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Abstract: Histopathological images (HIs) are the gold standard for evaluating some types of tumors
for cancer diagnosis. The analysis of such images is time and resource-consuming and very challeng-
ing even for experienced pathologists, resulting in inter-observer and intra-observer disagreements.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
This paper presents a review on machine learning methods for histopathological image analysis,
including shallow and deep learning methods. We also cover the most common tasks in HI analysis,
such as segmentation and feature extraction. Besides, we present a list of publicly available and
private datasets that have been used in HI research.

Keywords: histopathological images; machine learning; review

1. Introduction

Current hardware capabilities and computing technologies provide the ability of
computers to solve problems in many fields. The medical field nobly employs technologies
as a means of improving populations’ health and life quality. Medical computer-aided
diagnosis is one of the suitable examples thereof. Among the diagnoses, image-based
diagnoses such as magnetic resonance imaging (MRI), X-rays, computed tomography
(CT), and ultrasound have been attracting the growing interest of scientists and academics.
Likewise, histopathological images (HIs) are another kind of medical imaging obtained
through microscopy of tissues from biopsies, which brings to the specialists their ability to
observe tissue characteristics on a cell basis (Figure 1).

Cancer is a disease with high mortality rates in developed and developing countries.
In addition to causing death, related treatment costs are high and impact public and
private healthcare systems, penalizing, therefore, the government and the population.
According to Torre et al. [1], the mortality rate among high-income countries is stabilizing
or even decreasing due to programs regarding the risk factors reduction (e.g., smoking,
over-weighting, physical inactivity) and due to treatment improvements. In low and
middle-income countries, mortality rates are rising due to the increase in risk factors. One
of the critical points of progress in treatment is the early detection of tumors. In fact, in 140
out of 184 countries, breast cancer is the most prevalent type of cancer among women [2].
Imaging exams like mammography, ultrasound, or CT can diagnose the presence of masses
growing in breast tissue, notwithstanding the confirmation of which type of tumor can only
be accomplished through a biopsy. Biopsies, in turn, take more time to provide a result
due to the acquisition procedure (e.g., fine-needle aspiration or open surgical biopsy), the
tissue processing (creation of slide with the staining process), and finally, pathologist visual
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analysis. Naturally, pathologist analysis is a highly specialized and time-consuming task
prone to inter and intra-observer discordance [3].

Furthermore, the staining process can increase variance in the process of analysis.
Hematoxylin and eosin (H&E), although both are the most common and accessible type
of stain, they can nevertheless produce different color intensities depending on the brand,
storage time, and temperature. Therefore, computer-aided diagnosis (CAD) can increase
pathologists’ throughput and improve the confidence of results by adding reproducibility
to the diagnosis process and reducing observer subjectivity.

(a) (b)
Figure 1. Example of (a) benign and (b) malignant HIs [4].

The observation of nuclei is an essential feature in cancer diagnosis. Tumors like
ductal carcinoma and lobular carcinoma present an irregular growth on epithelial cells. A
high number of nuclei or mitotic cells in a small region can indicate uneven tissue growth,
representing a tumor. An HI can capture this feature, but besides the nuclei, it will grab
other healthy tissues that can be seen in images of benign tumors. Stroma is a type of tissue
that shows the same characteristics in parts of malignant and benign images. Selecting
more relevant patches could improve the classification processes.

In the last years, we have experienced an increased use of machine learning (ML)
methods in CAD and HI analysis. ML methods have been used to diagnose cancer in
different tissues or organs such as the breast, prostate, skin, brain, bones, liver, etc. ML
methods also have potential advantages in HI analysis. ML methods have been widely
used in segmentation, feature extraction, and classification of HIs. HIs have rich geometric
structures and complex textures, which are different from the visual characteristics of
macro vision images used in other machine learning tasks such as object recognition, face
recognition, scene reconstruction, or event detection.

This review attempts to capture the last decade’s most relevant works that employ
ML methods for HI analysis. We present a comprehensive overview of ML methods for HI
analysis, including segmentation, feature extraction, and classification. The motivation is to
understand ML methods’ development and use in HI analysis and discover ML methods’
future potential in HI analysis. Furthermore, this review aims to address the following
three research questions:

1. Which ML methods have been used for HI classification and how HIs are provided
to the ML methods (raw images or preprocessed images or extracted features)? This
question aims at identifying which monolithic classifiers, ensembles of classifiers, or
DL methods have been frequently used to classify HIs.

2. Which elements of HIs are considered the most important ones and how they are
obtained? This question aims at identifying which types of tissues or structures can
be identified using ML methods.

3. What are the trends that have been dominating HI analysis? This question aims to
identify the most promising ML methods for HI analysis for the near future.
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The main contributions of this paper are: (i) it covers a period of exponential change
in the computer vision, from the handcrafted features to representation learning meth-
ods; (ii) it is a comprehensive review, which does not focus on HIs of specific tissues or
organs; (iii) it categorizes the works according to the task: segmentation, feature extraction,
classification, and representation learning and classification. There are several survey and
review papers related to HI analysis presented in Section 7. Unlike previous studies and
surveys on HIs that only focus on HIs of specific tissues or organs or on a single learn-
ing modality (supervised, unsupervised, or DL techniques), this review covers different
approaches, methodologies, datasets, and experimental results so readers can identify
possible opportunities for future research in HI analysis.

This paper is organized as follows. Section 2 proposes a taxonomy to categorize
the ML methods used in HIs as well as an overview of the process of selecting journals
and proceedings. Section 3 presents the segmentation methods that attempt to identify
important structures in HIs, which may help diagnose. Section 4 presents the feature
extraction methods that have been used to represent HIs for further classification. Section 5
presents the shallow methods that have been used for classifying the main types of tis-
sues and tumors in HIs. Given the importance and the growing interest in DL methods,
Section 6 is devoted to present the recent approaches for HI analysis that employ such
methods. Section 7 brings together other studies and survey papers that have been pub-
lished recently and a compilation of several HI datasets that have been used in the last
decade. Finally, the last section presents the conclusions and perspectives of future works.

2. Taxonomy and Overview

Based on the three research questions presented previously, we have created a search
query ((histology AND image) or (histopathology AND image) or (eosin AND hema-
toxylin)) and ((“machine learning”) or (“artificial intelligence”) or (“image processing”)),
which was slightly adapted to each search engine. We have searched for references com-
prising the period between 2008 and 2020 into five research portals (engines): IEEE Xplore,
ACM Digital Library, Science Direct, Web of Science, and Scopus. Table 1 presents the
number of results obtained with the search query. We have searched based on the title,
abstract, and keywords for all search engines, except for Science Direct. In this case, we
added the full-text search because the number of relevant works was very low.

Table 1. Number of results without exclusion criteria, and after the application of the first and second
exclusion criteria.

Search Number of Papers
Engine Search Query After 1st Filter After 2nd Filter

IEEE Xplore 102 70 -
ACM Digital Library 5 4 -
Science Direct 1753 163 -
Web of Science 410 55 -
Scopus 254 70 -

Total 2524 363 185

Based on these results, the first exclusion criterion was based on the title and abstract.
Most of the exclusions in this step were due to papers that mentioned “image processing”
in the text, but the term’s sense was associated with digitizing HIs for visual analysis by
pathologists. The presence of terms eosin, hematoxylin, and histopathology was another
criterion to exclude types of medical images, such as CT, MRI, or radiology, which are
out of the scope of this review. Finally, we have eliminated the duplicated articles, and
we ended up with 363 articles. The second exclusion criterion was based on the full-text
reading to evaluate the paper’s contents’ adherence to this review’s goal. Such a criterion
excluded almost 50% of the papers retained by the first filtering. Therefore, we have ended
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up with 185 articles. Besides the papers selected using the search query, we have also
included several papers related to the HI datasets used in many references cited in this
review and some other references that discuss specific ML methods and techniques that
are also referred to in many of the selected references.

This review focuses on ML methods for HI analysis. Therefore, we have categorized
the ML methods according to the most common ML tasks as shown in Figure 2. The top-
level categories are segmentation, feature extraction, shallow methods, and deep methods.
Notwithstanding DL approaches can be employed for both segmentation and classification,
we proposed this division to highlight how the recent advances in DL have impacted HI
analysis research, causing a paradigm shift to DL methods over traditional ML methods.

Figure 2. Taxonomy used to classify HI works in this review.

Segmentation of HIs was a trendy category during the first years covered by this
review. Most of the works were based on image processing techniques, such as filtering,
thresholding, and contour detection techniques. In contrast, others rely on ML methods,
such as classification and unsupervised learning at the pixel level. Besides, since the anno-
tation for segmentation is a very time-consuming task, it is common to find unsupervised
methods along with supervised ones. Most of the early works used segmentation to high-
lighting information in HIs to specialists. Feature extraction aims at finding discriminative
characteristics in HIs and at aggregating them into a feature vector to train ML algorithms.
Most shallow classifiers and ensemble methods use such a vector representation to learn
linear or non-linear decision boundaries. We divided the category of shallow methods into
two subcategories: monolithic classifiers and ensemble methods. Ensemble methods com-
bine several diverse base models to reduce bias and variance in predictions and improve
predictions’ accuracy. The works that fall within both subcategories require a previous step
of feature extraction.

Finally, deep methods also include works focused on supervised and unsupervised
learning of different architectures of deep neural networks. Most of the works within this
category are end-to-end learning approaches, which integrate representation learning and
decision-making.
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The number of publications related to the field of this research is presented in Figure 3.
Based on Figure 3 it is possible to notice that the research on the topic has been increasing
in the last few years. It is also possible to note a significant increase in DL methods, while
ensembles and feature extraction kept their rates. Table 2 shows the number of publications
per journal between 2008 and 2020 and Table 3 shows the top 15 journals in terms of the
number of publications.
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Figure 3. Number of articles per year after filtering and organizing according to the main subjects.

Table 2. Top 20 journals per publication between 2008 and 2020.

Journal Title Area # of Publications

Computerized Medical Imaging and Graphics CHM 14
Medical Image Analysis CHM 14
Computers in Biology and Medicine C 6
IEEE Transactions on Biomedical Engineering E 6
Artificial Intelligence in Medicine CM 4
Pattern Recognition C 4
Computer Methods and Programs in Biomedicine CM 3
Expert Systems with Applications CE 3
IEEE Access CE 3
IEEE Transactions on Medical Imaging CHE 3
Procedia Computer Science C 3
Applied Soft Computing C 2
Computational and Structural Biotechnology Journal BC 2
Cytometry Part A M 2
IEEE Journal of Biomedical and Health Informatics BCE 2
Informatics in Medicine Unlocked M 2
Information Sciences C 2
Journal of Medical Imaging M 2
Journal of Pathology Informatics CM 2
Micron B 2
Neurocomputing CN 2

B: Biochemistry, C: Computing, E: Engineering, H: Health Sciences, M: Medicine, N: Neuroscience.
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Table 3. Top 15 conferences by number of publications between 2008 and 2020.

Conference # of Publications

IEEE International Symposium on Biomedical Imaging 12
IEEE International Conference Engineering in Medicine and Biology Society 4
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3
IEEE International Joint Conference on Neural Networks (IJCNN) 3
International Conference on Pattern Recognition (ICPR) 3
IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology 2
International Conference on Information Technology in Medicine and Education 2
International Symposium on Medical Information Processing and Analysis 2
Medical Image Computing and Computer-Assisted Intervention 2
International Conference on Bioinformatics, Computational Biology and Health Informatics 1
Symposium on Applied Computing 1
Advances in Image and Video Technology 1
Advances in Neural Information Processing Systems (NeurIPS) 1
International Conference on Computer Science and Software Engineering 1
IEEE International Conference on Systems, Man, and Cybernetics 1

3. Segmentation Methods for HIs

Typically, pathologists look for tissue regions relevant to the diagnose of diseases.
HI segmentation usually aims to label regions of pixels according to the structure they
represent. For instance, the identification of nuclei structures can be used to extract
morphological features, such as the number of nuclei per region, their size, and format,
which may help diagnose a tumor. The main challenges in HI segmentation rely on
the segmentation of low-level and high-level structures. The former focuses on nuclei
segmentation, and it was the focus of early works, which usually aims to identify mitosis
and pleomorphism. Early works have focused on low-level structures mainly due to the
hardware limitations in loading and processing high-resolution HIs. On the other hand,
recent works have focused on high-level segmentation, aiming to identify tissue types on
HIs of high resolution. Besides, there is also a rise of larger datasets focusing on high-level
structures in the most recent years, such as the ICIAR BACH Challenge dataset. Finally, we
can also highlight the segmentation using the stain color, usually employing colorspace
manipulation, image processing methods, and low-cost machine learning algorithms.

This section presents several approaches for segmenting HIs, where most of them are
based either on supervised or unsupervised ML methods. The former requires HI datasets
with region annotation, while the latter does not require any annotation.

