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a b s t r a c t

Dynamic Regressor Selection (DRS) techniques aim to select the most competent regressors
from an ensemble per test pattern. So, for each test pattern, only a subset of the most com-
petent regressors are used to estimate its target value. Hence, the central issue in DRS tech-
niques is how to define the competence of the regressors which is usually defined using a
single measure, such as the performance of the regressor in the local region of the feature
space around the test pattern, called the region of competence. However, no single mea-
sure is the best for any task. In this work, we present the Meta INtEgration (MINE) frame-
work that selects and combines the most competent regressors from an ensemble during
the evaluation of a given test pattern. MINE uses different measures extracted from the
region of competence as a criterion for the selection and combination of the regressors.
In contrast to traditional combination schemes where all the regressors are weighted to
produce the final answer, MINE selects the best regressors per pattern on-the-fly and com-
bines them to predict the value of the test pattern. Comprehensive experiments on 20
regression datasets show that MINE compares favorably to literature techniques.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Ensemble learning refers to techniques that generate different models, with some degree of diversity, which are com-
bined to make a prediction, either in classification or regression problems. The advantage of ensembles concerning single
models has been reported in terms of increased robustness and accuracy for both classification [1–3], and regression prob-
lems [4–6].

Ensemble-based systems contain three main modules [7]: (1) Generation, (2) Selection, and (3) Combination. In the gen-
eration module, a training set is used to create the ensemble. The ensemble is said homogeneous when a single learning
algorithm is used to train all the models; otherwise, it is called heterogeneous. In the second module, only one model or
a subset of the ensemble is selected. Finally, when a subset of the ensemble is selected, the models are combined to estimate
the target value of a given test pattern. Over the last two decades, researchers have been dedicating efforts to improve the
quality of the ensemble [5,8], and also searching for alternatives to better select and combine the models [9–11].

Regarding the selection module, it can be either static or dynamic. In the static approach, the selection is performed
before the evaluation of the test pattern using the information extracted from the training [12] or validation set [13]. So,
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the selected models are used to estimate the target value of all test patterns. In the dynamic approach, a different subset of
the ensemble is selected for each new test pattern. In dynamic selection techniques, each model is expected to be an expert
in a specific local region of the feature space that is known as region of competence. So, for each test pattern, the most com-
petent models are selected in the region of competence where the test pattern is located. Recent works have shown that
dynamic selection techniques outperform static selection [14,15,7].

When the selected subset of the ensemble contains more than one model, they should be combined. The combination can
be performed using a simple rule such as the mean or the weighted mean. In general, the weighted mean presents better
precision than the mean [11], and its weight can be defined statically or dynamically. The former uses the same weight vec-
tor for any test pattern, while in the latter, the weights are defined according to the performance of the models in the region
of the feature space where the test pattern is located [16]. On using static, i.e., equal weights for the whole test set, it is not
adequate for some test patterns. This disadvantage of static weighting is the fundamental argument for using dynamic (non-
constant) weights [17,18].

The crucial issue in dynamic selection systems is to define the criterion to measure the competence of the models. It is
expected that the better the competence of the dynamically selected models, the higher the precision of the whole system.
An usual manner to measure the competence consists in calculating the accumulated error of a given model in the neigh-
borhood of the test pattern [19,20]. However, the literature on dynamic classifier selection (DCS) shows that using only
the accumulated error in the region of competence is not enough to correctly calculate the competence of the classifiers
[21–23].

Dynamic regression selection (DRS) algorithms consist of, given a query pattern and an ensemble of regressors, selecting
the best regressors to predict the query pattern. This selection is commonly performed by calculating the error of each
regressor in the region of competence and selecting the regressors that attain the smallest errors. DRS approaches found
in the literature commonly use only one error measure to estimate the competence of the regressors in the region of com-
petence, as in [19,20]. Moura et al. [24] evaluated eight different measures of competence and concluded that none of them
has superior performance for different tasks. In other words, we argue that selecting one different measure per task or com-
bining all the measures may increase the precision of DRS systems. DRS can benefit from the combination of several mea-
sures instead of relying on a single one, in the task to select/combine the regressors.

Thus, we devised an approach that combines competence measure aiming at improving the DRS system precision. To val-
idate such an idea, we introduce the Meta INtEgration (MINE) framework for DRS. In MINE, for each test pattern, different
measures are extracted from the region of competence. These measures are dynamically weighted and used as a criterion to
select the best regressors for a specific pattern. Instead of having only one set of weights for all the patterns, MINE defines a
different set of weights on-the-fly per pattern. Such a strategy is particularly interesting because it gives different impor-
tance to each measure; moreover, it is known that there is not a single best measure for all the cases.

