
Handling Concept Drifts Using Dynamic Selection of Classifiers

Paulo R. Lisboa de Almeida∗, Luiz S. Oliveira∗, Alceu de Souza Britto Jr.‡ and § and Robert Sabourin¶
∗Universidade Federal do Paraná, DInf, Curitiba, PR, Brazil

Email: {prlalmeida,lesoliveira}@inf.ufpr.br
‡Universidade Estadual de Ponta Grossa, Deinfo, Ponta Grossa, PR, Brazil
§Pontifı́cia Universidade Católica do Paraná, PPGIa, Curitiba, PR, Brazil

Email: alceu@ppgia.pucpr.br
¶École de Technologie Supérieure, Montreal, QC, Canada

Email: robert.sabourin@etsmtl.ca

Abstract—This work describes the Dynse framework, which
uses dynamic selection of classifiers to deal with concept
drift. Basically, classifiers trained on new supervised batches
available over time are add to a pool, from which is selected a
custom ensemble for each test instance during the classification
time. The Dynse framework is highly customizable, and can be
adapted to use any method for dynamic selection of classifiers
given a test instance. In this work we propose a default
configuration for the framework which has provided promising
results in a range of problems. The experimental results have
shown that the proposed framework achieved the best average
rank when considering all datasets, and outperformed the state-
of-the-art in three of four tested datasets.

Keywords-Concept Drift; Dynamic Selection of Classifiers;
Ensemble of Classifiers.

I. INTRODUCTION

In non-stationary environments a classification problem
may violate the common assumption that the data distri-
bution and the learned concept do not change over time,
characterizing the phenomenon of concept drift. Possible
changes may occur in the distribution of the incoming data
(virtual concept drift), or in the conditional distribution of
the target concept, while the distribution of the input may
stay the same (real concept drift) [1], [2].

A concept drift may be defined as abrupt, gradual prob-
abilistic or gradual continuous, depending on the speed
of the changes. Beyond that, it may be considered severe
or intersected, depending on the severity of the changes
between concepts. A concept is defined as recurrent when
it represents an old definition that occurs again, usually
motivated by seasonal changes. A detailed description about
the concept drift properties can be found in [1]–[3].

A prediction method in this kind of dynamic environment
is required to have a mechanism to adapt as the learned con-
cept evolves through time. The challenge is to do it quickly,
keeping the method accuracy. Some typical applications that
present the concept drift phenomenon are the intrusion, spam
and fraud detection, medical decision support and climate
data analysis [1], [4].

A common approach employed to deal with concept drift
is to keep a window containing the M latest supervised input

data samples, which are used to update the classifier. A pos-
sible drawback of this strategy is the classifier will “forget”
old instances that may be useful in the current concept. The
family of FLORA algorithms [5] is a good example of this
approach, in which an interesting contribution is the use of
windows with adaptive size. Some variants of the windowed
scheme are described in [4], [6], and [7], where a fading
factor is applied to gradually forget old training instances or
old trained models.

In a different direction some methods have been based
on a trigger that tries to detect the exact moment when the
concept changes. The rational behind that is to react just
when the concept drift is detected, adapting the classifiers
or discarding old data. Several trigger based methods were
proposed in the last years, such as in [8]–[12].

Another interesting approach to deal with concept drift
is based on the use of classifier ensembles. Most methods
in this approach use a strategy to estimate the competence
of the classifiers in the pool regarding the current con-
cept. A common strategy is to verify the accuracy of the
classifiers using the latest supervised instances received.
These methods may train new classifiers from the most
recent supervised data to keep the pool up to date. On the
other hand, usually they remove classifiers from the pool
by considering some metric, like the classifiers accuracy in
the latest supervised data or their age. Some examples of
ensemble based methods can be found in [13]–[16].

Despite the used approach, methods devoted to deal with
concept drift most often try to keep their knowledge up to
date with respect to the current concept. To this end, they
must discard or at least reduce the importance of old data
or trained models (possibly representing old concepts).

