boundaries increases significantly.
Optimizing the value of the match tracking parameter using PSO(MT) yields the
lowest overall generalization error, and requires fewer internal categories than
WMT, but generally more categories than MT+ and MT-. However, this strategy re-
quires a large number of training epochs to convergence. Based on this empirical
results with PSO(MT), the MT process as such can provide a significant increase
to fuzzy ARTMAP performance, assuming that the MT parameter is tuned for
the specific application in mind.

∗Corresponding author: ETS, 1100 Notre-Dame Ouest, Montreal, Quebec, H3C 1K3, Canada,
email: eric.granger@etsmtl.ca, phone: 1-514-396-8650, fax: 1-514-396-8595.
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1. Introduction

The fuzzy ARTMAP neural network is capable of self-organizing stable recognition
categories in response to arbitrary sequences of analog or binary input patterns. It
can perform fast, stable, on-line, unsupervised or supervised, incremental learning,
classification, and prediction.6,7 As such, it has been successfully applied in complex
real-world pattern recognition tasks such as the recognition of radar signals,15,32

multi-sensor image fusion, remote sensing and data mining,9,31,35,40 recognition of
handwritten characters,3,13,23 and signature verification.29

A drawback of fuzzy ARTMAP is its ability to learn decision boundaries be-
tween class distributions that consistently yield low generalization error for a wide
variety of pattern recognition problems. For instance, when trained for automatic
classification of handwritten characters, fuzzy ARTMAP cannot achieve a level of
performance that is competitive with some other well-known models.16 Statistical
models (e.g., linear and quadratic discriminant function, Gaussian mixture classi-
fier, k -Nearest-Neighbor (kNN) and Support Vector Machines (SVMs)), and neural
networks(e.g., Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF)
networks) are commonly used for classification due to their learning flexibility and
inexpensive computation.26 Such recognition problems typically exhibit complex
decision boundaries, with moderate overlap between character classes.

In the context of batch supervised learning of a finite training set, the main
factors affecting fuzzy ARTMAP’s capacity to generalize are:

(1) internal dynamics of network: prototype choice and class prediction functions,
learning rule, match tracking process, hyper-parameter values, and representa-
tion of categories with hyper-rectangles.

(2) learning process: supervised learning strategy (and thus, the number of train-
ing epochs), proportion of patterns in the training subset to those in validation
and test subsets, user-defined hyper-parameter values, data normalisation tech-
nique, sequential gradient-based learning, and data presentation order.

(3) data set structure: overlap and dispersion of patterns, etc., and therefore of the
geometry of decision boundaries among patterns belonging to different recog-
nition classes.

Several ARTMAP networks have been proposed to refine the decision boundaries
created by fuzzy ARTMAP. For instance, many variants attempt to improve the ac-
curacy of fuzzy ARTMAP predictions by providing for probabilistic (density based)
predictions.10,14,25,36,39,41

When learning data from complex real-world environments, fuzzy ARTMAP
is known to suffer from overtraining, often referred to in literature as the cate-
gory proliferation problem. It occurs when the training data set contains noisy
and overlapping class distributions.19,22,24 In this case, increasing the amount of
training data requires significantly more internal category neurons, and therefore
computational complexity, while yielding a higher generalisation error. The cate-
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gory proliferation problem is directly connected to the match tracking (MT) pro-
cess of fuzzy ARTMAP. During fuzzy ARTMAP training, when a mismatch occurs
between predicted and desired output responses, MT allows selecting alternate cat-
egory neurones.

The match tracking process is parameterized by hyper-parameter ε, and was
originally introduced as a small positive value.10 In fuzzy ARTMAP literature, this
parameter is commonly set to a value (ε = 0+) that allows to minimize network
resources. Such a choice may however contribute to overtraining, and significantly
degrade the capacity to generalize. As a result, some authors have studied the
impact on performance of removing the MT altogether, and conclude that the use-
fulness of MT is questionable.2,27 However, training without MT may lead to a
network with a greater number of internal categories, and possibly a higher gener-
alization error.

In an extreme case, a well known convergence problem occurs when learning in-
consistent cases – identical training subset patterns that belong to different classes.10

The consequence is a failure to converge, as identical prototypes linked to these in-
consistent cases proliferate. This anomalous situation is a result of the original
match tracking process. This convergence problem may be circumvented by using
the feature of ARTMAP-IC10 called negative match tracking (i.e., setting ε = 0−

after mismatch reset). This allows fuzzy ARTMAP training to converge and find
solutions with fewer internal categories, but may however lead to a higher general-
ization error.

In this chapter, the impact on fuzzy ARTMAP performance of training with
different MT strategies – the original positive MT (MT+), negative MT (MT-) and
without MT (WMT) - is assessed empirically. As an alternative, a Particle Swarm
Optimization (PSO)-based approach called PSO(MT) is used to optimize the value of
MT hyper-parameter ε during fuzzy ARTMAP training, such that the generaliza-
tion error is minimized. The architecture, weights, and MT parameter are in effect
selected to minimize generalisation error by virtue of ARTMAP training, which al-
lows to grow the network architecture (i.e., the number of category neurons) with
the problem’s complexity. An experimental protocol has been defined such that the
generalization error and resource requirements of fuzzy ARTMAP trained with dif-
ferent MT strategies may be compared using different types of pattern recognition
problems. The first two types consist of synthetic data with overlapping class dis-
tributions, and with complex decision boundaries but no overlap, respectively. The
third type consists of real-world data - handwritten numerical characters extracted
from the NIST SD19.

In the next section, the MT strategies for fuzzy ARTMAP training are briefly
reviewed. Section III presents the experimental methodology, e.g., protocol, data
sets and performance measures employed for proof of concept computer simulations.
Section IV presents and discuss experimental results obtained with synthetic and
NIST SD19 data.
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2. Fuzzy ARTMAP Match Tracking

2.1. The fuzzy ARTMAP neural network:

ARTMAP refers to a family of neural network architectures based on Adaptive
Resonance Theory (ART)4 that is capable of fast, stable, on-line, unsupervised or
supervised, incremental learning, classification, and prediction6.7 ARTMAP is often
applied using the simplified version shown in Figure 2. It is obtained by combining
an unsupervised ART neural network4 with a map field.