3.1. Unsupervised Approaches

The k-means algorithm is an unsupervised ML method for clustering that has been
used for the segmentation of pixel regions. In the context of this review, it represents
the core of fourteen segmentation methods, as shown in Table 4. Fatakdawala et al. [5]
proposed a methodology based on the expectation-maximization of the geodesic active
contour for detecting lymphocyte nuclei, which can identify four structures: lymphocyte
nuclei, stroma, cancer nuclei, and background. The process initiates with segmentation by a
k-means algorithm, which clusters pixels of similar intensities, and afterward, such clusters
are improved with an expectation-maximization algorithm. The contours are identified
based on the magnetic interaction theory. After the definition of contours, an algorithm
searches for contours’ concavity, meaning nuclei are overlapping. The experiments were
conducted using a breast cancer dataset. A multiscale segmentation with k-means is the
subject of study of Roullier et al. [6]. This work uses the same idea of the pathologist to
analyze a whole slide image (WSI). The segmentation starts at a lower magnification factor
and finishes at a higher magnification, where it is easier to identify mitotic cells. The result
of the clustering algorithm aims to identify regions of interest in each magnification.
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Rahmadwati et al. [7] employed the k-means algorithm to help classify HIs. Although
the focus is not on the k-means but Gabor filters, this clustering method is essential in
the segmentation process. Peng et al. [8] used k-means and principal component analysis
(PCA) to split HIs into four types of structures: glandular lumen, stroma, epithelial-cell
cytoplasm, and cell nuclei. Subsequently, morphological operations of closing and filling
are performed. He et al. [9] used a mixture of local region-scalable fitting and k-means
to segment cervix HIs. Fatima et al. [10] used k-means for segmentation followed by
skeletonization and shock graphs to identify nuclei in the previously segmented image. If
the shock graph provides a confidence value smaller than 0.5 for nucleus identification, the
second attempt of identification is made using a multilayer perceptron (MLP). This hybrid
approach achieves 92.5% of accuracy in nucleus identification.

Mazo et al. [11] also used k-means to segment cardiac images in three classes: connec-
tive tissues, light areas, and epithelial tissue. A flooding algorithm processes light areas to
merge its result with epithelial regions and improve the final result. Finally, the plurality
rule was used to assign cells into flat, cubic, and cylindrical. This method achieved a
sensitivity of 85%. This work was extended in Mazo et al. [12]. Tosun et al. [13] proposed
segmentation based on k-means that clusters all pixels into three categories (purple, pink,
white), which are further divided into three subcategories. The object-level segmentation
based on clustering achieved 94.89% of accuracy against 86.78% for pixel-level segmenta-
tion. Nativ et al. [14] presented a k-means clustering based on morphological features of
lipid droplets previously segmented using active contours models. A decision tree (DT) was
used to verify the rules that lead to the classes obtained by the clustering. The correlation
with pathologist evaluations reached 97%. A two-step k-means is used by Shi et al. [15] to
segment follicular lymphoma HI. The first step segments nuclei and other types of tissues
into two clusters. The next step segments “another type tissue” area from the previous step
into three classes (nuclei, cytoplasm, and extracellular spaces). The final step is a watershed
algorithm to extract better contours of nuclei. The difference between manual segmenta-
tion and automated was around 1%. Brieu et al. [16] presented a segmentation approach
based on k-means. The result of k-means segmentation is improved and simplified using
a sequence of thresholds that attempt to preserve the form of objects. The key point of
such a method is not the segmentation but nucleus detection. Shi et al. [17] used k-means
to cluster pixels represented in the CIELAB color space using pixel neighborhood statistics.
A thresholding step improves contours detection of fat droplets, and human specialists
analyze morphological information related to the droplets to come up with a diagnosis.
Shi et al. [15] proposed a segmentation method that considers the local correlation of each
pixel. A first clustering performed by a k-means algorithm generates a poorly segmented
cytoplasm, and a second clustering that does not consider the nuclei identified by the
first clustering is performed. Finally, a watershed transform is applied to complete the
segmentation.

Other clustering algorithms have also been used to segment HIs. The work proposed
by Liu et al. [18] used the iterative self-organizing data analysis technique (ISODATA)
to cluster cell images and create prototypes. Hafiane et al. [19] studied two strategies
for initialization of clustering methods: geodesic active contours and multi-phase vector
level sets. The last one proved to be more efficient when using spatial constraint fuzzy
c-means, with accuracy values of 68.1% and 67.9% respectively, and k-means achieved
60.6% in this case. He et al. [20] presented segmentation based on Gaussian mixture models.
Their methodology uses the stain color features (hematoxylin with blue color and eosin
in pink and red) to apply two segmentation steps in the red channel and other channels
subsequently. It does not present ground truth comparison, only visual results compared
to k-means. [21] presented a quasi-supervised approach based on nearest neighbors to
cluster an unlabeled dataset based on itself and another labeled dataset. A comparison
between the quasi-supervised approach and support vector machine (SVM) has shown
that SVM presents a better performance, but it requires labeled data. Yang et al. [22]
proposed a system for content recovery based on a three-step method that uses histogram
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features. The first two steps use dissimilarity measures of histograms to find candidate
images. The last step uses mean shift clustering. The area under the curve (AUC) of
the proposed method is 0.87, which is better than 0.84 achieved by the method based on
local binary patterns (LBP) features. A mitotic cell detection system using a dictionary
of cells is presented by Sirinukunwattana et al. [23]. A shrinkage/thresholding method
groups intensity features represented by a sparse coding to create a dictionary. This
method achieved 80.5% and 77.9% of F-score on Asperio and Hamatsu subsets of MITOS
dataset, respectively. Huang [24] proposed a semi-supervised method based on exclusive
component analysis (XCA) that uses the separation of stains to improve the performance.
This method needs a small interaction of the user, who must provide a set of references
from nuclei and from the cytoplasm. Finally, it is worth mentioning that unsupervised
methods based on DL approaches have also been proposed for segmenting HIs. We will
present some recent works in Section 6.

Table 4. Summary of publications on unsupervised ML methods for HI segmentation.

Reference Year Tissue/Organ Method

Liu et al. [18] 2008 Lymph nodes ISODATA
Tosun et al. [13] 2009 Colorectal k-means
Hafiane et al. [19] 2009 Prostate Spatial constraint fuzzy c-means
He et al. [20] 2010 Cervix Gaussian mixture models
Fatakdawala et al. [5] 2010 Breast k-means
Roullier et al. [6] 2011 Breast k-means
Rahmadwati et al. [7] 2011 Uterus k-means
Peng et al. [8] 2011 Prostate k-means
He et al. [9] 2011 Uterus k-means
Onder et al. [21] 2013 Colorectal Quasi-supervised nearest neighbors
Fatima et al. [10] 2014 Brain k-means
Nativ et al. [14] 2014 Liver k-means
Yang et al. [22] 2014 Prostate Mean shift, Similarity
Sirinukunwattana et al. [23] 2015 Breast Dictionary, Thresholding
Huang [24] 2015 Breast XCA
Mazo et al. [11] 2016 Cardiac k-means
Shi et al. [15] 2016 Lymph nodes k-means
Brieu et al. [16] 2016 Lung k-means
Shi et al. [17] 2017 Liver k-means
Shi et al. [15] 2017 Lymph nodes k-means

3.2. Supervised Approaches

In this section, we present the works related to HI segmentation which are based
on supervised ML approaches. Most of the works presented in this section are based on
classification algorithms and therefore, they require labeled datasets in which pixels or
pixel regions are annotated. Table 5 summarizes the recent publications on supervised ML
methods used for the segmentation purpose, where eight out of fourteen works are based
on SVM classifiers.

Yu and Ip [25] presented an approach to encode HIs using a patching procedure and
a method called spatial hidden Markov model (SHMM). Each patch is represented by a
feature vector that uses a mixture of Gabor energy and gray-level features. The SHMM
showed improvements from 4% to 17% in multiple tissues in comparison to a hidden
Markov model. The work of Arteta et al. [26] uses the concept of extremal regions on gray-
scale images to identify nuclei on HIs. To identify the threshold of extremal regions, which
are organized in an overlap tree, they used an SVM classifier. This approach achieved 88.5%
of F1-score against 69.8% achieved by the state-of-the-art, considering the number of cells
found after segmentation. Janssens et al. [27] presented a segmentation procedure to iden-
tify muscular cells. First a segmentation based on thresholding identifies connective tissues
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and cells. Then, an SVM receives the segmented regions and classifies them recursively into
three classes (connective tissue, the clump of cells, and cells) until only connective and cell
tissues appear. This approach achieved an F-score of 62%, which was state-of-the-art at that
time. Saraswat and Arya [28] proposed a segmentation procedure with a non-dominated
sorted genetic algorithm (NSGA-II) and a threshold classifier. The NSGA-II generates the
threshold for feature values from ground-truth images. The comparison between learned
thresholds and feature values generates the segmentation. Breast cancer prognosis is the
subject of the study of Qu et al. [29]. They used an SVM to perform pixel-wise classifica-
tion to separate nuclei from the stroma. A second step based on a watershed algorithm
identifies nuclei. The approach achieved 72% of accuracy using pixel-level, object-level,
and semantic-level features. Salman et al. [30] proposed a segmentation method based on
k-NN to analyze WSIs. The method computes histograms from patches of 64×64 pixels
extracted from the H&E channels obtained by color deconvolution. The best accuracy was
73.2% using histograms of both H&E channels. Chen et al. [31] proposed a method based
on pixel-wise SVM to identify stroma and tumor nests. Nuclei segmentation is carried out
by a watershed algorithm, which results in 314 object-level features and 16 semantic-level
features. The feature dimensionality was reduced using the analysis of feature importance.
Geessink et al. [32] used a normal density-based quadratic discriminant classifier (QDA) to
segment colorectal images. The segmentation uses the CIELAB color space with a thresh-
old to eliminate background pixels and HSV color space to classify the remaining pixels.
After classification, errors are corrected based on histological constraints. The algorithm
produced an error rate of 0.6% for tumor quantification which, according to the authors, is
lower than the error of pathologists (4.4%).

Zarella et al. [33] trained an SVM to distinguish stained pixels from unstained pixels.
For such an aim, they selected manually positively stained pixels and negatively stained
pixels from a set of representative images in HSV color space. The SVM identifies regions of
interest for further analyses. Santamaria-Pang et al. [34] proposed an algorithm to enhance
and improve general segmentation methods by utilizing a cell shape ranking function.
The shape of the cells detected by the watershed transform is used to train an SVM, which
discriminates real cells from false positives.

Wang et al. [35] proposed the use of wavelet decomposition, region growing, double
strategy splitting model, and curvature scale space to highlight nucleus regions for further
classification. Textural and shape features are extracted from nuclei and feature selection is
carried out based on genetic algorithms and SVM. The best results were 91.5% and 91.6%
for sensitivity and specificity, respectively. Arteta et al. [36] improved the post-processing
step of the method proposed by Arteta et al. [26]. Nucleus regions are refined using a
surface. Two nucleus regions have their optimal area defined by a smoothness factor.
The improvement provided 91% of F1-score in the same dataset. A nuclei segmentation
was proposed by Brieu and Schmidt [37] based on an adaptive neighborhood provided
by a regression tree. A comparison showed an improvement of 9% relative to a nuclei
segmentation without adaptive thresholding. Finally, Song et al. [38] presented a nuclear
segmentation as a cascade of a two-class classification problem. An effective learning
formulation was proposed by adapting sparse convolutional models across the different
layers to estimate the latent morphology information. For improving the region probabil-
ities, low-level appearance and high-level contextual features from original images and
probability maps estimated, respectively, are integrated into a new sequence of probabilistic
binary DTs. The outcome led to a reliable contour set for each nucleus and final complete
contour inferences. The experimental results over 26,500 nuclei from the Farsight, KIRC,
and Kumar datasets showed that the proposed method achieved better performance than
other automated segmentation approaches. Again, it is worth mentioning that supervised
methods based on DL approaches have also been proposed for segmenting HIs. We will
present such recent works in Section 6.

Despite intense research efforts, segmentation of high-resolution HIs such as WSI, is
still challenging. However, the increasing computational power, especially the massive
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parallelism of graphic cards, that made possible the use of deep learning models, will also
drive new segmentation algorithms. Segmentation algorithms are also dependent on the
increasing availability of public datasets, allowing researchers to work on the topic and
even allowing the knowledge transfer of tissue and other structures between datasets.

Table 5. Summary of publications on supervised ML methods for HI segmentation.

Reference Year Tissue/Organ Classifier

Yu and Ip [25] 2008 Gastric SHMM
Arteta et al. [26] 2012 Breast Structured SVM
Janssens et al. [27] 2013 Muscle SVM
Saraswat and Arya [28] 2014 Skin NSGA-II, Threshold
Qu et al. [29] 2014 Breast SVM
Salman et al. [30] 2014 Prostate k-NN
Chen et al. [31] 2015 Breast SVM
Geessink et al. [32] 2015 Colorectal QDA
Zarella et al. [33] 2015 Breast SVM
Santamaria-Pang et al. [34] 2015 Epithelium SVM
Wang et al. [35] 2016 Breast GA + SVM
Arteta et al. [36] 2016 Breast Structured SVM
Brieu and Schmidt [37] 2017 NA Regression tree
Song et al. [38] 2019 Breast, prostate, kidney, liver, stomach, bladder DT

NA: Not available.

4. Feature Extraction for HIs

Supervised shallow methods depend on features extracted from raw data before per-
forming classification. Feature extraction methods process images and provide a reasonable
number of features summarizing the image’s information. Such methods aim to reduce
the dimensionality of the image and highlight relevant information related to the problem,
such as the presence or absence of specific structures, number of individual elements,
texture, and shapes of structures. Ideally, features should be independent of translation,
scale, and rotation.

The main challenges in extracting features from HIs are the extraction of morphological
characteristics from structures present in such images and the search for higher-level
representations that allow capturing information that is relevant for medical diagnosis.
The morphological characteristics are associated with identifying cellular changes, such
as deformed nuclei due to some problem or mitotic phases, or tissue changes, such as
density or abnormal quantity of cells. The morphological characteristics are related to
the way pathologists analyze HIs, looking for specific justifications for categorizing the
HI. On the other hand, high-level features are abstractions of all structures in HIs, not
only the cell structures. For this reason, researchers usually exploit texture descriptors or
representations in the frequency domain. Several features have been used with HIs, such
as shape, size, texture, fractal, or even combination of these features. Table 6 summarizes
the articles related to feature extraction.