In this paper we propose the Dynamic Selection Based
Drift Handler (Dynse) framework, which is designed to
address the concept drift problem using dynamic selection
of classifiers. Instead of keeping only the latest concepts
(classifiers) as done in most works, we keep as much
classifiers (trained with different data, collected at different
times from distinct concepts) as possible in the pool, from
which we can select the most appropriate ensemble for a

given test instance, considering the current concept. The
rationale behind that is to profit from the inherent dynamic
behavior of Dynamic Selection of Classifier based methods
to react swiftly to a variety of concept drift scenarios,
such as: a) severe or intersected changes; b) presence of
recurrences; and c) presence of stable regions, i.e. regions
where the concept does not change.

In fact, the proposed method may adapt to the possible
frequent environment changes in two different moments.
First, when it considers a growing pool of classifiers that is
created under the environment changes, and second, when
it selects from this pool the most promising classifiers
dynamically, i.e, during the operational phase. Thus, the
proposed system presents a dynamic behavior when the pool
is generated and also when the classifiers are selected.

The designed framework can be easily adapted to different
problems. Even the method used to dynamically build the
ensembles, which is named Classification Engine, is inter-
changeable. In this work we assess the proposed framework
employing its default configuration using two artificial, and
two real world well known datasets for testing concept drift
handling methods. The experimental results have shown that
the proposed method is very promising when compared with
related works in the literature. It was possible to observe a
better average accuracy than the state-of-the-art and a faster
reaction to concept drifts in most tested scenarios.

II. DYNAMIC SELECTION OF CLASSIFIERS

When dealing with classification problems taking into
account dynamic selection of classifiers, we are trying to
find a good “custom selected” classifier or ensemble for
the unlabeled instance x. For this purpose, the competence
of each available classifier is estimated on a local region
of the feature space during the classification phase. This
local region is usually defined as the K-neighborhood of x
in a validation set Q, where the class of each instance in
Q is known [17], [18]. For a comprehensive review about
dynamic selection of classifiers, please refer to [19].

A list of methods based on dynamic selection of classifiers
may include the Overall Local Accuracy (OLA) method
[17], the Local Class Accuracy (LCA) method [17], the
A Priori and A Posteriori selection methods [20] and the
family of K-Nearest Oracles (KNORA) algorithms [18].

In this work we have used the KNORA-ELIMINATE
(KNORA-E) algorithm as the ensemble selection method
(the classification engine module described in Section III). In
order to make this paper self contained, we briefly describe
the KNORA-E method, introducing a modification in the
original algorithm to deal with noisy environments.

A. KNORA-E For Noisy Environments

Given a pool of classifiers P and the set Nx containing the
k nearest neighbors of the test instance x in the validation
set Q, the KNORA-E method works basically by selecting

the classifiers in P that correctly classify all neighbors in
Nx. The selected classifiers are then combined using the
Majority Voting technique to classify x.

In our implementation, we modified the original
KNORA-E algorithm in order to introduce a new slack
variable l, where 0 ≤ l < k. With this modification,
considering that Nx contains k neighbors, all classifiers that
correctly recognize at least k − l instances in Nx will be
selected to be part of the ensemble. The slack variable was
introduced as a simple, yet effective solution to cope with
environments containing noise using the KNORA-E. The
presence of noise may make it impossible for a classifier
correctly classify all k neighbors for k > 1 (one or more of
the neighbors can be noise).

III. PROPOSED METHOD

In this section we present the Dynse framework, which
is a new tool for dealing with concept drifts that uses the
neighborhood of the test instance defined in a validation
set to dynamically select a suitable ensemble for it. The
framework is designed to cope with real concept drifts of
any speed and severity (in the future we intend to propose
configurations of the framework to cope with virtual concept
drifts). The only assumption made about the data is that
some supervised samples will be available over time to train
and select classifiers dynamically, and those samples will
be available in a batch form (e.g. the method will receive
a batch containing T supervised instances every month to
adapt to the current environment).

A general overview of the proposed framework is pre-
sented in Figure 1, where each new supervised batch con-
tains 6 samples, and only the latest supervised batch is em-
ployed as the accuracy estimation window W (nevertheless
the size of this window can be configured for each problem
to achieve optimal performance in stable or changing regions
- See Figure 3).

In the framework, every supervised batch received is used
to build a new classifier, which is added to a pool P . Any
classification algorithm can be employed and, in case of
new supervised batches do not contain enough instances
to build a new classifier, V batches can be accumulated
before training a new classifier. The classifier training phase
is shown as a dashed line in Figure 1.