In order to improve the performance or robustness to noise of ARTMAP archi-
tectures, several variants have been proposed in literature. Some networks, such as
fuzzy ARTMAP, ART-EMAP, ARTMAPT-PI, ARTMAP-IC, Default ARTMAP,
Simplified ARTMAP, and Distributed ARTMAP, represent each class using one or
more fuzzy set hyper-rectangle, and perform category activation using an L1 norm.
Other networks, such as PROBART, Probabilistic Fuzzy ARTMAP, MLANS, Gaus-
sian ARTMAP, Ellipsoid ARTMAP, boosted ARTMAP, and μARTMAP, represent
each class using one or more probability density functions (pdfs). The class predic-
tions of probabilistic ARTMAP variants consist in estimating the posterior prob-
ability that each class generated a given input pattern. Then, the Bayes decision
procedure may be applied to assign one-of-L possible classes to the input accord-
ing to the maximum posterior probability decision rule. This rule defines decision
boundaries among classes that yield the minimum probability of misclassification.

Fuzzy ARTMAP7 is one of the earliest and most popular ARTMAP architecture.
It can process both analog and binary-valued input patterns by employing fuzzy
ART5 as the ART network. The fuzzy ART neural network consists of two fully con-
nected layers of nodes: an M node input layer, F1, and an N node competitive layer,
F2. A set of real-valued weights W = {wij ∈ [0, 1] : i = 1, 2, ..., M ; j = 1, 2, ..., N}
is associated with the F1-to-F2 layer connections. Each F2 node j represents a
recognition category that learns a prototype vector wj = (w1j , w2j , ..., wMj). The
F2 layer of fuzzy ART is connected, through learned associative links, to an L node
map field F ab, where L is the number of classes in the output space. A set of binary
weights Wab = {wab

jk ∈ {0, 1} : j = 1, 2, ..., N ; k = 1, 2, ..., L} is associated with the
F2-to-F ab connections. The vector wab

j = (wab
j1 , wab

j2 , ..., wab
jL) links F2 node j to one

of the L output classes.

2.2. Algorithm for supervised learning of fuzzy ARTMAP:

In batch supervised training mode, ARTMAP classifiers learn an arbitrary mapping
between training set patterns a = (a1, a2, ..., am) and their corresponding binary
supervision patterns t = (t1, t2, ..., tL). These patterns are coded to have unit value
tK = 1 if K is the target class label for a, and zero elsewhere. The following steps
describe fuzzy ARTMAP learning:
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Fig. 1. An ARTMAP neural network architecture for pattern classification.

(1) Initialisation: Initially, all the F2 nodes are uncommitted, all weight values wij

are initialized to 1, and all weight values wab
jk are set to 0. An F2 node becomes

committed when it is selected to code an input vector a, and is then linked to
an F ab node. Values of the learning rate β ∈ [0, 1], the choice α > 0, the match
tracking 0 < ε � 1, and the baseline vigilance ρ̄ ∈ [0, 1] hyper-parameters are
set.

(2) Input pattern coding: When a training pair (a, t) is presented to the net-
work, a undergoes a transformation called complement coding, which doubles
its number of components. The complement-coded input pattern has M = 2m

dimensions and is defined by A = (a, ac) = (a1, a2, ..., am; ac
1, a

c
2, ..., a

c
m), where

ac
i = (1 − ai), and ai ∈ [0, 1]. The vigilance parameter ρ is reset to its baseline

value ρ̄.
(3) Prototype selection: Pattern A activates layer F1 and is propagated through

weighted connections W to layer F2. Activation of each node j in the F2 layer
is determined by the Weber law choice function:

Tj(A) =
|A ∧ wj |
α + |wj | , (1)

where | · | is the L1 norm operator defined by |wj | ≡
∑M

i=1 |wij |, ∧ is the fuzzy
AND operator, (A ∧ wj)i ≡ min(Ai, wij), and α is the user-defined choice
parameter. The F2 layer produces a binary, winner-take-all pattern of activity
y = (y1, y2, ..., yN ) such that only the node j = J with the greatest activation
value J = arg max{Tj : j = 1, 2, ..., N} remains active; thus yJ = 1 and yj =
0, j �= J . If more than one Tj is maximal, the node j with the smallest index is
chosen. Node J propagates its top-down expectation, or prototype vector wJ ,
back onto F1 and the vigilance test is performed. This test compares the degree



June 15, 2009 12:18 World Scientific Review Volume - 9.75in x 6.5in chap1.4-HPRCV4˙PSOMT

78 E. Granger, P. Henniges, R. Sabourin & L. S. Oliveira

of match between wJ and A against the dimensionless vigilance parameter
ρ ∈ [0, 1]:

|A ∧ wJ |
|A| =

|A ∧wJ |
M

≥ ρ . (2)

If the test is passed, then node J remains active and resonance is said to occur.
Otherwise, the network inhibits the active F2 node (i.e., TJ is set to 0 until
the network is presented with the next training pair (a, t)) and searches for
another node J that passes the vigilance test. If such a node does not exist,
an uncommitted F2 node becomes active and undergoes learning (Step 5). The
depth of search attained before an uncommitted node is selected is determined
by the choice parameter α.

(4) Class prediction: Pattern t is fed directly to the map field F ab, while the F2

category y learns to activate the map field via associative weights Wab. The
F ab layer produces a binary pattern of activity yab = (yab

1 , yab
2 , ..., yab

L ) = t∧wab
J

in which the most active F ab node K = argmax{yab
k : k = 1, 2, ..., L} yields the

class prediction (K = k(J)). If node K constitutes an incorrect class prediction,
then a match tracking (MT) signal raises the vigilance parameter ρ such that:

ρ =
|A ∧ wJ |

M
+ ε , (3)

where ε = 0+, to induce another search among F2 nodes (Step 3). This search
continues until either an uncommitted F2 node becomes active, and learning
ensues (Step 5), or a node J that has previously learned the correct class pre-
diction K becomes active.