Object-level and morphometric features like shape and size are essential for dis-
ease grading and diagnosis. Ballarò et al. [39] proposed the segmentation of HIs to
identify unhealthy or healthy megakaryocytes, structures from which morphometric
features are extracted. Petushi et al. [40] employed the Otsu algorithm to highlight nu-
clei and then extracted different features such as inside radial contact, inside line con-
tact, area, perimeter, area-perimeter ratio, curvature, aspect ratio, and major axis align-
ment. Feature vectors are built by the concatenation of histograms of all these features.
Madabhushi et al. [41] presented an approach for predicting disease outcome from multi-
ple modalities, including MRI, digital pathology, and protein expression. For histopathol-
ogy images, they used graph-based features such as Voronoi diagram (total area of all
polygons, polygon area, polygon perimeter, polygon chord length), Delaunay triangulation
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(triangle side length, triangle area), minimum spanning tree (edge length), and nuclear
statistics (density of nuclei, distance to the nearest nuclei in different pixel radii) to repre-
sent the spatial arrangement of nuclei. Song et al. [42] applied thresholding and watershed
transform to extract features like cystic cytoplasm length, cystic mucin production, and cys-
tic cell density. These three features are used to train different classifiers. The experimental
results showed that these three features outperformed morphological features (shape and
size), achieving 90% of accuracy against 64%. Besides that, the combination of these fea-
tures with morphological features achieved only 85% of accuracy. Gorelick et al. [43] uses
a segmentation step to identify superpixels for prostate cancer detection and classification.
Morphometric and geometric features represent the segmented images. The cytological
analysis and breast cancer diagnosis framework presented by Filipczuk et al. [44] employed
morphometric features. After isolation of nuclei from the images, for each nucleus, they
calculated area, perimeter, eccentricity, major and minor axis length, luminance mean
and variance, and distance to the centroid of all nuclei. Ozolek et al. [45] performed the
classification of follicular lesions on thyroid tissue. After a preprocessing step for nu-
cleus segmentation, the chromatin texture of nuclei with linear optimal transport provides
features for the final classification.

Fukuma et al. [46] compared spatial-level and object-level descriptors like Voronoi tes-
sellation, Delaunay triangulation, minimum spanning tree, elliptical, convex hull, bound-
ing box, and boundaries. Object-level features reached 99.07% of accuracy in the best
case against 82.88% achieved by the spatial ones. Morphometric features can also be
found in other structures like glands, which are easier to identify due to the difference
between the lumen and other cellular structures. This is the subject of the work pre-
sented by Loeffler et al. [47] which uses inverse compactness and inverse solidness as
measures for gland alteration on prostate cancer. The features were obtained based on
the area (object and convex hull area), and perimeter of threshold highlighted objects.
Marugame et al. [48] used morphometric features extracted from image objects indicat-
ing nuclear aggregations to represent three categories of ductal carcinomas in breast HIs.
The number of pixels, length, and thickness of the objects reflect their size and shape.
Osborne et al. [49] employed four geometrical features extracted from nuclei after segmen-
tation to melanoma diagnoses in skin HIs. The four features are the ratio of the area of
nuclei to the area of cytoplasm, the ratio of the perimeter of a nucleus to its area, the ratio
of the major axis length of a nucleus to its minor axis length, and the ratio of the number
of nuclei to the area of cytoplasm. The multi-view approach to detect prostate cancer
presented by Kwak and Hewitt [50] extracted morphological and intensity features from
multiple resolutions. Features like area, compactness, smoothness, roundness, convex hull
ratio, major-minor axis ratio, extent, bounding circle ratio, distortion, and shape context are
extracted from lumens and epithelial nuclei, as well as other relational features between
them. Olgun et al. [51] introduced a feature extractor for HIs, which is based on the local
distributions of objects, which are segmented by color intensity. The feature extractor
measures the distance between an object and its neighborhood. The proposed method
outperformed the other thirteen methods that use textural and structural features.

Texture descriptors have become quite popular in HI analysis due to the different
types of textures found in HIs. For instance, high/low concentrations of nuclei and stroma
present quite different patterns of textures. For this reason, several researchers have been
investigating a broad spectrum of textural descriptors for HI classification. Several authors
had used descriptors based on GLCM to represent textures in HI. Kuse et al. [52] used
GLCM as features with a pre-segmentation process based on unsupervised mean-shift
clustering. Such a method reduces color variety to segment the image using thresholds.
After this process, nuclei are identified and have the overlapping removed by a contour
and area restrictions. Finally, GLCM features are extracted from the segmented image
used for classification. Caicedo et al. [53] combined seven feature extraction methods,
including GLCM, and create a kernel-based representation of the data on each feature
type. Kernels are used inside an SVM to find similarities between data and to implement a
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content retrieval mechanism. Fernández-Carrobles et al. [54] presented a feature extraction
method based on the frequency and spatial textons. The use of textons implies that a
reduced vocabulary of textures represents images. Features used for the classification are
histograms of textons and GLCM features extracted from texton maps. They also evaluated
the impact of different colormaps on these features. Combination of six color models and
GLCM for textons achieved the best classification results (98.1%). The conversion of H&E
color images to gray-level is affected by the staining color variability, affecting the GLCM.

Another descriptor that is very often used to represent texture is the local binary pat-
tern (LBP). Mazo et al. [12] proposed the classification of cardiac tissues into five categories
using a patching approach that aims to optimize the patch size to improve the represen-
tation. Texture in HIs was described using LBP, LBP rotation invariant (LBPri), Haralick
features, and different concatenations. Haralick features include contrast, angular second
moment, homogeneity, correlation, entropy, and first and second correlation measures.
Peyret et al. [55] applied LBP in the context of multispectral HIs. They used an SVM to
evaluate the proposed LBP, which aligns all spectra and uses pixels from all other bands. It
also uses a multiscale kernel size. This feature extractor reached 99% of accuracy compared
to 88.3% achieved by the standard LBP and 95.8% reached by the concatenated spectra LBP.
Bruno et al. [56] used a curvelet transform to handle multiscale HIs. The LBP algorithm
extracts features from curvelet coefficients, which are reduced by an ANOVA analysis. The
algorithm proposed by Phoulady et al. [57] uses adaptive and iterative thresholding to
find nuclei area and extracts texture information using LBP and histograms of oriented
gradients (HOG). The proposed method achieved 93.3% of accuracy against 92.3% of the
second-best method. The work presented by Reis et al. [58] focused on the stroma maturity
to evaluate breast cancer. The stroma features are basic image features (BIF), obtained by
convolving images with a bank of derivatives-of-Gaussian filters, and LBP with multiple
scales for the neighborhood. Gertych et al. [59] presented a system for prostate cancer
classification, which also uses LBP features. The best accuracy was 68.4% for cancer detec-
tion. Balazsi et al. [60] presented an invasive ductal breast carcinoma detector that extracts
patches by tesselation without the square shape constraint. A set of 16,128 features derived
from multiple histograms and LBP (multiple radii) using CIELAB, gray-scale and RGB
color spaces represent each patch. Atupelage et al. [61] extracted features using fractal
geometry analysis, and compare them with Gabor filter bank, Leung-Malik filter bank, LBP,
and GLCM features. The proposed approach outperformed the other methods achieving
95% of accuracy.

Huang et al. [62] proposed a two-step feature extraction approach composed of a
receptive field for detecting regions of interest and sparse coding. Sparse coding groups
features from patches of the same region. The mean and covariance matrix of receptive
fields and sparse coding are the final filters. Noroozi and Zakerolhosseini [63] proposed
an automated method for discriminating basal cell carcinoma tumor from squamous
cell carcinoma tumor in skin HIs using Z-transform features, which are obtained from
the combination of Fourier transform features. Wan et al. [64] used a dual-tree complex
wavelet transform (DT-CWT) to represent the images in the context of mitosis detection
in breast cancer detection. Generalized Gaussian distribution and symmetric alpha-stable
distribution parameters were used as features. Chan and Tuszynski [65] also used fractal
dimension features for breast cancer detection. These features perform well for an HI
magnification of 40× to distinguish between malignant and benign tumors.

Recently, deep features have become very popular in several image classification
tasks, including HIs. Niazi et al. [66] presented a CAD system for bladder cancer that
focuses on extracting epithelium features with segmentation using an automatic color
deconvolution matrix construction. Spanhol et al. [67] used deep features from a pre-trained
AlexNet to classify breast benign and malignant tumors. Vo et al. [68] presented a method
for feature extraction based on the combination of CNNs and boosting tree classifiers
(BTC). This method utilizes an ensemble of inception CNNs to extract visual features
from multiscale images. In the first stage, data augmentation methods were employed.
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Afterward, ensembles of CNNs were trained to extract multi-context information from
multiscale images. The latter stage extracted both global and local features of breast cancer
tumors. George et al. [69] proposed an approach for breast cancer diagnosis, which extracts
features from nuclei based on CNNs. The methodology consists of different approaches for
extracting nucleus features from HIs and select the most discriminative spatially sparse
nucleus patches. A pre-trained set of CNNs was used to extract features from such patches.
Subsequently, features belonging to individual images are fused using 3-norm pooling to
obtain image-level features.

Finally, several works use or combine different feature categories to capture informa-
tion from both textures and geometrical structures found in HIs. Leo et al. [70] presented
a method for quantifying instability of features across four prostate cancer datasets with
known variations due to staining, preparation, and scanning platforms. They evaluated
five families of features: graph-based features, which include first- and second-order de-
scriptors of Voronoi diagrams, Delaunay triangulations, minimum spanning trees, and
gland density; gland shape features, which measure the average shape of all the glands in
an image and include the lumen boundaries and the resulting area, perimeter, distance,
smoothness, and Fourier descriptors; co-occurring gland tensor features, which capture the
disorder of neighborhoods of glands as measured by the entropy of orientation of the major
axes of glands within a local neighborhood; subgraph features, which describe the connec-
tivity and clustering of small gland neighborhoods using gland centroids; Haralick texture
features. Yu et al. [71] investigated the best features for characterizing lung cancer. The au-
thors extracted objective quantitative image features such as Haralick texture features of the
nuclei (sum entropy, InfoMeas, difference variance, angular second moment), edge intensity
of the nuclei, texture features of the cytoplasm and intensity distribution of the cytoplasm,
Zernike shape, texture and radial distribution of intensity. Caicedo et al. [72] proposed
a low-level to high-level mapping to facilitate imaging retrieval. This mapping process
consists of gray and color histograms, LBP, Tamura texture histogram, Sobel histogram,
and invariant feature histograms. Pang et al. [73] proposed a CAD system for lung cancer
detection, which uses textural features such as LBP, GLCM, and Tamura, shape features
such as SIFT, global features, and morphological features. Kruk et al. [74] used morpho-
metric, textural, and statistical (histogram) features to describe nuclei for clear-cell renal
carcinoma grading. Genetic algorithm and Fisher discriminant were used to select essen-
tial features. Basavanhally et al. [75] proposed a multi field-of-view (FOV) classification
scheme to recognize low versus high-grade ductal carcinoma from breast HIs. It uses a
multiple patch size procedure for WSI to analyze whether morphological or textural, or
graph-based features are the most relevant to each patch size. Tashk et al. [76] presented a
complete framework for breast HI classification that estimates mitotic pixels in CIELAB
color space. A combination of LBP, morphometric, and statistical features are extracted
from mitotic candidates. Cruz-Roa et al. [77] proposed a patching method on HI slides to
create small regions and extract scale-invariant feature transform (SIFT), luminance level,
and discrete cosine transform features to create a bag-of-words. Semantic features are
high-level information that can be associated with HIs to aid their classification.

Orlov et al. [78] compared three color spaces (RGB, CIELAB, and gray-scale) with H&E
representation and eleven features such as Zernike, Chebychev, Chebyshev-Fourier, color
histograms, GLCM, Tamura, Gabor, Haralick, edge statistics, and others to represent lymph
node HIs. De et al. [79] propose a fusion of several feature types for uterine cervical cancer
HI classification. They used a 62-dimensional feature vector based on GLCM, Delaunay tri-
angulation, and weighted density distribution. Vanderbeck et al. [80] used morphological,
textural, and pixel neighboring statistics features to represent seven categories of white
regions of liver HIs. Kandemir et al. [81] proposed a MIL approach to detect Barrett’s
cancer in HIs. They used cell-level morphometric features such as central power sums, area,
radius, perimeter, and roundness of segments, maximum, mean, and minimum intensity,
and intensity covariance, variance, skewness, and kurtosis within regions and patch-level
features such as LBP, SIFT, and color histograms from segmented images using the wa-
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tershed algorithm. Coatelen et al. [82,83] proposed a feature selection method of liver HI
classification based on morphometric features such as area, compactness, perimeter, aspect
ratio, Zernick moment, etc., textural features such as GLCM, LBP, fractal dimension, Fourier
distance, etc., and structural or graph-based features such as the number of nodes/edges,
modularity, pi, eta, theta, beta, alpha, gamma, and Shimbel indexes, etc. Two greedy
algorithms (fselector and in-house recursive) selected features in a pool of 200 features
where an SVM classifier implemented the fitness function. Michail et al. [84] highlighted
nuclei using connected-component labeling to classify centroblast and non-centroblasts
cells. Morphometric, textural, and color features are used as features. Das et al. [85]
proposed the so-called geometric- and texture-aware features based on Hu moments and
fractal dimensional, respectively. Such a set of features was applied to detect geometrical
and textural changes in nuclei to discriminate between mitotic and non-mitotic cells. The
method proposed by Kong et al. [86] classifies neuroblastomas using textural and morpho-
logical features. It considers that pathologists use morphological features for their analysis,
and textural features can be easily extracted. They also use GLCM features and sequential
floating forward selection to select features.