Receiving a new supervised batch also causes the update
of the current accuracy estimation window W , which should
contain the latest M supervised batches (|W | = M).
This window is used by the framework to estimate the
competence of the classifiers in the local region of each
instance to be classified. It can be seen as the set Q described
in Section II. The size of the accuracy estimation window
M is directly related to the stability-plasticity dilemma [21],
since a bigger value of M could generate a more accurate
system when the concept is stable, at the cost of a slower
recover when a concept drift occurs.

Sn-1

New Supervised Batches Arriving

Old accuracy estimation Instances

Current accuracy estimation Instances W

C1 C 2 C N...

Pool of Classi ers P

Unlabeled Instance x

Classify x using

the ensemble

Class of x

...

... SnSn-12 Sn-2Sn-3Sn-4Sn-5Sn-6Sn-7Sn-8Sn-9Sn-10Sn-11

Current Batch NBatch N-1

Train a new classi er

Nx

Select an

ensemble using the

classi cation Engine

Pool P

Find the neighbors of x

W

Ex

Ex

Figure 1. The Dynse Framework basic scheme for M = 1 in a scenario
where each supervised batch contains 6 supervised samples

When a test instance x needs to be classified, the frame-
work performs the following steps:

1) The k instances in the validation window W that
represent the local region (neighborhood) of the test
instance x are defined. These instances are represented
by Nx = {x1, x2, ..., xk}.

2) The Classification Engine CE uses the local region
Nx to estimate the competence of each classifier in the
pool P . This module then uses the estimated classifier
competences to dynamically select a suitable ensemble
Ex to classify x. Formally, the classification engine
can be seen as a function CE(Nx, P) = Ex.

3) Finally, x is classified using the selected ensemble Ex,
where the fusion rule used to combine the classifiers
in Ex can be defined by the Classification Engine.

It is worth mentioning that the pool of classifiers P
should be kept as big as possible, since a bigger number
of classifiers trained at different moments may generate
better custom selected ensembles to classify the unlabeled
instances. Nevertheless, due to some constraints like pro-
cessing time or available memory, it may be necessary to
prune some classifiers. Under these circumstances a classical
approach, like forgetting the oldest or the worst performing
classifier may be implemented.

Since the performance of the dynamic selection methods
has shown to be problem dependent, the classification engine
of the proposed framework was planned as an independent
module. Thus, the CE module can be implemented using
any method for dynamic classifier selection based on the

use of a local region in the feature space to evaluate the
competence of the classifiers. As previously described in
the current version of the classification engine we have the
Knora-eliminate method proposed in [18].

A. Dynse Default Configuration

The Dynse framework is quite flexible, containing a range
of components that can be interchanged or adjusted in
order to achieve optimal performance in the problem being
modeled. Some of these components are the base learner,
the classification engine CE, the number of neighbors k
representing the local region for the dynamic selection
scheme, and the size of the accuracy estimation window
M .

Besides the framework flexibility, we have payed special
attention to the initial fine tuning of its components. The
idea is to provide a default configuration that represents a
good trade-off between performance in stable and concept
changing regions. To this end, we have performed a set of
experiments using different problems (see Section IV). The
proposed default configuration is described as follows:

• A classifier is built for every V new supervised batches
received. The value of V must be big enough to train
a classifier (in most of our tests, V = 1).

• M = 4× V
• k = 9
• The KNORA-E method is used as the classification

engine (CE), with the slack variable kept as 2 (l = 2).

IV. EXPERIMENTS

In this section we assess the performance of the Dynse
framework considering real world and artificial well known
datasets. In order to make easier the comparison with other
methods, we implemented the Dynse framework using the
Massive Online Analysis (MOA) framework [22], which
contains the implementation of the main state-of-the-art
methods.

Since most of the evaluated methods have many param-
eters to adjust for each problem, we have used for all
of them, including our method, their default configuration
(available at the MOA framework). The motivation for that
is to provide a fair comparison.

It is worth mentioning that, during the tests, we did
not use any classifier forgetting method in our proposed
framework, i.e. all classifiers are kept in the pool. With this
configuration, we intend to check the ability of the Dynse
framework to correctly choose the most adequate ensemble
of classifiers according to the current concept.