(5) Learning: Learning input a involves updating prototype vector wJ , and, if
J corresponds to a newly-committed node, creating an associative link to F ab.
The prototype vector of F2 node J is updated according to:

w′
J = β(A ∧ wJ) + (1 − β)wJ , (4)

where β is a fixed learning rate parameter. The algorithm can be set to slow
learning with 0 < β < 1, or to fast learning with β = 1. With comple-
ment coding and fast learning, fuzzy ARTMAP represents category j as an
m-dimensional hyperrectangle Rj that is just large enough to enclose the clus-
ter of training set patterns a to which it has been assigned. That is, an M -
dimensional prototype vector wj records the largest and smallest component
values of training subset patterns a assigned to category j. The vigilance test
limits the growth of hyperrectangles – a ρ close to 1 yields small hyperrect-
angles, while a ρ close to 0 allows large hyperrectangles. A new association
between F2 node J and F ab node K (k(J) = K) is learned by setting wab

Jk = 1
for k = K, where K is the target class label for a, and 0 otherwise. The next
training subset pair (a, t) is presented to the network in Step 2.
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Network training proceeds from one epoch to the next, and is halted for valida-
tion after each epoch a. Given a finite training data set, batch supervised learning
ends after the epoch for which the generalisation error is minimized on an inde-
pendent validation data set. With the large data sets considered in this chapter,
learning through this hold-out validation (HV) is an appropriate validation strategy.
If data were limited, k -fold cross-validation would be a more suitable strategy, at
the expense of some estimation bias due to crossing.19,34

Once the weights W and Wab have been found through this process, ARTMAP
can predict a class label for an input pattern by performing Steps 2, 3 and 4 without
any vigilance or match tests. During testing, a pattern a that activates node J is
predicted to belong to class K = k(J). The time complexity required to process
one input pattern, during either a training or testing phase, is O(MN).

2.3. Match tracking strategies:

During training, when a mismatch occurs between a predicted response yab and a
desired response t for an input pattern a, the original positive MT process (MT+) of
fuzzy ARTMAP raises the internal vigilance parameter to ρ = (|A∧wJ |)(M)−1 + ε

in order to induce another search among F2 category nodes. MT+ is parameterized
by the MT hyper-parameter ε, which was introduced as a small positive value,
0 < ε � 1.7

It is well documented that training fuzzy ARTMAP with data from noisy and
overlapping class distributions may lead to category proliferation, and that this
problem is connected to the MT mechanism. Overlapping between classes, which is
responsible for misclassifications during training, requires MT to find a more suit-
able category for the misclassified pattern. The selected F2 node requires a larger
prototype vector, and thus a smaller size to pass the vigilance test. Such misclas-
sifications are responsible for the formation of a large number of small categories
within the overlapping area, many of which contribute little to the classification
process.24 Category proliferation is intensified with the degree of class overlap.

Category proliferation is an indication of overtraining. Increasing the amount
of training data requires significantly more resources (i.e., the number of internal
category neurons, thus memory space and computational complexity), yet provides
a higher generalisation error.19,22,24 In addition, the MT parameter is commonly
set to the value ε = +0.001 in fuzzy ARTMAP literature to minimize network
resources.10 Such a choice may play a significant role in category proliferation, and
considerably degrade the capacity to generalize.

Although pruning may help reduce category proliferation, some authors have
challenged the need for a MT process.1,27,37 Training without MT (WMT) implies
creating a new category each time that a predictive response yab does not match a
desired response t. When an node in the F2 layer is chosen to represent an input

aAn epoch is defined as one complete presentation of all the patterns of the training set.
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pattern, but this node is mapped to the incorrect label, an uncommitted node
is activated to represent this pattern. Note that training fuzzy ARTMAP WMT is
equivalent to performing MT but setting ε = 1. Training WMT may create networks
with a greater number of internal categories, and possibly a higher generalization
error.

In an extreme case, a convergence problem occurs whenever the training set
contains identical patterns that belong recognition classes.10 The effect is a prolif-
eration of identical prototypes associated with the inconsistent cases, and a failure
to converge. Consider for example that on the first training epoch, fuzzy ARTMAP
learns two completely overlapping, minimum-sized prototypes, wA.1 (linked to class
A) and wB.1 (linked to class B), for two identical pulse patterns, a1 and a2. In a sub-
sequent epoch, wA.1 is initially selected to learn a2, since TA.1 = TB.1 � 1, and wA.1

was created prior to wB.1 (index A.1 is smaller than B.1). Since wA.1 is not linked
to class B, mismatch reset raises the vigilance parameter ρ to (|A2 ∧wA.1|/M)+ ε,
where |A2 ∧ wA.1| = |A2 ∧ wB.1|. As a result, wB.1 can no longer pass the
vigilance test required to become selected for a2, and fuzzy ARTMAP must cre-
ate another minimum-sized prototype wB.2 = wB.1. From epoch to epoch, the
same phenomenon repeats itself, yielding ever more prototypes wB.n = wB.1 for n
= 3, 4, ...,∞.

ARTMAP-IC10 is an extension of fuzzy ARTMAP that produce a binary winner-
take-all pattern y when training, but use distributed activation of coded F2 nodes
when testing. ARTMAP-IC is further extended in two ways. First, it biases dis-
tributed test set predictions according to the number of times F2 nodes are assigned
to training set patterns. Second, it uses a negative MT process (MT-) to address the
problem of inconsistent cases, whereby identical training set patterns correspond to
different classes labels.

With negative MT (MT-), ρ is also initially raised after mismatch reset, but
is allowed to decay slightly before a different node J is selected. Then, the MT
parameter is set to a small negative value, ε ≤ 0 (typically a value of ε = −0.001),
which allows for identical inputs that predict different classes to establish distinct
recognition categories. In the example above, mismatch reset raises ρ but wB.1

would still pass the vigilance test. This allows to learn fully overlapping prototypes
for training set patterns that belong to different classes.