Table 6. Summary of publications devoted to feature extraction from HIs.

Reference Year Tissue/ Feature
Organ

Caicedo et al. [72] 2008 Skin Color and gray histograms, LBP, Tamura
Ballarò et al. [39] 2008 Bone Morphometric
Marugame et al. [48] 2009 Breast Morphometric
Kong et al. [86] 2009 Brain Textural, morphological
Kuse et al. [52] 2010 Lymph nodes GLCM
Orlov et al. [78] 2010 Lymph nodes Zernike, Chebychev, Chebyshev-Fourier, color

histograms, GLCM, Tamura, Gabor, Haralick,
edge statistics

Petushi et al. [40] 2011 Breast Morphometric
Madabhushi et al. [41] 2011 Prostate Voronoi diagram, Delaunay triangulation,

minimum spanning tree, nuclear statistics
Osborne et al. [49] 2011 Skin Morphometric
Caicedo et al. [53] 2011 Skin Gray, color, invariant feature, Sobel, Tamura

LBP, SIFT
Huang et al. [62] 2011 Breast Receptive field, sparse coding
Cruz-Roa et al. [77] 2011 Skin SIFT, luminance, DCT
Loeffler et al. [47] 2012 Prostate Morphometric
Song et al. [42] 2013 Pancreas Morphometric
Gorelick et al. [43] 2013 Prostate Morphometric, geometric
Filipczuk et al. [44] 2013 Breast Morphometric
Atupelage et al. [61] 2013 Blood Fractal dimension
Basavanhally et al. [75] 2013 Breast Morphological, textural, graph-based
De et al. [79] 2013 Uterus GLCM, Delaunay triangulation, weighted

density distribution
Ozolek et al. [45] 2014 Thyroid Linear optimal transport
Olgun et al. [51] 2014 Colorectal Local object pattern
Michail et al. [84] 2014 Lymph nodes Morphometric, texture
Vanderbeck et al. [80] 2014 Liver Morphological, textural, pixel neighboring

statistics
Kandemir et al. [81] 2014 Esophagus Morphometric, LBP, SIFT, color histograms
Fernández-Carrobles et al. [54] 2015 Breast Textons
Gertych et al. [59] 2015 Prostate LBP
Tashk et al. [76] 2015 Breast LBP, morphometric, statistical
Coatelen et al. [82,83] 2015 Liver Morphometric, GLCM, LBP, fractal dimension,
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Table 6. Cont.

Reference Year Tissue/ Feature
Organ

Graph-based
Balazsi et al. [60] 2016 Breast LBP
Fukuma et al. [46] 2016 Brain Object, spatial
Leo et al. [70] 2016 Prostate Graph-based, shape, entropy, subgraph

connectivity, texture
Phoulady et al. [57] 2016 Uterus HOG, LBP
Bruno et al. [56] 2016 Breast Curvelet transform, LBP
Noroozi and Zakerolhosseini [63] 2016 Skin Z-transform coefficients
Niazi et al. [66] 2016 Bladder Morphometric
Yu et al. [71] 2016 Lung Quantitative, texture
Chan and Tuszynski [65] 2016 Breast Fractal dimension
Kwak and Hewitt [50] 2017 Prostate Morphometric
Reis et al. [58] 2017 Breast BIF, LBP
Mazo et al. [12] 2017 Cardiac LBP, Haralick
Wan et al. [64] 2017 Breast Wavelet transform, Gaussian distribution,

Symmetric alpha-stable
Spanhol et al. [67] 2017 Breast Deep
Das et al. [85] 2017 Oral Hu’s moment, fractal dimension, entropy
Pang et al. [73] 2017 Lung LBP, GLCM, Tamura, SIFT, global, morphometric
Kruk et al. [74] 2017 Kidney Morphometric, textural, and statistical
Peyret et al. [55] 2018 Prostate LBP
Vo et al. [68] 2019 Breast Deep
George et al. [69] 2019 Breast Deep

In summary, given the rich geometric structures and complex textures found in HIs,
most of the works combine different types of features. Morphometric features are essential
to characterize geometric structures, but they are more complex to obtain since they require
complex preprocessing, e.g., find the contour of nuclei to count them. On the other hand,
textural features such as LBP and GLCM usually do not require a previous segmentation
of HIs. Finally, the most recent methods of feature extraction are focused on deep features.
They can be interpreted as a sequence of filters that can detect both geometric structures
and textures. Therefore, deep features and deep methods seem to be up-and-coming
methods for HI analysis.

The future of feature extraction methods detaches from morphological information
and tends to seek high-level representations, mainly due to the challenge presented by the
availability and possibility of capturing high-resolution images such as WSIs. Among the
high-level characteristics, there is a growing interest in using deep learning methods as
feature extractors. In addition to allowing the transfer of knowledge, they make extensive
use of parallelism, presenting a good performance for their application in large images.
Another advantage of these methods is the possibility of being trained and adapting to
specific characteristics of the problem to be solved, leading to representation learning.

5. Shallow Methods for HI Classification

ML algorithms trained in a supervised fashion can accomplish different HI analyses
such as identifying types of tumors and tissues, nucleus features (e.g., mitosis phases),
or specific characteristics in some organs (e.g., fat inside the liver or the size of epithelial
tissue on the cervix). HI classification methods have as main challenges the classification of
tumors, identification of tissues, identification of mitosis, and evaluation of tumor degrees.
The classification of tumors involves the evaluation between benign and malignant and
the identification of tumor types. The tumor degree assessment is less frequent, but it
represents a real challenge because it highly depends on pathologists’ labeling. Tissue type
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identification can be used both for selecting pieces of WSIs and for assisting in segmen-
tation. Mitosis identification is related to the presence of tumors because the extensive
proliferation of cells characterizes it. There is no consensus among the studies that lead
to a general assessment that one algorithm is better than another. Besides, the classifica-
tion methods are strongly associated with the quality of feature vectors. For this reason,
ensemble methods are usually preferred for these problems, using both homogeneous and
heterogeneous systems and extensive feature vectors with data from multiple extractors.
Another challenge present in HI classification is the reduced amount of data for training,
favoring shallow methods over deep learning methods.

This section presents ML methods based on shallow classifiers. We start by introducing
some works that employ single (monolithic) classifiers followed by classification methods
based on ensemble (multiple) of classifiers. Both shallow and ensemble methods depend
on a previous feature extraction stage because they rely on handcrafted feature vectors to
learn discriminant functions. Therefore, most of the feature extraction methods presented
in Section 4 can be used together with the methods presented in this section.

5.1. Monolithic Classifiers

Different ML methods for supervised learning have been employed in HI analysis,
such as support vector machines (SVM), decision trees (DT), naïve Bayes (NB), k-nearest
neighbors (k-NN), multilayer perceptron (MLP), among others. Table 7 summarizes the
works reviewed in this section in terms of the classification algorithm, tissue, or organ from
where the HI was obtained and the publication year.

SVMs are the most used classification algorithm for HIs. Several works have employed
SVM with different feature categories. Mazo et al. [12] proposed the classification of cardiac
tissues into five categories using a patching approach that aims to optimize the patch
size to improve the representation. A cascade of linear SVMs separates tissues into four
classes, followed by a polynomial SVM, which classifies one of these four classes into two
sub-classes. Osborne et al. [49] employed segmentation and morphological features with
an SVM classifier to melanoma diagnoses in skin HIs. The proposed approach achieved
90% of accuracy. Malon et al. [87] compared the agreement of three pathologists and an
ML method that uses deep features to train an SVM classifier to locate mitotic nuclei in
HIs. The accuracy achieved by the SVM was 63.6% and 98.6% for positive and negative
cases, respectively, which was close to two pathologists’ performance. Only one pathologist
performed 99.2% and 94.5% on positive and negative samples, respectively. Atupelage
et al. [61] used fractal features and an SVM to classify non-neoplastic tissues and tumors
and grade hepatocellular carcinoma HIs into five classes. The proposed approach achieved
95% of correct classification rate for five classes and outperformed other methods that
use texture features. Olgun et al. [51] introduced an approach for the representation and
classification of colon tissue HIs, which is based on the local distributions of objects. This
approach was evaluated using an SVM and compared with other 13 methods that use
textural and structural features. It outperformed all methods achieving an accuracy of 93%.

Wan et al. [64] used a dual-tree complex wavelet transform (DT-CWT) to represent
breast HIs for mitosis detection. Generalized Gaussian distribution and symmetric alpha-
stable distribution parameters were the features used for classification with an SVM.
The proposed method achieved 73% of F-score, outperforming most of the other methods
compared in their study. Chan and Tuszynski [65] used fractal features and an SVM
classifier for breast cancer detection. They achieved 97.9% of F-score for an HI magnification
of 40× to distinguish between malignant and benign tumors. On the other hand, on a
multiclass problem, they reached an F-score of only 55.6%. Caicedo et al. [72] proposed a
low-level to high-level mapping to facilitate imaging retrieval. This mapping uses color,
texture, and shape features to train 18 SVMs. The experimental results compared the
low-level and high-level (semantic) features, which obtained 67% against 80% of precision,
respectively, showing that the mapping from low to semantic-level features contributes
favorably to the classification process. Vanderbeck et al. [80] used SVM to classify white
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regions of liver HIs among seven classes. The combination of all features into a 413-
dimensional feature vector achieved the best accuracy of 93.5%. They also compared
the results based on images labeled by different pathologists. In an extension of the
work of De et al. [79], Guo et al. [88] presented an automatic orientation detection for the
epithelium with more features and used an SVM classifier. Harai and Tanaka [89] proposed
a colorectal CAD system, which starts with an Otsu thresholding of red channel to separate
nuclei, background, and stroma. An SVM classifier achieves 78.3% of accuracy against 67%
of a method based on texture features.

Peikari et al. [90] proposed a nucleus segmentation pipeline based on multi-level
thresholding and watershed algorithm on the CIELAB color space. The nucleus classifi-
cation uses a cascade of SVMs. The cascade phase initially separates lymphocytes from
epithelial tissue and then classifies epithelial in benign and malignant. An interesting
comparison with two pathologists’ evaluations shows that the agreement between patholo-
gists was 89% and between the automated system was 74% and 75%. The classification of
ovarian cancer is the subject of study of BenTaieb et al. [91]. The proposed method localizes
cancer regions in WSI using a multiscale mechanism considering that each tumor type has
specific characteristics that are better detected at different scales. The method automatically
selects an ROI based on multiple scales. The latent variable of the latent SVM (LSVM) used
for classification is the presence of a patch at a particular scale on that region’s classification.
The LSVM approach achieved an accuracy of 76.2%, which outperforms CNNs by 26%.
Zhang et al. [92] proposed a multiscale classification that uses sparse coding with Fisher
discriminant analysis to construct a visual dictionary of SIFT features. The multiscale ap-
proach using SVMs achieved an accuracy of 81.6%, which outperformed the state-of-the-art
(79.5%). Korkmaz and Poyraz [93] proposed a classification framework based on minimum
redundancy, maximum relevance feature selection, and least square SVM (LSSVM). They
claimed the accuracy of approximately 100% with only four false negatives for benign
tumors in a three-class problem. No further comparisons were performed.

Bayesian, DT, NN, k-NN, and other supervised ML algorithms have also been used to
classify HIs. Several works have employed such classifiers with different feature categories.
Marugame et al. [48] proposed a simple classifier based on Bayes theory to classify ductal
carcinomas into three categories. Specialists consulted by authors claimed that the simple
classifier provides, together with the morphological features, a better way to understand
the results. Spanhol et al. [67] used deep features from an AlexNet to classify breast benign
and malignant tumors. The deep features were used with a logistic regression classifier.
This approach achieved 90.3% of correct classification rate for 200× magnification factor
and outperformed a baseline (87.8%) that used texture features. De et al. [79] proposed
grading of uterine cervical cancer using an LDA classifier. A specialist manually segmented
the images to identify tumors and split them into ten segments for feature extraction. A
voting strategy combined results from the segments. The best grading result was 70.5%
for the whole epithelium against 62.3% for the vertically segmented epithelium. Mete and
Topaloglu [94] evaluated eleven different color spaces for representing HIs. Combining a
spherical coordinate transform and DT achieved the best accuracy, outperforming SVM
and NB classifiers.

Sidiropoulos et al. [95] proposed a classification algorithm based on a probabilistic
neural network (PNN) implemented on GPUs to grade rare brain tumors cases. The ad-
vantage is the reduced processing time that allows an exhaustive feature combination
search. For demonstration purposes, a comparison of CPU- and GPU-based algorithms
showed that the GPU version takes 278 times less computation time than the CPU version
for a feature vector with 20 attributes. The work presented by Michail et al. [96] classifies
follicular lymphomas using a preprocessing step to segment images based on intensity
thresholds and an expectation-maximization algorithm. The segmented cells are classified
by LDA, achieving a detection rate of 82.6%. A random kitchen sink (RKS) classifier is used
by Beevi et al. [97] to identify mitotic nuclei on breast cancer HIs. Nuclei are identified
using thresholding in the red channel, and local active contour models them. The approach
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achieved an F-score of 96.0% for RKS and 83.4% for RFs on MITOS 2014 dataset. A CAD
system proposed by Jothi and Rajam [98] used HI converted to gray-scale, giving priority
to the red channel. Otsu thresholding guided by particle swarm optimization segments
gray-scale images and segments with noise are reduced using area constraints based on
the nuclei size. The closest matching rule (CMR) classifier achieved an accuracy of 100%
against 99.5% for NB. Awan et al. [99] studied the classification of mitosis on breast cancer
using a dataset labeled with the four major mitosis phases. Classes are imbalanced, pos-
ing a challenge for the classification. They proposed a data augmentation method based
on PCA and its eigenvectors and compared it to the synthetic minority over-sampling
technique. Barker et al. [100] used a patching procedure based on a grid over the WSI to
grade brain tumor type. Each patch has general features clustered using k-means. The final
classification is performed over nuclei features identified in the clustering step using an
elastic net model. The proposed model outperformed the methods from the 2014 MICCAI
Pathology Classification Challenge.