The proposed framework was compared with seven other
methods which represent different approaches to deal with
concept drifts. The tested methods and the corresponding
acronyms used in this work are listed below:

• Dynse K-E92: The Dynse Framework implemented
using its default configuration.

• DDM: The Drift Detection Method (DDM) trigger
based method proposed in [8].

• EDDM: The Early Drift Detection Method (EDDM)
trigger based method proposed in [23].

• HAT: The Hoeffding Adaptive Tree proposed in [9]
using the ADWIN [11] method as a trigger.

• AUE: The Accuracy Updated Ensemble (AUE) method
proposed in [14].

• LevBag: The Leveraging Bagging method proposed in
[10] using the ADWIN trigger to detect changes.

• OzaASHT: The method proposed in [24] using
Adaptive-Size Hoeffding Trees.

• OzaADWIN: The method proposed in [24] using the
ADWIN trigger.

All tested methods were configured to use Hoeffding
Trees as base learners. This base learner was chosen due
to its fast test/training phases, and due to its online training
ability, which is required in some tested approaches. All
presented results are an average of 30 executions. The
following datasets were used in the experiments:

A. STAGGER Concepts

The STAGGER Concepts is a two class artificial dataset
introduced in [6]. This dataset contains abrupt real concept
drifts and its instances are represented by three discrete
features. We defined tree different concepts as in the original
work [6], plus a fourth concept, with the same boundaries
of the first one, which was generated to simulate a recurring
scenario.

In the experiments, we defined that the concept would
change for every 10 steps, and for each step, 20 samples
were given for training, and 200 were given for testing.
The proposed framework were configured to create a new
classifier for every new supervised batch received (V = 1).

B. SEA Concepts

Developed in [13], the SEA Concepts artificial dataset
contains three randomly generated real features f1, f2 and
f3 in the range [0, 10] and two possible classes y ∈
{positive, negative}, where the boundary that separates the
classes is given by f1+f2 ≤ θ. Concept drifts are introduced
by varying the θ threshold, where the values of θ for each of
the four possible concepts are 8, 9, 7 and 9.5, respectively.
Class noise is inserted by swapping the classes of 10% of
the instances.

The testing procedure employed was the same as in [16],
where for each time step, a supervised batch containing 250
samples is given for training, and another batch containing
250 samples from the same concept is generated for testing.
The concept is changed for each 50 steps, thus generating
a test with 200 steps. We must point out that in [16]
only the training instances contain noise, whilst in out tests
both training and testing instances have noise. We have
considered V = 1.

C. Forest Covertype Dataset

Available at the UCI Repository [25], this dataset defines
the classification task as identifying the forest cover type
for 30 × 30 meters cells. Each sample is described by 10
numerical and 44 categorical attributes. The class attribute,
which belongs to the range [1, 7], identifies the forest cover
type. The dataset is composed of 581,012 samples and was
used as a benchmark in [4], [10], [24].

To evaluate the methods using this dataset we employed
an interleaved batches approach where, following the in-
stances ordering present in the original dataset, at each step
a batch containing 2.500 samples is given for training, and
the subsequent batch of 2.500 samples is given for testing. In
the next step, the previous testing batch is used for training,
and the next batch containing 2.500 samples is given for
testing. The procedure is repeated until all instances in the
dataset are used. Again, in these tests, we considered that
each new supervised batch would be used to generate a new
classifier, thus V = 1 and M = 4.

D. Nebraska Weather Dataset

This dataset refers to the weather data collected by the
U.S. National Oceanic and Atmospheric Administration, in
the Offutt Air Force Base in Bellevue, Nebraska. It has an
extensive range of 50 years, containing 18,159 samples, and
the presence of diverse weather patterns. In this dataset the
class labels are binary, indicating the presence or absence of
rain in each sample [16].

We employed the same configuration as in [16], where
only the eight features with a missing feature rate less or
equal than 15% were used. The remaining missing values
are replaced by the mean of the features in the preceding
and following samples. Also as in [16], a interleaved batches
approach was used in the tests, where each batch contain
30 samples. Due to the small number of supervised sam-
ples given at each step, we defined that for the methods
that builds new classifiers according to the new supervised
batches, a new classifier should be build using 3 accumulated
batches (V = 3).