In some applications, incorporation into fuzzy ARTMAP of the MT- feature of
ARTMAP-IC may be essential to avoid the convergence problem observed with
original MT+. Training fuzzy ARTMAP with MT- would thereby find solutions with
fewer internal categories, but may nonetheless lead to a higher generalization er-
ror. In other cases, MT reset may also be buffered based on a category’s previous
predictive success, thereby improving the compression achieved with minimal loss
of accuracy.18 During supervised learning, match tracking search allocates mem-
ory based on the degree of similarity between newly encountered and previously
encountered inputs, regardless of their prior predictive success.
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An alternate approach consists in optimizing the MT hyper-parameter during
batch supervised learning of a fuzzy ARTMAP neural network. In effect, both
network (weights and architecture) and ε values are co-optimized for a given prob-
lem, using the same cost function. The next Subsection presents a Particle Swarm
Optimization (PSO)-based approach called PSO(MT) that automatically selects a
value (magnitude and polarity) of ε during fuzzy ARTMAP training such that the
generalization error is minimized. This approach is based on the PSO training
strategy proposed in,16 but focused only on a one-dimensional optimization space
of ε ∈ [−1, 1].

2.4. Particle Swarm Optimisation (PSO) of the match tracking

parameter

PSO is a population-based stochastic optimization technique that was inspired by
social behavior of bird flocking or fish schooling.20 It shares many similarities with
evolutionary computation techniques such as genetic algorithms (GAs), yet has no
evolution operators such as crossover and mutation. PSO belongs to the class of
evolutionary algorithm techniques that does not utilize the “survival of the fittest”
concept, nor a direct selection function. A solution with lower fitness values can
therefore survive during the optimization and potentially visit any point of the
search space.12 Finally, while GAs were conceived to deal with binary coding, PSO
was designed, and proved very effective, in solving real valued global optimization
problems, which makes it suitable for this study.

With PSO, each particle corresponds to a single solution in the search space,
and the population of particles is called a swarm. All particles are assigned position
values which are evaluated according to the fitness function being optimized, and
velocities values which direct their movement. Particles move through the search
space by following the particles with the best fitness. Assuming a d-dimensional
search space, the position of particle i in an P -particle swarm is represented by a
d-dimensional vector si = (si1, si2, . . . , sid), for i = 1, 2, . . . , P . The velocity of this
particle is denoted by vector vi = (vi1, vi2, . . . , vid), while the best previously-visited
position of this particle is denoted as pi = (pi1, pi2, . . . , pid). For each new iteration
q + 1, the velocity and position of particle i are updated according to:

vq+1
i = wqvq

i + c1r1(p
q
i − sq

i ) + c2r2(pq
g − sq

i ) (5)

sq+1
i = sq

i + vq+1
i (6)

where pg represents the global best particle position in the swarm, wq is the particle
inertia weight, c1 and c2 are two positive constants called cognitive and social
parameters, respectively, and r1 and r2 are random numbers uniformly distributed
in the range [0,1].

The role of wq in Equation 5 is to regulate the trade-off between exploration
and exploitation. A large inertia weight facilitates global search (exploration), while
a small one tends to facilitate fine-tuning the current search area (exploitation).
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Fig. 2. An ARTMAP neural network architecture specialized for pattern classification.

This is why inertia weight values are defined by some monotonically decreasing
function of q. Proper fine-tuning of c1 and c2 may result in faster convergence of
the algorithm and alleviation of the local minima. Kennedy and Eberhart propose
that the cognitive and social scaling parameters be selected such that c1 = c2 =
2.21 Finally, the parameters r1 and r2 are used to maintain the diversity of the
population. Figure ?? depicts the update by PSO of a particle’s position from sq

i

to sq+1
i .
Algorithm 1 shows the pseudo-code of a PSO learning strategy specialized for

supervised training of fuzzy ARTMAP neural networks. It essentially seeks to
minimize fuzzy ARTMAP generalisation error E(sq

i ) in the d-dimensional space of
hyper-parameter values. For enhanced computational throughput and global search
capabilities, Algorithm 1 is inspired by the synchronous parallel version of PSO.33

It utilizes a basic type of neighborhood called global best or gbest, which is based on
a sociometric principle that conceptually connects all the members of the swarm to
one another. Accordingly, each particle is influenced by the very best performance
of any member of the entire swarm. Exchange of information only takes place
among the particle’s own experience (the location of its personal best pq

i , lbest),
and the experience of the best particle in the swarm (the location of the global best
pq

g, gbest).
The PSO(MT) approach is obtained by setting d = 1, and particle positions

to MT parameter values, sq
i = εq

i . Measurement of any fitness values E(sq
i ) in

this algorithm involves computing the generalisation error on a validation subset
for the fuzzy ARTMAP network which has been trained using the MT parameter
value at particle position εq

i . When selecting pq
i or pq

g, if the two fitness values
being compared are equal, then the particle/network requiring fewer number of F2
category nodes is chosen. The same training and validation sets are used throughout
this process. Following the last iteration of Algorithm 1, the overall generalisation
error is computed on a test set for the network corresponding to position pq

g.
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Algorithm 1: PSO learning strategy for fuzzy ARTMAP.
A. Initialization:
set the maximum number of iterations qmax and/or fitness objective E∗

set PSO parameters P , vmax, w0, c1, c2, r1 and r1

initialize particle positions at random such that p0
g , s0

i and p0
i ∈ [−1, 1]d , for

i = 1, 2, . . . , P
initialize particle velocities at random such that 0 ≤ v0

i ≤ vmax, for
i = 1, 2, . . . , P

B. Iterative process:
set iteration counter q = 0
while q ≤ qmax or E(pq

g) ≥ E∗ do
for i = 1, 2, . . . , P do

train fuzzy ARTMAP using hold-out validation and sq
i

compute fitness value E(sq
i ) of resulting network

if E(sq
i ) < E(pq

i ) then
update particle’s best personal position: pq

i = sq
i

end

end
select the particle with best global fitness:
g = arg min{E(sq

i ) : i = 1, 2, . . . , P}
for i = 1, 2, . . . , P do

update velocity: vq+1
i = wqvq

i + c1r1(p
q
i − sq

i ) + c2r2(p
q
g − sq

i )

update position: sq+1
i = sq

i + vq+1
i

end
q = q + 1
update particle inertia wq

end

3. Experimental Methodology

To assess the performance achieved by fuzzy ARTMAP using MT strategies, several
data sets were selected for computer simulations. Four synthetic data sets are
representative of pattern recognition problems that involve either (1) simple decision
boundaries with overlapping class distributions, or (2) complex decision boundaries,
were class distributions do not overlap on decision boundaries. A set of handwritten
numerical characters from the NIST SD19 database is representative of complex
real-world pattern recognition problems. Prior to a simulation trial, these data sets
were normalized according to the min-max technique, and partitioned into three
parts – training, validation, and test subset.