Multiple instance learning (MIL) has also been used for the classification of HIs.
Several works have employed such MIL methods with different classifiers and feature
categories. MIL is a weakly supervised learning paradigm that considers that instances
are naturally grouped in labeled bags, without the need that all the instances of each
bag have individual labels. Kandemir et al. [81] compared three MIL SVMs: SIL-SVM,
MI-SVM, and mi-SVM with mi-Graph. mi-Graph achieved an accuracy of 87% against 69%
of mi-SVM. The proposed methodology is based on patching. All images are previously
segmented using the watershed algorithm. Another work from the same research group
carried out a benchmark of MIL SVM methods, finding out that MILBoost gives better
accuracy for instance-level approach (66.7%) and mi-Graph performs better in bag-level
prediction (72.5%) [101]. A stain separation is performed in Cosatto et al. [102] using
a support vector regressor (SVR) to identify regions of interest (ROI), which is a high
occurrence of hematoxylin in low-level magnification. This work uses a MIL approach
because ROIs are not labeled but the WSIs, so all ROIs from a positive slide receives
positive labels. MIL uses MLP for classification, but it requires a modified loss function to
represent the one-positive rule for a slide, which means that if in the prediction only one
ROI appears as positive, the entire slide is positive. In the comparison between the MIL
approach and SVM classification, the SVM required ROI labeling. The AUC of MIL was
0.95 against 0.94 of SVM, with the advantage of reducing labeling efforts. Xu et al. [103]
introduced MCIL, a MIL-based method that uses a patching procedure to create instance-
level Gaussian classifiers, which are clustered using the k-means algorithm. The work
performs comparisons with standard image-level classification methods and MIL methods.
The fully supervised method presented an F-score of 76.6% (using patch labeling), and the
proposed method achieved 69.9%. MCIL achieved 71.7% and 60.1% in another dataset (not
patch labeled) with constrained and unconstrained MCIL, respectively, against 25.3% of
MIL-Boosting. Sudharshan et al. [104] compared different MIL approaches to the diagnostic
of breast cancer patients. In this approach, every patient is seen as a bag, which is labeled
with her diagnosis. Therefore, HIs do not need to be individually labeled, as they can share
the bag label. Instances are patches extracted from the corresponding HIs, considering
different magnification factors (40×, 100×, 200× and 400×). The hypothesis is that a
bag-based (patches) analysis is valuable for analyzing HIs compared to a single instance
(entire image). The experiments were carried out on the BreakHis database using CNN,
1-NN, QDA, RF, and SVM classifiers, and the best accuracy of 92.1% was achieved for 40×
magnification by non-parametric MIL.

Finally, several works compared the performance of different monolithic classifiers
on HIs without combining their predictions. Ballarò et al. [39] proposed the segmentation
of HIs to identify unhealthy or healthy megakaryocytes. A k-NN and DTs carry out the
classification. Song et al. [42] trained different classifiers such as SVM, k-NN, neural
networks, and Naïve Bayes (NB) on morphometric features. The experimental results
showed that these three features outperform morphological features achieving 90% of
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accuracy against 64%. Besides that, the combination of these features with morphological
features achieved only 85% of accuracy. Bruno et al. [56] used a curvelet transform to
handle multiscale HIs. Texture features extracted from curvelet coefficients are reduced
by an ANOVA analysis and evaluated using DTs, SVM, RF, and polynomial classifiers.
They achieved an AUC of 1.00, which is higher than the best previous method (0.986).
Pang et al. [73] proposed a CAD system for lung cancer detection. Sparse contribution
analysis selects non-redundant features, which are used to train SVM, RF, and extreme
learning machines (ELM). Another contribution is the concave-convex variation, which
consists of measuring all nuclei’s concavity in an image and using such a measurement to
weigh the classifiers’ probabilities. This method achieved an accuracy of 98.74%, which is
slightly better than RFs (97.68%).

Orlov et al. [78] compared three color spaces (RGB, CIELAB, and gray-scale) with
H&E representation. A weighted k-NN achieved the best results (99%), followed by an
RBF network and NB with 99% and 90% of accuracy, respectively. The best results were
achieved for a color space called eosin representation. Irshad et al. [105] presented a
multimodal approach with multispectral images focusing on selecting the best spectral
bands to classify mitotic cells on the MITOS 2012 dataset. SVM, DT, and MLP are used for
classification purposes. SVM achieved the best F-score (63.7%) using only eight best bands,
which is higher than the state-of-the-art (59%). WSI is the core of the work proposed by
Homeyer et al. [106], which compares k-NN, NB, and RFs for the classification of slides
based on a patching procedure and textural and intensity features. RFs with a group of
all features achieved the best result (94.7%). Khan et al. [107] proposed a framework for
malignant cell classification in breast cytology images. Selected features train SVM, NB,
and RF classifiers. In the end, an ensemble method is employed to combine the classifiers
based on the majority voting. The experiments have shown an accuracy of 98.0% in the
detection and classification of malignant cells. Kurmi et al. [108] presented an approach
consisting of nuclei localization in HIs and further classification as benign or malignant
using MLP and SVM models. MLP achieved the best average accuracy of 95.03%.

Table 7. Summary of publications focusing on HI classification based on monolithic classifiers.

Reference Year Tissue/Organ Classifier

Caicedo et al. [72] 2008 Skin SVM
Ballarò et al. [39] 2008 Bone DT, k-NN
Mete and Topaloglu [94] 2009 Skin DT, NB, SVM
Marugame et al. [48] 2009 Breast Bayes
Orlov et al. [78] 2010 Lymph nodes k-NN, NB, RBF
Osborne et al. [49] 2011 Skin SVM
Malon et al. [87] 2012 Breast SVM
Sidiropoulos et al. [95] 2012 Brain PNN
De et al. [79] 2013 Uterus LDA
Atupelage et al. [61] 2013 Liver SVM
Cosatto et al. [102] 2013 Gastric MLP (MIL)
Homeyer et al. [106] 2013 Liver k-NN, NB, RF
Song et al. [42] 2013 Pancreas k-NN, NB, NN, SVM
Irshad et al. [105] 2014 Breast DT, MLP, SVM
Xu et al. [103] 2014 Colorectal Gaussian (MIL)
Kandemir et al. [81] 2014 Gastric SVM (MIL)
Olgun et al. [51] 2014 Colon SVM
Vanderbeck et al. [80] 2014 Liver SVM
Coatelen et al. [82,83] 2014 Liver SVM
Michail et al. [96] 2014 Lymph nodes LDA
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Table 7. Cont.

Reference Year Tissue/Organ Classifier

Harai and Tanaka [89] 2015 Colorectal k-NN
Korkmaz and Poyraz [93] 2015 Breast SVM
Kandemir and Hamprecht [101] 2015 Gastric SVM (MIL)
Chan and Tuszynski [65] 2016 Breast SVM
Guo et al. [88] 2016 Uterus SVM
Beevi et al. [97] 2016 Breast RKS
Jothi and Rajam [98] 2016 Thyroid VPRS + CMR
Barker et al. [100] 2016 Brain Elastic net
Bruno et al. [56] 2016 Breast DT, Polynomial, RF, SVM
Pang et al. [73] 2017 Liver ELM, RF, SVM
Wan et al. [64] 2017 Breast SVM
Mazo et al. [12] 2017 Cardiac SVM
Peikari et al. [90] 2017 Breast SVM
BenTaieb et al. [91] 2017 Ovary SVM
Zhang et al. [92] 2017 Lung SVM
Spanhol et al. [67] 2017 Breast Logistic regression
Sudharshan et al. [104] 2019 Breast SVM, k-NN, QDA, RF, CNN (MIL)
Khan et al. [107] 2019 Breast NB, RF, SVM
Kurmi et al. [108] 2019 Breast SVM, MLP

5.2. Ensembles Approaches

Ensembles approaches combine the predictions of multiple base classifiers in an at-
tempt to improve generalization and robustness over a single classifier. Several researchers
have proposed combining classifiers for enhancing the performance of HI approaches.
Table 8 summarizes the works reviewed in this section in terms of the type of base classi-
fier and combination strategy, tissue, or organ from where the HI was obtained and the
publication year.

Zarella et al. [33] employed classification using an ensemble of SVMs on ROIs seg-
mented from WSI. Multiple “weak” classifiers trained with subsets of features and different
parameters combined with a weighted sum (WS) function achieved an accuracy of 88.6%.
Daskalakis et al. [109] used a preprocessing step of segmentation to enhance nuclei and
extract morphological and textural features. A multiclassifier approach combines k-NN,
linear least squares minimum distance (LLSMD), statistical quadratic Bayesian, SVM, and
PNN using majority vote, minimum, maximum, average, and product rules. PNN achieved
the best accuracy of 89.6% for a base classifier, while the ensemble method achieved 95.7%
with the majority vote rule. The method proposed by Kong et al. [86] classifies neuroblas-
tomas using textural and morphological features. An ensemble approach combining k-NN,
LDA, NB, and SVM classifiers using the weighted voting (WV) rule achieved an accuracy
of 87.8%. Meng et al. [110] proposed an ensemble of principal component classifiers (PCC).
This ensemble classified 25 patches of each image, which are represented by 50 features.
The accuracy achieved on a liver dataset was 96.41% using the majority vote (MV) rule
compared to 95.09% achieved by a 3-NN. The same approach achieved 99.4% of accuracy
on lymphoma classification against 92.08% achieved by the Adaboost approach. A CAD
system composed of a staining separation module, densitometric and texture feature ex-
traction, and an AdaBoost algorithm was proposed by Wang and Yu [111]. The proposed
method achieved an accuracy of 94.37% against 86.44% of the best base classifier (k-NN)
trained on raw H&E images.

The system described by Gorelick et al. [43] uses a segmentation step to identify
superpixels. An Adaboost algorithm classifies the segmented images represented by mor-
phometric and geometric features. The system achieved an accuracy of 85%. A framework
for cytological analysis is presented by Filipczuk et al. [44]. Morphometric features rep-
resent nuclei obtained after segmentation. The proposed method uses a combination of
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random subspaces with perceptrons to create an ensemble. The comparison showed that
the ensemble approach achieved an accuracy of 96.0% compared to 90% achieved by a
boosting algorithm. Vink et al. [112] proposed a nucleus detection method based on two
Adaboost stages. The first step is based on features extracted from stain-separated images.
The second Adaboost refines the result of the first with line-based features. An optimal
active contour refines the results from the second ensemble achieving an accuracy of 95.02%.
Phoulady et al. [113] proposed an ensemble of Otsu thresholding algorithms with specific
constraints and morphological operations. Four segmentation algorithms are responsible
for the segmentation, but each image can have characteristics that would require different
parameters for the segmentation algorithms. The final result is one among 18 segmentation
algorithms with most parameters shared with the set of segmentation algorithms that
presented less difference in the segmentation. This approach achieved an accuracy of 84.3%
compared to 77.4% achieved by other methods.

Di Franco et al. [114] used an ensemble of SVM classifiers, where each model is
trained with a variation of images preprocessed by Gaussian filters and color spaces.
The classifiers are combined using the average rule and the best AUC value achieved was
0.978. Albashish et al. [115] proposed a feature selection method that uses the entropy of a
feature related to a class as a redundancy criterion and constraints in this value and the inter-
feature entropy. SVM classifiers specialized in one subtype of tissue derived from prior
segmentation are combined using the sum rule. The ensemble approach’s performance
using 37 features (94.08%) is only 0.2% better than the best SVM with the recursive feature
learning (RFE) method using 46 features. A comparison of multiple classifiers and features
is presented by Huang and Kalaw [116]. A set of monolithic classifiers is compared with
Adaboost implemented with SVM, DT, and RF. Adaboost achieved 97.8% of accuracy.
Fernández-Carrobles et al. [117] presented a classification framework for WSI with a
bagging of DTs and GLCM features, which achieved 0.995 for AUC and 98.13% for true
positives. The multi-view approach presented by Kwak and Hewitt [50] extracts features
from multiple resolutions. A boosting algorithm combining linear SVMs and the features
from multiple views achieved 0.98 of AUC compared to 0.96 of the concatenation of
views. Kruk et al. [74] used morphometric, textural, and statistical features to describe
nuclei for classification. An ensemble made up of SVM and RF classifiers and trained
with a subset of features resulting from the feature selection achieved an accuracy of
96.7%, which was higher than the state-of-the-art (93.1%) and the best single SVM classifier
(91.1%). An Adaboost ensemble is used by Romo-Bucheli et al. [118] to grade skin cancer.
The ensemble classifies images described by features created with graph theory to represent
the nuclei distribution. The ensemble achieved 72% of accuracy. A multi field-of-view
(FOV) classification scheme is proposed by Basavanhally et al. [75]. It uses a multiple patch
size procedure for WSI that analyzes which features are the most relevant to each patch
size. After that, it uses an RF to aggregate multiple FOV patches. They do not present a
baseline for accuracy comparison, only the AUC result, showing better values for nucleus
architecture features to recognize low versus high-grade ductal carcinoma.
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Table 8. Summary of recent publication on ensemble approaches for HI analysis.