E. Results and Discussion

Figure 2 contains the average accuracy achieved by the
three best performing methods for each testing batch of each
tested dataset. A summary containing the average accuracies
of the methods when considering all batches of each dataset,
their ranks in each dataset, and their average rank can be
seen in Table I. The best results are shown in bold.

The results show that the Dynse framework using its
default configuration was the best performing method in
the SEA Concepts, Forest Covertype and Nebraska Weather
datasets, and was the second best performing method in the
STAGGER Concepts dataset. When considering the artificial
datasets (Figures 2a and 2b), it is possible to check that the
proposed framework showed a fast recover when the concept

0 10 20 30 40

0.4

0.6

0.8

1

Concept 1 Concept 2 Concept 3 Concept 4 (1)

batch

ac
cu

ra
cy

Dynse K-E92 AUE LevBag

(a) STAGGER Concepts Result

0 50 100 150 200
0.75

0.8

0.85

0.9

Concept 1 Concept 2 Concept 3 Concept 4

batch

ac
cu

ra
cy

Dynse K-E92 OzaADWIN LevBag

(b) SEA Concepts Result

0 50 100 150 200

0.4

0.6

0.8

batch

ac
cu

ra
cy

Dynse K-E92 AUE LevBag

(c) Forest Covertype Result

0 100 200 300 400 500 600

0.6

0.7

0.8

batch

ac
cu

ra
cy

Dynse K-E92 EDDM LevBag

(d) Nebraska Result

Figure 2. Average accuracy achieved in each testing batch for the three best performing methods.

changed, often adapting to the new concept faster than the
methods in the state-of-the-art. The average rank in Table
I shows that, on average, the proposed framework was the
best performing method when considering all the tests.

It is worth reminding that all results in Figure 2 and
in Table I were achieved using the default configuration
of the Dynse framework. We believe that by a fine tuning
(using cross-validation on the available supervised data, for
instance) of the Dynse parameters better results may be
achieved. For instance, the Dynse framework can be tuned
according to the environment properties by selecting the
most suitable CE and the size (M) of the accuracy estimation
window.

To illustrate this, consider the plot in Figure 3, which con-
tains a test using the default configuration of the proposed
method, and a configuration that uses a accuracy estimation

window size equals to 1 (the remainder of the configuration
equals to the default one) in the SEA Concepts dataset. As
one can observe, the simple tuning on the accuracy window
size may generate better results in concept changing areas
(M = 1) or in stable areas (M = 4).

We also paid special attention in the Leveraging Bagging
method, since it achieved good results in most tests. The
result in the SEA Concepts and in the Forest Covertype
datasets (Figures 2b and 2c) indicates that this method may
lead to a good performance, specially in stable regions.
Mostly probably this method is getting a benefit from a more
diverse pool of classifiers generated by the bagging method
implemented by its authors [10].

Finally, we should state that these results are just a prove
of concept of our proposed approach, since some methods
in the state-of-the-art, like the Leveraging Bagging method,

Table I
SUMMARY OF THE EXPERIMENTAL RESULTS BASED ON 30 REPLICATIONS. METHOD AVERAGE ACCURACY, STANDARD DEVIATION AND RANK

POSITION FOR EACH DATASET, PLUS THE GENERAL AVERAGE RANK OF EACH METHOD.

Method STAGGER Concepts SEA Concepts Forest Covertype Nebraska Weather Average
RankAverage(%) Rank Average(%) Rank Average(%) Rank Average(%) Rank

Dynse K-E92 90.8 ± 16.9 2 87.7 ± 1.3(2) 1 80.5 ± 7.6 1 77.8 ± 1.2 1 1.25
DDM 70.0 ± 8.1 6 86.1 ± 2.5 5 65.7 ± 9.9 7 74.7 ± 1.3 4 5.5
EDDM 72.5 ± 9.7 5 84.3 ± 4.4 7 48.3 ± 6,7 8 74.7 ± 2.7 3 5.75
HAT 67.0 ± 19.8 7 86.1 ± 2.4 4 74.7 ± 7.6 6 72.3 ± 2.2 8 6.25
AUE 92.8 ± 10.9 1 84.2 ± 2.7 8 77.8 ± 8.1 3 73.6 ± 0.7 5 4.25
LevBag 82.1 ± 20.0 3 87.7 ± 2.2 2 80.4 ± 8.8 2 77.3 ± 1.4 2 2.25
OzaASHT 67.0 ± 19.5 8 85.3 ± 2.5 6 76.9 ± 7.8 4 73.5 ± 1.6 6 6.0
OzaADWIN 77.6 ± 19.9 4 86.1 ± 2.2 3 76.6 ± 8.5 5 73.4 ± 1.5 7 4.75
Learn++.NSE [16] (1) - - 96.6 ± 0.2(3) - - - 75.9 ± 0.7(4) - -