During each simulation trial, the performance of fuzzy ARTMAP is compared
from a perspective of different training subset size, and match tracking strategies.
In order to assess the effect on performance of training subset size, the number of
training subset patterns used for supervised learning was progressively increased,
while corresponding validation and test subsets were held fixed. The performance
is compared for fuzzy ARTMAP neural networks trained according to four different
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MT strategies: MT+ (ε = 0.001), MT- (ε = −0.001), WMT (equivalent to setting ε = 1)
and PSO(MT). Training is performed by setting the other three hyper-parameters
such that the resources (number of categories, training epochs, etc.) are minimized:
α = 0.001, β = 1 and ρ = 0. In all cases, training is performed using the HV
strategy34 described in Subsection 2.2.

The PSO(MT) strategy also uses the hold-out validation technique on fuzzy
ARTMAP network to calculate the fitness of each particle, and therefore find the
network and ε value that minimize generalization error. Other fuzzy ARTMAP
hyper-parameters are left unchanged. In all simulations involving PSO, the search
space of the MT parameter was set to the following range of ε ∈ [−1, 1]. Each
simulation trial was performed with P = 15 particles, and ended after a maximum
of qmax = 100 iterations (although none of our simulations have ever attained that
limit). A fitness objective E∗ was not considered to end training, but a trial was
ended if the global best fitness E(pq

g) is constant for 10 consecutive iterations. The
initial position s0

1 of one particle was set according to MT- (ε = −0.001). All the
remaining particle vectors were initialized randomly, according to a uniform distri-
bution in the search space. The PSO parameters were set as follows: c1 = c2 = 2;
r1 and r2 were random numbers uniformly distributed in [0,1]; wq was decreased
linearly from 0.9 to 0.4 over the qmax iterations; the maximum velocity vmax was
set to 0.2. At the end of a trial, the fuzzy ARTMAP network with the best global
fitness value pq

g was retained. Independently trials were repeated 4 timesb with
different initializations of particle vectors, and the network with greatest pq

g of the
four was retained.

Since fuzzy ARTMAP performance is sensitive to the presentation order of the
training data, each simulation trial was repeated 10 times with either 10 different
randomly generated data sets (synthetic data), or 10 different randomly selected
data presentation orders (NIST SD19 data). The average performance of fuzzy
ARTMAP was assessed in terms of resources required during training, and its gen-
eralisation error on the test sets. The amount of resources required during training is
measured by compression and convergence time. Compression refers to the average
number of training patterns per category prototype created in the F2 layer. Con-
vergence time is the number of epochs required to complete learning for a learning
strategy. It does not include presentations of the validation subset used to perform
hold-out validation. Generalisation error is estimated as the ratio of incorrectly
classified test subset patterns over all test set patterns. Given that compression
indicates the number of F2 nodes, the combination of compression and conver-
gence time provides useful insight into the amount of processing required during
training to produce its best asymptotic generalisation error. Average results, with
corresponding standard error, are always obtained as a result of the 10 independent

bFrom previous study with our data sets, it was determined that performing 4 independent trials
of the PSO learning strategy with only 15 particles leads to better optimization results than
performing 1 trial with 60 particles.

egranger
Highlight
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simulation trials.
The Quadratic Bayes classifier (CQB) and k-Nearest-Neighbour with Euclidean

distance (kNN) classifier were included for reference with generalisation error re-
sults. These are classic parametric and non-parametric classification techniques
from statistical pattern recognition, which are immune to the effects of overtrain-
ing. For each computer simulation, the value of k employed with kNN was selected
among k = 1, 3, 5, 7, and 9, using hold-out validation. The rest of this section
gives some additional details on the synthetic and real data sets employed during
computer simulations.

3.1. Synthetic data sets:

All four synthetic data sets described below are composed of a total of 30,000
randomly-generated patterns, with 10,000 patterns for the training, validation, and
test subsets. They correspond to 2 class problems, with a 2 dimensional input
feature space. Each data subset is composed of an equal number of 5,000 patterns
per class. In addition, the area occupied by each class is equal. During simulation
trials, the number of training subset patterns used for supervised learning was
progressively increased from 10 to 10,000 patterns according to a logarithmic rule:
5, 6, 8, 10, 12, 16, 20, 26, 33, 42, 54, 68, 87, 110, 140, 178, 226, 286, 363, 461,
586, 743, 943, 1197, 1519, 1928, 2446, 3105, 3940, 5000 patterns per class. This
corresponds to 30 different simulation trials over the entire 10,000 pattern training
subset.

These data sets have been selected to facilitate the observation of fuzzy
ARTMAP behavior on different tractable problems. Of the four sets, two have
simple linear decision boundaries with overlapping class distributions, Dμ(ξtot) and
Dσ(ξtot), and two have complex non-linear decision boundaries without overlap,
DCIS and DP2. The total theoretical probability of error associated with Dμ and
Dσ is denoted by ξtot. Note that with DCIS and DP2, the length of decision bound-
aries between class distributions is longer, and fewer training patterns are available
in the neighborhood of these boundaries than with Dμ(ξtot) and Dσ(ξtot). In addi-
tion, note that the total theoretical probability of error with DCIS and DP2 is 0,
since class distributions do not overlap on decision boundaries. The four synthetic
data sets are now described.

Dμ(ξtot). As represented in Figure 3(a), this data consists of two classes, each
one defined by a multivariate normal distribution in a two dimensional input feature
space. It is assumed that data is randomly generated by sources with the same
Gaussian noise. Both sources are described by variables that are independent and
have equal variance σ2, therefore distributions are hyperspherical. In fact, Dμ(ξtot)
refers to 13 data sets, where the degree of overlap, and thus the total probability of
error between classes differs for each set. The degree of overlap is varied from a total
probability of error, ξtot = 1% to ξtot = 25%, with 2% increments, by adjusting the
mean vector μ2 of class 2.
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(a) (b)

(c)
(d)

Fig. 3. Representation of the synthetic data sets used for computer simulations: (a) Dμ(ξtot),

(b) Dσ(ξtot), (c) DCIS and (d) DP2.