Reference Year Tissue/ Base Classifier Combination
Organ Rule/Function

Daskalakis et al. [109] 2008 Thyroid k-NN, LLSMD, SQ-Bayes, Vot, Min, Max,
SVM, PNN Sum, Prod

Kong et al. [86] 2009 Neuroblastoma k-NN, LDA, Bayesian, SVM WV
Meng et al. [110] 2010 Liver, PCC WV

Lymphocytes
DiFranco et al. [119] 2011 Prostate SVM and RF MV
Wang and Yu [111] 2013 Lung DT Adaboost
Gorelick et al. [43] 2013 Prostate DT Adaboost
Filipczuk et al. [44] 2013 Breast SVM, Perceptron Perceptron
Vink et al. [112] 2013 Breast DT, Stumps Adaboost
Basavanhally et al. [75] 2013 Breast RF MV
Phoulady et al. [113] 2014 Uterus Otsu segmentors Similarity
Zarella et al. [33] 2015 Lymphoma SVM WS
Di Franco et al. [114] 2015 Prostate SVM Avg
Gertych et al. [59] 2015 Prostate SVM, RF MV
Tashk et al. [76] 2015 Breast SVM, RF MV
Albashish et al. [115] 2015 Prostate SVM Sum
Huang and Kalaw [116] 2016 Prostate k-NN, SVM, DT, RF, LDA, Adaboost

QDA, NB
Balazsi et al. [60] 2016 Breast RF MV
Wright et al. [120] 2016 Colorectal RF MV
Fernández-Carrobles et al. [117] 2016 Breast DT Sum, Variance
Kwak and Hewitt [50] 2017 Prostate SVM Boosting
Kruk et al. [74] 2017 Kidney SVM + RF MV
Valkonen et al. [121] 2017 Breast RF MV
Romo-Bucheli et al. [118] 2017 Skin NA Adaboost

NA: Not available, WV: Weighted vote, MV: Majority vote, Avg: Average, Min: Minimum, Max: Maximum, Sum: Summation, Prod: Product.

Tashk et al. [76] presented a complete framework for HI classification. They employ
maximum likelihood estimation to obtain the mitotic pixels in CIELAB color space. A
cascading classification is performed firstly with SVM and next with RFs. A comparison
shows that this method achieves an accuracy of 96.5% against 82.4% of the best previous
result in the MITOS 2012 dataset. Gertych et al. [59] presented a system for prostate cancer
classification, which consists of SVM and RF classifiers. SVM separates the stroma and
epithelium, and the RF identifies benign/normal and carcinogenic tissue. The best accuracy
was 68.4% for cancer detection. Balazsi et al. [60] extended the work described in [122].
The authors used simple linear iterative clustering (SLIC) to extract patches by tesselation.
A set of multiple histograms and texture features are extracted from the CIELAB, gray-scale
and RGB color spaces of each patch. This number of features is suitable for an RF classifier,
which achieved 79.51% of F-score for tessellated patches, compared to 77.57% of squared
patches and 71.80% of the baseline. SLIC is also applied by Wright et al. [120] in a pipeline
for colorectal cancer to initially segment images. Histogram and texture features extracted
from the HSV color space; likewise, statistics from H&E channels were extracted, in addition
to GLCM as features. A comparison showed that the proposed work achieved the accuracy
of 79% against 75% from their previous work with RFs. Valkonen et al. [121] presented
a system for the classification of WSI. The segmentation step uses Otsu, morphological
operations, and histological constraints. Classification algorithms such as RF, SVM, k-NN,
and logistic regression were trained with textural, morphometric, and statistical features
extracted from random patches of segmented images. RF achieved the best accuracy
(93%). A comparison between different ensemble approaches to classify WSI patches is
presented in [119]. A set of 114 features were selected and ranked using RFs. Based on
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the selected and ranked features, multiple linear and RBF SVMs and RF classifiers were
built. The majority vote rule’s aggregation achieved AUCs of 0.955, 0.951, and 0.948 for
RBF SVM, RF, and linear SVM, respectively. The best previous result was 0.935.

There is a clear tendency to use multiple classifiers as well as their combination with
feature extractors based on deep learning. Multiple instance learning methods have also
been explored, many related to WSI classification and patching methods. The steady
growth in the availability of HIs and the progress of classification methods make the
diagnosis with less human intervention a future challenge. That requires algorithms to be
highly accurate in the early stages of the biopsy and diagnosis by processing WSIs directly
from microscopy without intervention or manual preprocessing by specialists.

6. Methods Based on Deep Learning (DL)

DL methods are gaining the scientific community’s attention due to recent achieve-
ments in solving complex machine learning problems on large datasets. A convolutional
neural network (CNN) can learn in a single optimization process, both a representa-
tion and a decision boundary. However, CNNs usually require a massive amount of
data for adequate training to avoid overfitting problems. Still, most of the HI datasets
have only a few patients and hundreds of images, which can limit the use of DL. Data
augmentation [123,124] and transfer learning [125] are two possible approaches to circum-
vent the lack of data in HI datasets. For instance, ImageNet, which has more than 14 million
images, is one of the most common datasets used for training CNNs for object recognition.
Data augmentation generates new HIs from existing ones by using affine transformations
or morphological operations. Patching HIs is another common way of data augmentation.
Patching produces the effect of selecting pieces of a HI with the same structure, but that
belong to different classes. On the other hand, the transfer learning method reuses CNNs
previously trained in large datasets, which usually belong to a different domain from the
target problem. The pre-trained CNNs can be used in two ways: to extract features from
HIs and use these features with shallow classifiers, as already described in Sections 4 and 5;
to fine-tune such CNNs on an HI dataset, which means that filters learned on a large
dataset will be adapted to the HI dataset.

Despite the success of DL methods in image classification, the literature has shown
that CNNs are not much suitable for classifying textures and results in only moderate
accuracy. HIs present different structures, one of which is texture. Recently, several
works have attempted to overcome these challenges to employ DL methods in HI analysis.
Table 9 summarizes the works reviewed in this section in terms of network architecture,
tissue, or organ from where the HI was obtained and the publication year.

Malon et al. [87] were one the first authors to employ DL methods in HI analysis.
They used a classical LeNet-5, a 7-layer CNN architecture proposed by Lecun et al. [126],
which in 1998 to learn a representation from HIs previously segmented with an SVR. An
SVM classified the features extracted by the CNN to find mitotic nuclei. The remarkable
aspect of this work is the comparison between machines and three pathologists. The pathol-
ogists showed a Cohen Kappa factor of 0.13 and 0.44 in the best case, emphasizing the
inter-observer problem. Kainz et al. [127] presented two CNNs based on the LeNet-5 archi-
tecture for segmentation and classification of glands in the tissue of benign and malignant
colorectal cancer. The first CNN separates glands from the background, while the second
CNN identifies gland-separating structures. Experimental results on Warwick-QU colon
adenocarcinoma and GlaS@MICCAI2015 challenge datasets showed a tissue classification
accuracy of 98% and 95%, respectively.

Some works used CNNs based on the AlexNet architecture proposed by Krizhevsky
et al. [128] in 2012. AlexNet is similar to LeNet-5, but it has 12 layers, with more filters
per layer, and stacked convolutional layers. Stanitsas et al. [129] employed the AlexNet
CNN to classify breast cancer HIs. They compared the CNN results with some handcrafted
feature extractors and shallow classifiers, and they concluded that the CNN was not able
to outperform the shallow methods. Spanhol et al. [130] evaluated architectures based on
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AlexNet CNN for the problem of breast cancer HI classification. The experimental results
on the BreaKHis dataset showed that the CNN achieved mean accuracy rates between 81.7%
and 88.6%, depending on the magnification, at patient-level, which is better than other
shallow ML approaches with textural features. Sharma et al. [131] also used an AlexNet
CNN and other custom CNN architectures to classify benign and malignant tumors. Due
to the small sample size, authors had to carry out data augmentation by patching, and
affine transforms. For cancer classification, 11 WSIs produced 231,000 images. For necrosis
detection, four WSIs produced 47,130 images for training. Both the AlexNet and custom
CNN architectures compared favorably to most handcrafted features and an RF classifier.
Budak et al. [132] proposed an end-to-end model based on a pre-trained AlexNet CNN
and a bidirectional LSTM (BLSTM) for detecting breast cancer in HIs. The convolutional
layers are used to encode HIs into a high-level representation, which is flattened and fed
into the BLSTM. Experimental results on the BreaKHis dataset showed that the proposed
model achieved the best average accuracy of 96.32% for the magnification factor of 200×.
Moreover, for the magnification factor of 40×, 100×, and 400×, the average accuracy was
95.69%, 93.61%, and 94.29%, respectively.

Some works use CNNs based on the inception architecture proposed by Szegedy et al.
[133]. The inception modules have parallel paths where the image is passed through filters
of different dimensions (1×1, 3×3, 5×5). Additionally, max pooling is also performed.
The outputs are concatenated and sent to the next inception module. GoogleLeNet, a.k.a
Inception-V1 [133] has 9 such inception modules stacked linearly. It has 27 layers and
employs global average pooling at the end of the last inception module. Inception-V2
and Inception-V3 [134] used an upgraded inception module and auxiliary outputs, in-
creasing accuracy and reducing computational complexity. Another architecture is the
Inception-ResNet, which combines the inception model with the ResNet model [135].
Li et al. [136] compared AlexNet and Inception-V1, handcrafted features and SVM, and
features extracted by CNNs to classify regions of colon histology images as either gland or
non-gland. The combination of handcrafted features with an SVM and the prediction of a
CNN showed the best results. They used data augmentation with rotations and mirroring
for handcrafted features and CNNs. Yan et al. [137] integrated a pre-trained Inception-V3
with a BLSTM for classifying breast cancer HIs into normal, benign, in situ carcinoma,
or invasive carcinoma. The method consists of dividing HIs into 12 small patches on
average. Afterward, a fine-tuned Inception-V3 CNN extracts features from the patches,
where a 5,376-dimensional feature vector is made up of the concatenation of the weights
of the last three layers of the CNN. Such feature vectors are the input of a 4-layer BLSTM
that fuses features from 12 small patches and come up to an image-wise classification.
The experiments show that such an approach achieved an average accuracy of 91.3%.
de Matos et al. [125] proposed a classification approach for breast cancer HIs that uses
transfer learning to extract features from HIs using an Inception-V3 CNN pre-trained with
the ImageNet dataset. The proposed approach improved the classification accuracy by 3.7%
using the feature extraction transfer learning and an additional 0.7% using the irrelevant
patch elimination.

Deep residual neural network (ResNet) [138] is another architecture that has been
used in the classification of HIs. The residual block alleviates the problem of training very
deep networks. Khosravi et al. [139] evaluated the versatility of CNNs on eight different
datasets of breast, lung, and bladder tissues with H&E and immunohistochemistry images
(IHC). Such an evaluation included Inception and ResNet CNNs, the combination of both
CNNs, and the concept of transfer learning. Results showed a good performance despite
using the raw images without any preprocessing. Vizcarra et al. [140] fused CNN and
SVM outputs for HI classification. The pipeline consists of extracting SURF features for
the shallow learner (SVM) and color normalization (Reinhard method) and image resizing
(downsampling) for fine-tuning Inception-V3 and Inception-ResNet-V2 CNNs, pre-trained
on the ImageNet dataset. CNN. The outputs from both shallow and deep learners are
fused for final prediction. Experimental results on the BACH dataset showed a moderate
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accuracy of 79% and 81% achieved by the SVM and the CNN, respectively. On the other
hand, the fusion of SVM and CNN outputs outperformed the individual learners, achieving
an accuracy of 92%. Zerhouni et al. [141] proposed using a wide residual CNN to classify
mitotic and non-mitotic pixels in breast HIs. The CNN is trained on mitotic and non-mitotic
patches extracted from the ground truth images. Experimental results on the MICCAI
TUPAC Challenge dataset showed that the wide residual CNN outperformed most of the
other approaches.

Gandomkar et al. [142] proposed the MuDeRN framework to classify HIs into benign
or malignant, and next into four subtypes. In the first stage, a ResNet with 152 layers has
been trained to classify HI patches of different magnification factors as benign or malignant.
Afterward, the results thereof were subdivided into four subcategories of malignant and
benign likewise. Lastly, for each patient, the diagnosis was conducted by combining the
ResNet’s output using a meta-DT. MuDeRN achieved at the first stage an accuracy of
98.52%, 97.90%, 98.33%, and 97.66% for 40×, 100×, 200×, and 400× magnification factors,
respectively. In the second stage, MuDeRN achieved an accuracy of 95.40%, 94.90%, 95.70%,
and 94.60% for 40×, 100×, 200×, and 400× magnification factors, respectively. For patient-
level diagnosis, in turn, MuDeRN achieved an accuracy of 96.25%, considering the eight
classes. Brancati et al. [143] also used a ResNet to detect invasive ductal carcinoma as
well as to classify lymphoma subtypes. First, convolutional layers are trained without
supervision to learn a latent representation to reconstruct the input image. On the other
hand, the fully connected layers are trained in a supervised way. In both cases, the softmax
classifier produces a probability of the input image belonging to a given class. Talo [144]
presented an approach based on pre-trained ResNet-50 and DenseNet-161 CNN models
for automatic classification of gray-scale and color HIs. The results achieved by both CNNs
outperformed the existing studies in the literature, with 95.79% of total accuracy for the
gray-scale images. ResNet-50 achieved 97.77% of total accuracy to classify color HIs.