1 The results refers to the experiments in [16], where a Naive Bayes were used as the base classifier.
2 There is a tie with the LevBag method when considering the accuracy. Nevertheless the LevBag has a higher standard deviation.
3 The authors generated the testing batches without noise.
4 When using a Naive Bayes as the base classifier, as in [16], we achieved a accuracy of 77.9%.

achieved similar results to our framework, and we do not
consider the executed tests are enough to claim that the
default configuration of the Dynse should be considered a
better alternative in every concept drift scenario. Instead,
we consider these positive results as a good indication that
our framework did benefit from the dynamic selection of
classifiers approach to deal with concept drifts, thus giving
some important guidelines for our future work described in
Section V.

0 50 100 150 200

0.8

0.85

0.9

Concept 1 Concept 2 Concept 3 Concept 4

batch

ac
cu

ra
cy

M=1 M=4

Figure 3. The Dynse framework using its default configuration (M =
4× V = 4) and using M = V = 1 in the SEA Concepts dataset.

V. CONCLUSION

In this paper we presented the Dynse framework, which
is a new local accuracy based dynamic classifier selection
method designed to deal with the concept drift phenomenon.
One of the main features of our framework is its flexibility
to handle a variety of problems, since the only assumption
made by the method is that some supervised batches will
be available over time for training new classifiers and for
estimating the classifiers competence.

Our tests showed that the Dynse framework is capable
of keeping a good performance in a variety of datasets,
outperforming the average accuracy of the state-of-the-art
methods in three of the four tested datasets, and showing
the best average rank when considering all tested datasets.
A particular test in the SEA Concepts dataset showed
that by adjusting just the accuracy estimation window size
parameter of our framework it is possible to achieve better
results in stable or concept changing areas.

In this work we also proposed a modification in the
original KNORA-E algorithm to introduce a slack variable l
to handle noisy environments. This modification provided
good results in our tests when applying the KNORA-E
as a classification engine for the Dynse framework, under
the presence of both noisy data and concept drifts (SEA
Concepts tests).

As future work we intend to test the proposed framework
using different classification engines in order to check the
impact of different dynamic selection of classifiers methods
to deal with concept drift scenarios. Tests with differ-
ent parameter configurations and strategies for generating
classifiers for the pool will also contribute with a better
understanding of the dynamic selection of classifiers under
non-static environments.

The results achieved by the Leveraging Bagging method
indicates that we could better benefit from the pool of
classifiers by increasing its diversity through the use of some
method like the Bagging or Boosting. Or future works will
include this approach, since it could be specially beneficial
in the beginning of the test or when the concept change,
when the number of classifiers in the pool from the current
concept is relatively small.

We also plan to evaluate different classifier pruning strate-
gies in order to keep the pool from increasing its number
of classifiers indefinitely. Finally, it is necessary to test the
Dynse framework with datasets containing different concept
drift scenarios, including gradual and virtual concept drifts.

REFERENCES

[1] T. Hoens, R. Polikar, and N. Chawla, “Learning from stream-
ing data with concept drift and imbalance: an overview,”
Progress in Artificial Intelligence, vol. 1, no. 1, pp. 89–101,
2012.

[2] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Comput. Surv., vol. 46, no. 4, pp. 1 – 37, Mar. 2014.

[3] L. Minku, A. White, and X. Yao, “The impact of diversity
on online ensemble learning in the presence of concept drift,”
Knowledge and Data Engin., IEEE Trans. on, vol. 22, no. 5,
pp. 730–742, May 2010.

[4] B. Krawczyk and M. Woniak, “One-class classifiers with
incremental learning and forgetting for data streams with
concept drift,” Soft Computing, pp. 1–14, 2014.

[5] G. Widmer and M. Kubat, “Learning in the presence of
concept drift and hidden contexts,” Machine Learn., vol. 23,
no. 1, pp. 69–101, 1996.