Dσ(ξtot). As represented in Figure 3(b), this data is identical to Dμ(ξtot), except
that the degree of overlap between classes is varied by adjusting the variance σ2

2

of both classes. Note that for a same degree of overlap, Dσ(ξtot) data sets have a
larger overlap boundary than Dμ(ξtot) yet they are not as dense.

DCIS. As represented in Figure 3(c), the Circle-in-Square problem6 requires a
classifier to identify the points of a square that lie inside a circle, and those that
lie outside a circle. The circle’s area equals half of the square. It consists of one
non-linear decision boundary where classes do not overlap.

DP2. As represented in Figure 3(d), each decision region of the DP2 problem
is delimited by one or more of the four following polynomial and trigonometric
functions:

f1(x) = 2 sin(x) + 5 (7)

f2(x) = (x − 2)2 + 1 (8)
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f3(x) = −0.1x2 + 0.6 sin(4x) + 8 (9)

f4(x) =
(x − 10)2

2
+ 7.902 (10)

and belongs to one of the two classes, indicated by the Roman numbers I and II.38

It consists of four non-linear boundaries, and class definitions do not overlap. Note
that equation f4(x) was slightly modified from the original equation such that the
area occupied by each class is approximately equal.

3.2. NIST Special Database 19 (SD19):

Automatic reading of numerical fields has been attempted in several domains of ap-
plication such as bank cheque processing, postal code recognition, and form process-
ing. Such applications have been very popular in handwriting recognition research,
due to the availability of relatively inexpensive CPU power, and to the possibility
of considerably reducing the manual effort involved in these tasks.30

The NIST SD1917 data set has been selected due to the great variability and dif-
ficulty of such handwriting recognition problems (see Figure 4). It consists of images
of handwritten sample forms (hsf) organized into eight series, hsf-{0,1,2,3,4,6,7,8}.

(a)

(b)

Fig. 4. Examples in the NIST SD19 data of: (a) a handwriting sample form, and (b) some images
of handwritten digits extracted from the forms.
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SD19 is divided in 3 sections which contains samples representing isolated hand-
written digits (’0’, ’1’, ..., ’9’) extracted from hsf-{0123}, hsf-7 and hsf-4.

For our simulations, the data in hsf-{0123} has been further divided into training
subset (150,000 samples), validation subset 1 (15,000 samples), validation subset
2 (15,000 samples) and validation subset 3 (15,000 samples). The training and
validation subsets contain an equal number of samples per class. All 60,089 samples
in hsf-7 has been used as a standard test subset. The distribution of samples per
class in test sets is approximately equal.

The set features extracted for samples is a mixture of concavity, contour, and
surface characteristics.30 Accordingly, 78 features are used to describe concavity, 48
features are used to describe contour, and 6 features are used to describe surface.
Each sample is therefore composed of 132 features that are normalized between
0 and 1 by summing up their respective feature values, and then dividing each
one by its summation. With this feature set, the NIST SD19 data base exhibits
complex decision boundaries, with moderate overlap between digit classes. Some
experimental results obtained with Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM), and k -NN classifiers are reported in.16

During simulations, the number of training subset patterns used for supervised
learning was progressively increased as from 100 to 150,000 patterns, according to
a logarithmic rule. The 16 different training subset consist of the first 10, 16, 28,
47, 80, 136, 229, 387, 652, 1100, 1856, 3129, 5276, 8896, and all 15000 patterns per
class.

4. Simulation Results

4.1. Synthetic data with overlapping class distributions:

Figure 5 presents the average performance obtained when fuzzy ARTMAP is trained
with the four MT strategies – MT-, MT+, WMT and PSO(MT) – on Dμ(13%). The gen-
eralisation errors for the Quadratic Bayes classifier (CQB), as well as the theoretical
probability of error (ξtot), are also shown for reference.

As shown in Figure 5(a), PSO(MT) generally yields the lowest generalisation er-
ror over training set sizes, followed by WMT, MT+, and then MT-. With more than
20 training patterns per class, the error of both MT- and MT+ algorithms tends to
increase in a manner that is indicative of fuzzy ARTMAP overtraining.19 However,
with more than about 500 training patterns per class, the generalization error for
MT- grows more rapidly with the training set size than for MT+, WMT and PSO(MT).
With a training set of 5000 patterns per class, a generalization error of about 21.22%
is obtained with MT+, 26.17% with MT-, 16.22% with WMT, and 15.26% with PSO(MT).
The degradation in performance of MT- is accompanied by a notably higher com-
pression and a lower convergence time than other MT strategies. MT- produces
networks with fewer but larger categories than other MT strategies because of the
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Fig. 5. Average performance of fuzzy ARTMAP (with MT+, MT-, WMT and PSO(MT)) versus training
subset size for Dμ(ξtot = 13%): (a) generalisation error, (b) compression, (c) convergence time,
and (d) MT parameter for PSO(MT). Error bars are standard error of the sample mean.

MT polarity. Those large categories contribute to a lower resolution of the decision
boundary, and thus a greater generalization error.

By training with WMT, the generalization error is significantly lower than both MT-

and MT+ especially with a large amount of training patterns, but the compression
is the lowest of all training strategies. Based on the error alone, the effectiveness
of the MT algorithm is debateable with overlapping data when compared with MT-
and MT+, especially for application in which resource requirements are not an issue.

By training with PSO(MT), fuzzy ARTMAP yields a significantly lower general-
ization error than all other strategies, and a compression that falls between that of
WMT and MT- or MT+. With a training set of 5000 patterns per class, a compression of
about 8.0 is obtained with MT+, 26.4 with MT-, 4.8 with WMT, and 5.3 with PSO(MT).
The convergence time is generally comparable with WMT, MT- and MT+. However,
PSO(MT) requires a considerable number of training epochs to complete the opti-
mization process. With a training set of 5000 patterns per class, a convergence time
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of about 8.2 epochs is obtained with MT+, 3.6 with MT-, 12.3 with WMT, and 2534
with PSO(MT).