Another CNN architecture used in HI classification is the VGG-net, a very uniform archi-
tecture with 16 convolutional layers with a large number of 3 × 3 filters. Bejnordi et al. [145]
used a VGG-net CNN [146] for the classification of tissue into epithelium, stroma, and fat,
followed by a VGG16 CNN for classifying stroma into normal stroma or tumor-associated
stroma. The first CNN achieved a pixel-level accuracy of 95.5%, while the second CNN
achieved a pixel-level binary accuracy of 92.0%. The authors employed data augmentation
by randomly rotating and flipping patches and randomly jittering the hue and saturation
of pixels in the HSV color space. Xu et al. [147] used 3 CNNs to segment and distinguish
glands. The approach combines a fully convolutional network (FCN) for the foreground
segmentation channel, a faster region-based CNN (R-CNN) for the object detection channel,
and a holistically-nested edge detector CNN for the edge detection channel. All three
CNNs are based on the VGG16 CNN. The results of these three CNNs feed another CNN
that outputs a segmented image. Data augmentation by affine and elastic transformation
is carried out to enhance performance and avoid overfitting. The proposed approach
achieved state-of-the-art results on the dataset from the MICCAI 2015 Gland Segmentation
Challenge. Kumar et al. [148] developed a variant of VGG16 CNN architecture, which
replaces the fully connected layers with different classifiers. The approach consists of stain
normalization and data augmentation, which uses images with and without normalized
stain. The augmented dataset is applied to the fused VGG16, where features are taken at the
global average pooling layer. Finally, the binary classification is carried out by SVM and RF
classifiers. Experiments were conducted on the canine mammary tumor (CMTHis) dataset
and breast cancer HI (BreakHis) dataset, which are both randomly split into training (70%)
and test (30%) sets. The approach achieved an accuracy of 97%, and 93% on BreakHis and
CMTHis datasets, respectively.

Other CNN architectures have also been used in HI classification, such as DenseNet [149]
and MobileNet [150]. Kassani et al. [151] proposed an approach for the classification
of breast cancer HIs based on an ensemble of three pre-trained CNNs, namely VGG19,
MobileNet, and DenseNet. Stain normalization, data augmentation, fine-tuning, and hyper-
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parameter tuning were used to improve the performance of the CNNs. The multi-model
ensemble method achieved better performance than single classifiers with an accuracy of
98.13%, 95.00%, 94.64%, and 83.10% for BreakHis, ICIAR, PatchCamelyon, and Bioimag-
ing datasets, respectively. Yang et al. [152] introduced the use of additional region-level
supervision for classifying breast cancer HIs with a DenseNet-169 CNN pre-trained on
ImageNet. For this purpose, ROIs are localized and used to guide the attention of the
classification network simultaneously. This process activates neurons in regions relevant to
diagnose while suppressing activation in irrelevant and noisy areas. Hence, the network’s
prediction is based on the regions on which a pathologist expects the network to focus.
Such an approach achieved an accuracy of 93% on the BACH dataset.

Finally, several works proposed custom CNN architectures for HI classification, which
are usually based on some well-known architectures. The authors attempt to optimize
mainly the number and the dimension of kernels and the number of layers. Bayramoglu
et al. [153] proposed two different CNN architectures, both with ten layers, for breast
cancer HI classification. The first CNN predicts only malignancy, while the second one
predicts both the malignancy and the image magnification level simultaneously. Experi-
mental results on the BreaKHis dataset showed that the magnification independent CNN
approach improved the magnification-specific model’s performance and that the results
are comparable with previous state-of-the-art results obtained by handcrafted features.
They also used data augmentation based on affine transformations.

Albarqouni et al. [154] introduced a CNN for aggregating annotations from crowds in
conjunction with learning a model for a challenging classification task. During learning
from the crowd annotations phase, the CNN architecture is augmented with an aggregation
layer to aggregate the ground-truth from the crowd vote matrix. Experimental results on
the AMIDA13 dataset showed that the proposed CNN architecture was robust to noisy
labels and positively influenced the performance. Cruz-Roa et al. [122] proposed a custom
3-layer CNN to classify patches of WSI as invasive ductal carcinoma (breast cancer) or
not. Patches ended up labeled due to the region labeling. Some WSI regions, such as
background and adipose cells, were excluded manually and were not patched. Patches
were preprocessed using color normalization and the YUV color space. CNN outperformed
an RF trained on the best handcraft feature extractor by 4%. Compared to other works,
this one has a simple protocol and uses a small network, but it was one of the precursors
of CNNs to analyze HIs. Ciompi et al. [155] proposed an 11-layer CNN to analyze the
impact of stain normalization in the training and evaluation pipeline of an automatic
system for CRC tissue classification. Experimental results on the CRC dataset validated
the performance of the proposed CNN and the role of stain normalization in CRC tissue
classification. Kwak and Hewitt [156] proposed a 6-layer CNN to identify prostate cancer
and compared it with other CNNs (AlexNet, VGG, GoogLeNet, ResNet) as well as with
shallow classifiers such as SVM, RF, k-NN and NB. Experimental results on four tissue
microarrays showed that the 6-layer CNN achieved an AUC of 0.974. It outperformed all
other approaches, either based on handcrafted features with shallow classifiers or different
CNN architectures.

Roy et al. [157] proposed five custom CNN architectures to classify patches of breast
cancer HIs. The approach consists of extracting patches, classify them and compare the
result of individual patches with the one of the whole image. The output is considered
correct if there is an agreement between the class labels of all extracted patches and the HI’s
class label. They have also boosted the number of training samples per class using affine
transformation for data augmentation. Experimental results on the ICIAR 2018 challenge
dataset showed that a 14-layer CNN achieved the best results: patch-wise classification
accuracy of 77.4% and 84.7% for four and two classes, respectively; image-wise classification
accuracy of 90.0% and 92.5% for four and two classes, respectively. de Matos et al. [123]
proposed a 7-layer CNN architecture based on texture filters that have fewer parameters
than traditional CNNs but can capture the difference between malignant and benign tissues
with relative accuracy. The experimental results on the BreakHis dataset showed that the
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proposed texture CNN achieves 85% of accuracy for classifying benign and malignant
tissues. The authors also employed data augmentation based on composed random affine
transforms, including flipping, rotation, and translation. Ataky et al. [124] proposed a
novel approach for augmenting an HI dataset considering the inter-patient variability
through image blending using the Gaussian-Laplacian pyramid. Experimental results on
the BreakHis dataset with a texture CNN [123] have shown promising gains vis-à-vis the
majority of DA techniques presented in the literature. The research carried out by Gecer
et al. [158] presented a method for breast diagnosis based on WSIs. This method aims at
classifying images into five categories. At first, a salience detection was performed by a
pipeline consisting of four sequential 9-layer CNNs based on the VGG-net [146] architecture
for multiscale processing of the WSIs, considering different magnifications for localization
of diagnostically pertinent ROIs. Afterward, a patch-based multiclass CNN is trained
on representative ROIs resulting from three experienced pathologists’ consensus. Finally,
the final slide-level diagnosis is obtained by fusing the salience detector and the CNN
for pixel-wise labeling of the WSIs by a majority vote rule. They claimed that the CNNs
used for both detection and classification outperformed competing methods that used
handcrafted features and statistical classifiers. Moreover, the proposed method achieved
results comparable to the diagnoses provided by 45 pathologists on the same dataset.
Experiments using 240 WSIs showed a five-class slide-level accuracy of 55%.

Wang et al. [159] employed a bilinear CNN (BCNN), which consists of two individual
CNNs, whose outputs of the convolutional layers are multiplied with an outer product
at each corresponding spatial location, resulting in the quadratic number of feature maps.
The input of both CNNs is H&E images with the H and E channels separated in a prepro-
cessing stage by a color decomposition algorithm. The proposed BCNN-based algorithm
achieves the best performance with a mean classification accuracy of 92.6%. Compared
to other CNN-based algorithms, BCNN improves at least 2.4% on classification accuracy
on the CRC dataset. Li et al. [160] presented an automatic method for mitosis detection
based on semantic segmentation that uses a CNN. The CNN has a novel label with concen-
tric circles instead of a single-pixel representation of mitosis. The inner-circle represents
a mitotic region, whereas the ring around the inner circle is a “middle ground.” This
concentric loss allows training the semantic segmentation CNN with weakly annotated
mitosis data. The semantic segmentation employed on breast cancer HIs to seek out mitotic
cells achieved the F-score of 0.562, 0.673, 0.669, on ICPR2014, MITOSIS, AMIDA13, and
TUPAC16 datasets, respectively. Hou et al. [161] proposed a semi-supervised approach
that uses a sparse convolutional autoencoder (CAE). The CAE has a crosswise constraint
that decomposes patches from HIs into the foreground (e.g., nuclei) and background (e.g.,
cytoplasm). Such a CAE initializes a supervised CNN, which carries out nucleus detection,
feature extraction, and classification/segmentation in an end-to-end fashion. The experi-
mental results showed that the proposed approach outperformed other approaches and the
crosswise constraint’s noteworthiness in boosting performance. The proposed CAE-CNN
achieved results comparable to the state-of-the-art using only 5% of training data needed
by other methods. Sheikh et al. [162] proposed a four-input 24-layer custom CNN for
the classification of HIs that fuses multi-resolution hierarchical feature maps at different
layers. The proposed model learns different scale image patches to account for cells’ overall
structures and texture features. Experimental results on ICIAR2018 and BreaKHis datasets
showed that the proposed model outperformed existing state-of-the-art models.
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Table 9. Summary of publications using DL methods in HI analysis.

Reference Year Tissue/Organ Network Architecture

Malon et al. [87] 2012 Breast LeNet-5
Cruz-Roa et al. [122] 2014 Breast 3-layer Custom
Stanitsas et al. [129] 2016 Breast AlexNet
Spanhol et al. [130] 2016 Breast AlexNet
Bayramoglu et al. [153] 2016 Breast 10-layer Custom
Albarqouni et al. [154] 2016 Breast AggNet Custom
Li et al. [136] 2016 Gland AlexNet, Inception-V1
Zerhouni et al. [141] 2017 Breast Wide ResNet
Bejnordi et al. [145] 2017 Breast VGG-net, VGG16
Wang et al. [159] 2017 Colorectal Bilinear Custom
Ciompi et al. [155] 2017 Colorectal 11-layer Custom
Kainz et al. [127] 2017 Colorectal LeNet
Sharma et al. [131] 2017 Gastric AlexNet, Custom
Xu et al. [147] 2017 Gland VGG16
Kwak and Hewitt [156] 2017 Prostate 6-layer Custom
Khosravi et al. [139] 2018 Breast, Lung, Bladder Inception-V1, ResNet
Gandomkar et al. [142] 2018 Breast ResNet
Hou et al. [161] 2019 Gland, Breast CAE+CNN Custom
Li et al. [160] 2019 Breast FCN Custom
Vizcarra et al. [140] 2019 Breast Inception-V3, Inception-ResNet-V2
Brancati et al. [143] 2019 Breast ResNet
Budak et al. [132] 2019 Breast AlexNet, BLSTM
Kassani et al. [151] 2019 Breast VGG19, MobileNet, DenseNet
Yang et al. [152] 2019 Breast DenseNet-169
Roy et al. [157] 2019 Breast 11-layer to 14-layer Custom
Gecer et al. [158] 2019 Breast 9-layer Custom
Yan et al. [137] 2019 Breast Inception-V3, BLSTM
Talo [144] 2019 Breast ResNet-50, DenseNet-161
Kassani et al. [151] 2019 Breast VGG19, MobileNet, DenseNet
Yang et al. [152] 2019 Breast DenseNet-169
de Matos et al. [123] 2019 Breast 7-layer Texture Custom
de Matos et al. [125] 2019 Breast Inception-V3
Kumar et al. [148] 2020 Breast VGG16
Ataky et al. [124] 2020 Breast 7-layer Texture Custom
Sheikh et al. [162] 2020 Breast 24-layer Custom

7. Reviews, Surveys and Datasets

This section brings a summary of the reviews and surveys related to HIs and ML
methods. As shown in Table 10, we have found nineteen works in this category. Reviews
and surveys published between 2012 and 2015 highlight mainly the approaches for nucleus
segmentation and classification. On the other hand, recent publications are focused on
the classification of whole medical images. The reviews presented by Saha et al. [163],
Nawaz and Yuan [164], Chen et al. [165] and Robertson et al. [166] were published in
medical journals and provided a deeper view of the histology information. However,
such publications overlooked aspects related to ML methods. For instance, Nawaz and
Yuan [164] analyzed the characteristics of tumors and presented a brief study on how
computational methods can deal with HIs. Komura and Ishikawa [167] presented the use of
ML methods in HI and several HI datasets. Litjens et al. [168] reviewed DL methods applied
to a variety of medical images, including HIs. Zhou et al. [169] presented a comprehensive
overview of breast HI analysis techniques based on classical and DL methods and publicly
HI datasets. Finally, Krithiga and Geetha [170] presented a systematic review of breast
cancer detection, segmentation, and classification on HIs focused on the performance
evaluation of ML and DL techniques to predict breast cancer recurrence rates.
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Table 10. Summary of the reviews and surveys on HIs and ML approaches.