[6] J. Schlimmer and R. Granger, Jr., “Incremental learning from
noisy data,” Machine Learning, vol. 1, no. 3, pp. 317–354,
1986.

[7] D. Martı́nez-Rego, B. Prez-Snchez, O. Fontenla-Romero, and
A. Alonso-Betanzos, “A robust incremental learning method
for non-stationary environments,” Neurocomputing, vol. 74,
no. 11, pp. 1800 – 1808, 2011.

[8] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning
with drift detection,” in Advances in Artificial Intelligence
SBIA 2004, ser. Lecture Notes in Computer Science, A. Baz-
zan and S. Labidi, Eds. Springer Berlin Heidelberg, 2004,
vol. 3171, pp. 286–295.

[9] A. Bifet and R. Gavaldà, “Adaptive learning from evolving
data streams,” in Advances in Intelligent Data Analysis VIII,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5772, pp. 249–260.

[10] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging
for evolving data streams,” in Machine Learning and Knowl-
edge Discovery in Databases, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, vol. 6321, pp.
135–150.

[11] A. Bifet and R. Gavaldà, “Learning from time-changing
data with adaptive windowing,” in In SIAM International
Conference on Data Mining, 2007.

[12] C. Salperwyck, M. Boulle, and V. Lemaire, “Concept drift de-
tection using supervised bivariate grids,” in Neural Networks
(IJCNN), 2015 International Joint Conference on, July 2015,
pp. 1–9.

[13] W. N. Street and Y. Kim, “A streaming ensemble algorithm
(sea) for large-scale classification,” in Proceedings of the Sev-

enth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM Press, 2001, pp. 377–382.

[14] D. Brzeziński and J. Stefanowski, “Accuracy updated ensem-
ble for data streams with concept drift,” in Hybrid Artificial
Intelligent Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, vol. 6679, pp. 155–163.

[15] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Pro-
ceedings of the Ninth ACM SIGKDD International Conf. on
nowledge Discovery and Data Mining, ser. KDD ’03. New
York, NY, USA: ACM, 2003, pp. 226–235.

[16] R. Elwell and R. Polikar, “Incremental learning of concept

drift in nonstationary environments,” Neural Networks, IEEE
Transactions on, vol. 22, no. 10, pp. 1517–1531, Oct 2011.

[17] K. Woods, J. Kegelmeyer, W.P., and K. Bowyer, “Combi-
nation of multiple classifiers using local accuracy estimates,”
Pattern Analysis and Machine Intel., IEEE Trans. on, vol. 19,
no. 4, pp. 405–410, Apr. 1997.

[18] A. Ko H. R., R. Sabourin, and A. S. Britto, Jr., “From dynamic
classifier selection to dynamic ensemble selection,” Pattern
Recognition, vol. 41, no. 5, pp. 1718 – 1731, 2008.

[19] A. S. Britto, Jr., R. Sabourin, and L. E. Oliveira, “Dynamic
selection of classifiers - A comprehensive review,” Pattern
Recognition, vol. 47, no. 11, pp. 3665 – 3680, 2014.

[20] L. Didaci, G. Giacinto, F. Roli, and G. L. Marcialis, “A study
on the performances of dynamic classifier selection based
on local accuracy estimation,” Pattern Recognition, vol. 38,
no. 11, pp. 2188 – 2191, 2005.

[21] S. Grossberg, “Nonlinear neural networks: Principles, mecha-
nisms, and architectures,” Neural Networks, vol. 1, no. 1, pp.
17 – 61, 1988.

[22] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,
T. Jansen, and T. Seidl, “Moa: Massive online analysis,
a framework for stream classification and clustering,” in
Journal of Machine Learning Research (JMLR) Workshop and
Conference Proceedings, Volume 11. Journal of Machine
Learning Research, 2010, pp. 44–50.

[23] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet,
R. Gavalda, and R. Morales-Bueno, “Early drift detection
method,” in Fourth international workshop on knowledge
discovery from data streams, vol. 6, 2006, pp. 77–86.

[24] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and
R. Gavaldà, “New ensemble methods for evolving data
streams,” in Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
ser. KDD ’09. New York, NY, USA: ACM, 2009, pp. 139–
148.

[25] M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