Empirical results indicate that the MT process of fuzzy ARTMAP has a con-
siderable impact on performance obtained with overlapping data, especially when
ε is optimized. As shown in Figure 5(d), when α = 0.001, β = 1 and ρ = 0, and
class distributions overlap, the values of ε that minimize error tends from about 0
towards 0.8 as the training set size grows. Higher ε settings tend to create a growing
number of category hyperrectangles close to the bourdary between classes. General-
isation error of PSO(MT) tends toward that of to WMT on this data set. Furthermore,
PSO(MT) and WMT do not show the performance degradation due to overtraining as
with MT+ and MT-.

Very similar tendencies are found in simulation results where fuzzy ARTMAP is
trained using the other Dμ(ξtot) and Dσ(ξtot) data sets. However, as ξtot increases,

(a)

(b) (c)

Fig. 6. Average performance of fuzzy ARTMAP (with MT+, MT-, WMT and PSO(MT)) as a function
of ξtot for all Dμ(ξtot) data sets: (a) net generalisation error, (b) compression, and (c) convergence
time.
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the performance degradation due to training subset size tends to become more
pronounced, and occurs for fewer training set patterns. Let us define the net error
as the difference between the generalization error obtained by using all the training
data (5,000 patterns per class) and the theoretical probability of error ξtot of the
database. Figure 6 shows the performance of fuzzy ARTMAP as a function of ξtot

for all Dμ(ξtot) data sets. As shown, using PSO(HV) always provides the lowest net
error over ξtot values for overlapping data, followed by WMT, MT+ and MT-. Again, MT-
obtains the highest compression, whereas PSO(MT) obtain a compression between
WMT and MT+. The convergence time of PSO(HV) is orders of magnitude longer that
the other strategies.

Figure 7 presents an example of decision boundaries obtained for Dμ(ξtot = 13%)
when fuzzy ARTMAP is trained with 5,000 patterns per class and different MT
strategies. For overlapping class distribution, MT- tends to create much fewer F2

(a) (b)

(c) (d)

Fig. 7. An Example of decision boundaries formed by fuzzy ARTMAP in the input space for
Dμ(ξtot = 13%). Training is performed (a) with MT+, (b) with MT-, (c) WMT, and (d) PSO(MT) on
5,000 training patterns per class. The optimal decision boundary for Dμ(ξtot = 13%) is also shown
for reference. Note that virtually no training, validation or test subset patterns are located in the
upper-left and lower-right corners of these figures.
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nodes (908 categories with 5000 patterns per class) than the other MT strategies
because of the polarity of ε. Although it leads to a higher compression, and can
resolve inconsistent cases, the larger categories produce coarse granulation of the
decision boundary, and thus a higher generalization error. With PSO(MT) and WMT,
the lower error is a consequence of the finer resolution on overlap regions of the
decision boundary between classes.

4.2. Synthetic data with complex decision boundaries:

Figure 8 presents the average performance obtained when fuzzy ARTMAP is trained
on DCIS using the four MT strategies – MT-, MT+, WMT and PSO(MT). The general-
isation error for the k -NN classifier, as well as the theoretical probability of error,
ξtot, are also shown for reference.
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Fig. 8. Average performance of fuzzy ARTMAP (with MT+, MT-, WMT and PSO(MT)) versus training
subset size for DCIS: (a) generalisation error, (b) compression, (c) convergence time, and (d) MT
parameter for PSO(MT). Error bars are standard error of the sample mean.
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In this case, MT+, MT- and PSO(MT) obtain a similar generalization error across
training set sizes, while WMT yields an error that is significantly higher than the
others strategies for larger training set sizes. For example, with a training set of
5000 patterns per class, a generalization error of about 1.51% is obtain with MT+,
1.64% with MT-, 4.36% with WMT, and 1.47% with PSO(MT). Compression of fuzzy
ARTMAP as a functions of training set size in a grows in a similar way for MT-,
MT+ and PSO(MT). With a training set of 5000 patterns per class, a compression of
107 is obtained with MT+, 108 with MT-, 14 with WMT, and 109 with PSO(MT). WMT
does not allow to create a network with higher compression because data structure
leads to the creation many small categories that overlap on the decision boundary
between classes. However, WMT requires the fewest number of training epochs to
converge, while PSO(MT) requires a considerable number of epochs. With a training
set of 5000 patterns per class, a convergence time of about 18.4 epochs is required
with MT+, 14.4 with MT-, 6.6 with WMT, and 4186 with PSO(MT).

Empirical results indicate that the MT process of fuzzy ARTMAP also has a
considerable impact on performance obtained on data with complex decision bound-
aries, especially when ε is optimized. As shown in Figure 8(d), when α = 0.001,
β = 1 and ρ = 0, and decision boundaries are complex, the values of ε that minimize
error tends from about 0.4 towards 0 as the training set size grows. Lower ε settings
tend to create fewer category hyperrectangles close to the bourdary between classes.
Generalisation error of PSO(MT) tends toward that of to MT+ and MT- on this data.

Similar tendencies are found in simulation results where fuzzy ARTMAP is
trained using the DP2 data set. However, since the decision boundaries are more
complex with DP2, a greater number of training patterns are required for fuzzy
ARTMAP to asymptotically start reaching its minimum generalisation error. More-
over, all MT strategies tested on data with non linear decision boundaries generate
no overtraining.19

Figure 9 presents an example of decision boundaries obtained for DCIS when
fuzzy ARTMAP is trained with 5,000 patterns per class and different MT strategies.
For data with complex decision boundaries, training fuzzy ARTMAP WMT yields
higher generalization error since it initially tends to create some large categories,
and then compensates by creating many small categories. This leads to coarse
granulation of the decision boundary, and thus a higher generalization error.

Table 1 shows the average generalisation error obtained with the reference clas-
sifiers and the fuzzy ARTMAP neural network using different MT strategies on
Dμ(ξtot), DCIS and DP2. Training was performed on 5,000 patterns per class.
When using PSO(MT), the generalisation error of fuzzy ARTMAP is always lower
than when using MT+, MT- and WMT, but is always significantly higher than that of
the Quadratic Bayes and k-NN classifiers. When data contains overlapping class
distributions, the values of ε that minimize error tends towards +1. In contrast,
when decision boundaries are complex, these ε values tend towards 0.