Reference Year Image Subject Journal or Conference
Type

He et al. [171] 2012 HI Segmentation, feature Comp Methods Progr
extraction, classification Biomed

Irshad et al. [172] 2014 HI, Nuclei extraction, segmentation, IEEE Reviews Biomed
IHC Feature extraction, classification Eng

Deshmukh and Mankar [173] 2014 HI, IHC Segmentation International Conference Electr Syst Sig
Other Proc Comp Techn

Akhila and Preethymol [174] 2015 HI Nuclei segmentation, International Conference Innov Inform
classification Emb Comm Sys

Veta et al. [175] 2015 HI Results of MITOS2013 Challenge Medical Image Analysis
Nawaz and Yuan [164] 2016 Various Tumor ecology Cancer Letters
Madabhushi and Lee [176] 2016 HI Detection, segmentation, feature Medical Image Analysis

extraction, classification
Saha et al. [163] 2016 HI Slide preparation, staining, Tissue and Cell

microscopic, imaging,
preprocessing, segmentation,
feature extraction, classification

Chen et al. [165] 2017 HI Image analysis of H&E slides Tumor Biology
Robertson et al. [166] 2017 Various DL Translat Research
Cosma et al. [177] 2017 HI, Deep and shallow methods Expert Sys App

Other
Tosta et al. [178] 2017 HI Segmentation for lymphocytes Inform Medicine Unlocked
Litjens et al. [168] 2017 MI DL for medical images Medical Image Analysis
Cataldo and Ficarra [179] 2017 HI Feature extraction Comput Struct Biotechn J
Aswathy and Jagannath [180] 2017 HI Image processing, classification Inform Medicine Unlocked
Li et al. [181] 2018 MI Content retrieval Medical Image Analysis
Komura and Ishikawa [167] 2018 HI Datasets and ML methods Comput Struct Biotechn J
Zhou et al. [169] 2020 HI Classical and deep neural IEEE Access

networks, classification
Krithiga and Geetha [170] 2020 HI Image enhancement, segmentation, Archives Comput

feature extraction, classification Methods Eng

MI: Medical images; IHC: Immunohistochemistry images.

Given the importance of datasets for HI research, we have also compiled in Tables 11
and 12, a list of the datasets that have been used in experiments by several works covered
in this review. We included the dataset reference, year of creation, their contents in terms
of the number of images and patients, and references to the related papers.

Table 11. Summary of publicly available HI datasets.

Year Reference Dataset Reference Dataset Size

2010 Kuse et al. [52] [182] 20 Img
2010 Meng et al. [110] [183] 528 Img, 265 Img, 376 Img
2012 Arteta et al. [26] [182] 20 Img
2014 Irshad et al. [105] [184] 200 Img
2015 Sirinukunwattana et al. [23] [184] 50 WSI
2015 Huang [24] [185] NA
2016 Beevi et al. [97] [186] 96 Img
2016 Arteta et al. [36] [182] 20 Img
2016 Yu et al. [71] [187,188] 2186 WSI, 294 Img
2016 Chan and Tuszynski [65] [189] 82 Pat, 7909 Img
2016 Barker et al. [100] [185,190] 45 Img, 604 Img
2016 Huang and Kalaw [116] [185] 682 Img
2017 Das et al. [85] [184] 15 Img
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Table 11. Cont.

Year Reference Dataset Reference Dataset Size

2017 Reis et al. [58] [191] 55 WSI
2017 Mazo et al. [12] [192] 3000 Img
2017 Valkonen et al. [121] [193] 170 WSI, 100 WSI
2017 Wan et al. [64] [184] 50 Img
2017 Kruk et al. [74] [194,195] 70 Pat, 62 Pat, 94 Img
2018 Sudharshan et al. [104] [189] 82 Pat, 7909 Img
2018 Hou et al. [161] [185,190] NA
2019 Gandomkar et al. [142] [189] 82 Pat, 7909 Img
2019 Kumar et al. [148] [189], CMTHis 82 Pat, 7909 Img
2019 Vo et al. [68] [189,196] 82 Pat, 7909 Img, 269 Img
2019 Vizcarra et al. [140] [4] 400 Img, 30 WSI
2019 Yan et al. [137] NA 249 Img
2019 George et al. [69] [189,196] 82 Pat, 7,909 Img, 269 Img
2019 Budak et al. [132] [189] 82 Pat, 7909 Img
2019 Kurmi et al. [108] [189] 82 Pat, 7909 Img
2019 Kassani et al. [151] [189,193,196] 82 Pat, 7909 Img, 269 Img
2019 Yang et al. [152] [4] 400 Img, 30 WSI
2019 Roy et al. [157] [4] 400 Img, 30 WSI

NA: Not available, Img: Images, Pat: Patients, WSI: Whole Slide Image.

Table 12. Summary of datasets that are not publicly available.

Year Reference Dataset Reference Dataset Size

2008 Yu and Ip [25] Yu and Ip [25] 200 Img
2008 Ballarò et al. [39] NA 297 Img
2008 Liu et al. [18] NA 480 Img
2008 Caicedo et al. [72] NA 1502 Img
2008 Daskalakis et al. [109] NA 115 Img
2009 Marugame et al. [48] NA 217 WSI
2009 Mete and Topaloglu [94] NA 2 WSI
2009 Kong et al. [86] NA 389 Img
2009 Tosun et al. [13] NA 16 pat
2009 Hafiane et al. [19] [197] 8 Img
2010 Orlov et al. [78] NA 30 WSI
2010 He et al. [20] NA NA
2010 Fatakdawala et al. [5] NA 100 Img, 9 Pat
2011 Huang et al. [62] NA 9 Slides, 36,000 Img, 40×
2011 Madabhushi et al. [41] [198–200] 58 Pat, 100 Img, 20 Pat, 40 Img, 6 Pat
2011 Cruz-Roa et al. [77] NA 1502 Img basal, 2828 Img tissues
2011 Caicedo et al. [53] [201] 6000
2011 Petushi et al. [40] NA 30 WSI
2011 Osborne et al. [49] NA 34 cases, 126 Img
2011 Roullier et al. [6] NA NA
2011 He et al. [9] NA NA
2011 Peng et al. [8] NA 8 Pat, 62 Img
2011 Rahmadwati et al. [7] NA 475 Img
2011 DiFranco et al. [119] NA 14 Pat, 15 Img
2012 Loeffler et al. [47] NA 125 Pat
2012 Sidiropoulos et al. [95] NA 140 cases
2013 Atupelage et al. [61] NA 109 Pat, WSI 369 Img
2013 Song et al. [42] NA 11 slides, 7 Pat
2013 Basavanhally et al. [75] [202,203] 126 Pat, 29 Pat
2013 De et al. [79] NA 62 Img
2013 Homeyer et al. [106] NA 71 Img
2013 Cosatto et al. [102] NA 12,726 Pat, 12,745 WSI, 26,879 Img
2013 Janssens et al. [27] NA 111 Img
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Table 12. Cont.

Year Reference Dataset Reference Dataset Size

2013 Onder et al. [21] NA 230 Img
2013 Wang and Yu [111] NA 369 Img
2013 Gorelick et al. [43] NA 50 WSI
2013 Filipczuk et al. [44] NA 675 Img, 75 Pat
2013 Vink et al. [112] NA 51 Img
2014 Vanderbeck et al. [80] NA 59 Pat
2014 Kandemir et al. [81] NA 97 Pat, 214 Tissue
2014 Saraswat and Arya [28] [204] 30 Img
2014 Olgun et al. [51] NA 3236 Img, 258 Pat
2014 Qu et al. [29] [205] 125 Pat, 1180 Img
2014 Fatima et al. [10] NA 5 Pat, 80 Img
2014 Xu et al. [103] [206] 10 Img, 103 Img
2014 Salman et al. [30] NA 20 Pat, 200 Img
2014 Michail et al. [84] NA 300 Img
2014 Ozolek et al. [45] NA 94 Pat
2014 Nativ et al. [14] NA 54 Img, 9 Pat
2014 Yang et al. [22] [207] 96 WSI
2014 Phoulady et al. [113] NA 28,698 Img
2015 Fernández-Carrobles et al. [54] NA 40 WSI
2015 Harai and Tanaka [89] NA 123 Pat, 400 Img
2015 Chen et al. [31] NA 230 Pat, 1,150 Img
2015 Korkmaz and Poyraz [93] NA 160 Img
2015 Santamaria-Pang et al. [34] NA 350 Img
2015 Tashk et al. [76] [184] 50 Img
2015 Kandemir and Hamprecht [101] [208] 110 Img
2015 Zarella et al. [33] NA 101 Pat
2015 Gertych et al. [59] NA 210 Img
2015 Di Franco et al. [114] [119,209] 15 Img, 14 Pat, 9 Pat
2015 Albashish et al. [115] NA 40 Pat, 149 Img
2016 Leo et al. [70] NA 146 WSI
2016 Noroozi and Zakerolhosseini [63] NA 33 Img
2016 Fukuma et al. [46] NA 20 WSI
2016 Bruno et al. [56] [210] 58 Img
2016 Wang et al. [35] NA 68 Img
2016 Niazi et al. [66] NA 15 WSI, 34 Img
2016 Balazsi et al. [60] NA 66 Img
2016 Wright et al. [120] [211] 157 Pat
2016 Jothi and Rajam [98] NA 12 Pat, 219 Img,

155 Img, 64 Img
2016 Phoulady et al. [57] NA 39 Pat, 390 Img
2016 Shi et al. [15] NA 47 WSI, 423 Img
2016 Mazo et al. [11] [192] 200 Img
2016 Brieu et al. [16] NA 90 Img
2016 Fernández-Carrobles et al. [117] NA 170 WSI
2017 Pang et al. [73] NA 96 WSI
2017 Peikari et al. [90] NA 121 WSI, 64 Pat
2017 BenTaieb et al. [91] NA 133 WSI
2017 Zhang et al. [92] [212] 285 Img, 917 Img
2017 Shi et al. [17] NA 200 Img
2017 Shi et al. [15] [15] 47 WSI, 423 Img
2017 Kwak and Hewitt [50] NA 771 Img
2017 Romo-Bucheli et al. [118] NA 907 Img, 9 WSI
2017 Brieu and Schmidt [37] NA 30 WSI
2018 Peyret et al. [55] [213–215] 10 Img
2019 Li et al. [160] ICPR2014 MITOSIS, NA

AMIDA13, TUPAC16
2019 Gecer et al. [158] NIH-sponsored projects NA
2019 Khan et al. [107] NA NA
2019 Brancati et al. [143] D-IDC NA
2019 Talo [144] Kimia Path24 NA

NA: Not available, Img: Images, Pat: Patients, WSI: Whole Slide Image.
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8. Conclusions

In this paper, we have presented a review of the ML methods usually employed to
analyze HIs. This review revealed an increasing interest in the classification task, while
the interest in other tasks such as segmentation and feature extraction are in an evident
decline in the last years, as shown in Tables 4–8, where the related works are arranged in
ascending chronological order. We point out that the main reason for such a change is the
introduction of DL methods, which can deal with raw HIs with a little or even without any
preprocessing step. Normalization is one of the most used preprocessing. Still, in the early
years, other preprocessing methods such as thresholding, filtering, and color models were
also used to improve the quality of HIs for subsequent tasks such as segmentation and
feature extraction, or even classification.

In the years preceding the broad adoption of DL methods, several works had focused
on identifying nuclei in HIs, which are important structures to the cancer diagnosis. There-
fore, that leads to the exploitation of different segmentation approaches as reviewed in
Section 3. Some works used the concept of semantic features, based on the e.g. counting
of nuclei, its relation to the stroma, the distance between nuclei. Stain normalization is
also a recurrent topic that has shown up in several works across the years covered by this
review. Such an image processing method, which reduces the color and intensity variations
present in stained images, has been widely used even in conjunction with DL methods.
Feature extraction methods were the focus of interest of researchers between 2008 and 2016.
Morphometric feature and textural features such as GLCM, LBP, and their variants have
been the most frequent features used in HI analysis, either alone or in combination with
other feature types. It is important to note that the shallow classifiers require a feature
extraction method. Again, the adoption of DL methods, which can learn representation
and decision boundaries in a single optimization process, is probably the leading cause of
declining interest in feature extraction methods from 2016. Furthermore, pre-trained CNNs
can also be used as feature extractors for HIs. Several works removed the fully connected
layers of pre-trained CNNs and used the last convolutional layer’s output as feature vec-
tors to feed shallow classifiers. Comparing Tables 7–9 we can say that DL approaches are
becoming prevalent over shallow approaches in the last five years. Although studies are
still necessary for understanding how these networks learn data representation, especially
concerning HIs.

Finally, Tables 11 and 12 also help us to understand the increasing interest in HI
analysis in the last years. We have found that most of the early works are based on small
private datasets, making it difficult for other researchers who do not have access to such HI
datasets to carry out research in this area and reproduce the scientific results. On the other
hand, most recent works are based on public HI datasets, which contribute to science as
they provide a way to researchers to develop new methods and compare their performance
with the existing ones. However, there is still a lack of large-scale supervised WSI datasets.

In conclusion, this review shows the evolution of HI analysis and the recent shift over
DL methods. This review also provides valuable information to researchers in the field
about datasets and other reviews and surveys.
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The following abbreviations are used in this manuscript:

AUC Area under the curve
CAD Computer-aided diagnosis
CNN Convolutional neural network
CT Computed tomography
DL Deep learning
DNN Deep neural network
DT Decision tree
ELM Extreme learning machine
GLCM Gray-level co-occurrence matrix
HI Histophatologic image
H&E Hematoxylin and eosin
HOG Histogram of oriented gradients
IHC Immunohistochemistry images
Img Images
LBP Local binary patterns
ML Machine learning
MIL Multiple instance learning
MLP Multilayer perceptron
MRI Magnetic resonance imaging
NSGA Non-dominated sorted genetic algorithm
Pat Patients
PCA Principal component analysis
RCNN Recurrent convolutional neural network
RF Random forest
ROI Region of interest
SHMM Spatial hidden Markov model
SIFT Scale-invariant feature transform
SNN Synergistic neural network
SVM Support vector machine
WSI Whole slide image
XCA Exclusive component analysis
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