June 15, 2009 12:18 World Scientific Review Volume - 9.75in x 6.5in chap1.4-HPRCV4˙PSOMT

94 E. Granger, P. Henniges, R. Sabourin & L. S. Oliveira

(a) (b)

(c) (d)

Fig. 9. An Example of decision boundaries formed by fuzzy ARTMAP in the input space for
DCIS. Training is performed (a) with MT+, (b) with MT-, (c) WMT, and (d) PSO(MT) on 5,000
training patterns per class. The optimal decision boundary for DCIS is also shown for reference.

4.3. NIST SD19 data:

Figure 10 presents the average performance obtained when fuzzy ARTMAP is
trained on the NIST SD19 data using the four MT strategies – MT-, MT+, WMT

and PSO(MT). The generalisation error for the k -NN classifier are also shown for
reference.

As shown in this figure, MT- and MT+ obtain similar average generalization error
across training set sizes. Using a training set of 52760 patterns, a generalization
error of about 5.81% is obtained with MT+, 6.02% with MT-, 32.84% with WMT, and
5.57% with PSO(MT). When optimizing the MT parameter with PSO(MT), generaliza-
tion error is lower then other MT strategies with a small number of training pattern,
and similar to MT- and MT+ with greater number of training pattern. WMT is unable
to create fuzzy ARTMAP network with low generalization error on NIST SD19.
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Fig. 10. Average performance of fuzzy ARTMAP (with MT+, MT-, WMT and PSO(MT)) versus training
subset size for NIST SD19 data set: (a) generalisation error, (b) compression, (c) convergence time,
and (d) MT parameter for PSO(MT). Error bars are standard error of the sample mean.

Since NIST database possesses complex decision boundaries with a small degree
of overlap, WMT cannot generate a good representation of the decision boundaries
because it generates too many categories that overlap between classes.

Using all the training data, MT- acheives the highest compression, followed by
MT+, PSO(MT) and WMT. However, with small amount of training patterns, PSO(MT)
generates the highest compression. For example, with a training set of 52760 pat-
terns, a compression rate of about 237.4 is obtained with MT+, 281.9 with MT-, 2.7
with WMT, and 141.6 with PSO(MT). WMT obtains the lowest compression rate because
if creates many very small categories to define the decision boundaries. With a
training set of 52760 patterns, a convergence time of about 15.7 epochs is obtain
with MT+, 6.8 with MT-, 1 with WMT, and 381 with PSO(MT). WMT still possesses the
fastest convergence time. The low generalization error of PSO(MT) requires a high
convergence time (about 24.3 time higher than MT+ with all training pattern).
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As shown in Figure 10(d), when α = 0.001, β = 1 and ρ = 0, and decision
boundaries are complex, the values of ε that minimize error tends from about -0.2
towards 0 as the training set size grows. As with DCIS and DP2, Generalisation
error of PSO(MT) tends toward that of to MT+ and MT- on this data set. Despite
promising results training fuzzy ARTMAP with PSO(MT), other pattern classifiers
(such as SVM) have achieved significantly lower generalization error.28,30

5. Conclusions

A fuzzy ARTMAP neural network applied to complex real-world problems such as
handwritten character recognition may achieve poor performance, and encounter
a convergence problem, whenever the training set contains noisy and overlapping
patterns that belong to different classes. In this chapter, a PSO-based strategy
called PSO(MT) is used to optimize the MT parameter during training. The impact
on fuzzy ARTMAP performance of adopting different MT strategies – the original
positive MT (MT+), negative MT (MT-), without MT (WMT), and PSO(MT) – is as-
sessed. An experimental protocol has been defined such that the generalization error
and resource requirements of fuzzy ARTMAP trained with different MT strategies
may be assessed on different types of synthetic problems and on the NIST SD19
handwritten character recognition data sets.

Overall, empirical results indicate that using the MT process for batch super-
vised learning has a significant impact on fuzzy ARTMAP performance. When data
is defined by overlapping class distributions, training with MT- tends to produce
fewer categories than the other MT strategies, although this advantage coincides
with a higher generalization error. The need for MT+ or MT- is debateable as WMT

yields a significantly lower generalization error. However, PSO(MT) has been shown
to create fuzzy ARTMAP networks with a finer resolution on decision bounds, and
an even lower error than WMT. In addition, it has been shown to eliminate the degra-
dation of error due to overtraining. To represent overlapping class distributions
with PSO(MT), the lowest errors are obtained for MT parameter values that tend
toward the maximum value (ε = 1) as the training set size grows. PSO(MT) thereby
favors the creation of new internal categories to define decision boundaries.

When data is defined by complex decision boundaries, training with PSO(MT)

creates the decision boundaries that yield the lowest generalization error, followed
most closely by MT- and then MT+. Training with WMT yields a considerably higher
generalization error and lower compression than the other MT strategies, specially
when for larger training set sizes. To represent complex decision boundaries with
PSO(MT), the lowest errors are obtained for MT parameter values that tend toward
0 as the training set size grows.

Finally, with the NIST SD19 data set, when using all training pattern the gen-
eralization error obtain with PSO(MT) is about 0.84% lower than MT-, but comes
at the expense of lower compression and a convergence time that can be two order
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of magnitude greater than other strategies. Training with a Multi-Objective PSO
(MOPSO) based strategy, where the cost function accounts for both generalization
error and compression would provide solutions that require fewer internal categories.
In addition light weight versions of PSO may reduce the convergence time.

In this chapter, training fuzzy ARTMAP with PSO(MT) has been shown to pro-
duce a significantly lower generalization error than with other MT strategies. These
results are always produced at the expense of a significantly higher number of train-
ing epochs. Nonetheless, results obtained with PSO(MT) underline the importance
of optimizing the MT parameter during training, for different problems. The MT
parameter values found using this strategy vary significantly according to training
set size and data set structure, and differ considerably from the popular choice
(ε = 0+), specially when data has overlapping class distributions.
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