The contribution of this work is two-fold. Firstly, we proposed a DRS framework that can operate in three different sce-
narios: (i) the selection of a single regressor given a test pattern (MINE-Selection (MINE-S)); (ii) all the regressors in the
ensemble are weighted and combined (MINE-Weighting (MINE-W)); and, (iii) a subset of the ensemble is dynamically
selected per test pattern (MINE-Weighting with Selection (MINE-WS)). Secondly, we present a robust study that constructs
homogeneous ensembles where the base learning algorithm is selected per regression problem.

To evaluate the performance of the MINE framework and show the relevance of the measures adopted with homogeneous
ensembles, we carried out a set of extensive experiments on 20 regression problems. We compare the MINE framework
against state-of-the-art DRS techniques, and individual regressor trained with the whole training set. Our experimental
results show that the adopted measures are useful for the DRS with homogeneous ensembles and validate our proposal that
better results are achieved when using multiple measures.

This paper is organized as follows: Section 2 presents the related works. Section 3 describes the proposed framework for
DRS. Section 4 shows the methodology and experiments used to evaluate the proposed framework. Section 5 presents the
conclusions about the research.
2. Related works

This section reviews the literature about selection and combination of regressors. Table 1 presents the related works
focusing on three aspects: (i) selection strategy that indicates whether the technique is static or dynamic; (ii) ensemble type
that indicates whether the ensemble is homogeneous or heterogeneous; and (iii) selection criterion that indicates what is
the measure used as the criterion to define the competence of the regressors from the ensemble. The value ‘‘error” in the
column ‘‘Selection Criterion” indicates that an error measure is used as a criterion to select the regressors.

Perrone et al. [11] defined two ways to combine the models from an ensemble: Basic Ensemble Method (BEM), and Gen-
eralized Ensemble Method (GEM). In the BEM, the combination of the models is performed using the mean among the
regressors, where all the regressors have the same importance. In the GEM, the models are combined using the weighted
mean where the weights are inversely proportional to the errors generated in the training set or the validation set. These
weights are constants; it means that the weights do not change during the evaluation of query patterns. Experiments were
carried out with homogeneous ensembles of Multilayer Perceptrons, and the GEM performed similar or better than an indi-
vidual regressor or BEM.



Table 1
Related works.

Method Static/Dynamic Ensemble Type Selection Criterion

Perrone et al. [11] Static homogeneous error
Partalas et al. [13] Static homogeneous error
Rooney et al. [19] Dynamic homogeneous error
Moreira et al. [20] Dynamic heterogeneous error
Rooney et al. [25] Dynamic homogeneous error
Sergio et al. [26] Dynamic heterogeneous error
Moura et al. [24] Dynamic homogeneous error
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Partalas et al. [13] presented an algorithm to select the best subset of regressors from an ensemble. Their algorithm uses
greedy search (forward selection and backward elimination) to select the best subset of the regressors based on the perfor-
mance in a validation set. The selection is static, and once the subset of the ensemble is defined, it will be the same for all test
patterns. Ensembles are generated using Neural Networks and Support Vector Machine. The Forward Selection algorithms
achieved the best performance.

Rooney et al. [19] proposed three DRS algorithms that use as selection criterion the accumulated error in the region of
competence. Two different learning algorithms were used: linear regression and 5-NN (5 nearest neighbors). For each learn-
ing algorithm, they generated homogeneous ensembles using Random Subspace [1]. It follows that dynamic selection tech-
niques have superior performance when compared to a single individual regressor. Among the DRS techniques, the results
show the DW algorithm with better performance than the DWS. Later, Moreira et al. [20] used these three DRS algorithms
with the difference that the errors are weighted by the distance between the test pattern and its neighbors. This work is the
latest on dynamic selection and combination of regressors, and it uses the DRS algorithms with homogeneous ensembles.
Moreira et al. [20,27] describe the three algorithms as follows:

� Dynamic Selection (DS) – it selects the regressor with the lowest accumulated error in the region of competence. The
errors are weighted by the distance between the neighborhood patterns and the test pattern. Only a single regressor is
selected and the combination is not required. The estimation of the test pattern is the value returned by the selected
regressor.

� Dynamic Weighting (DW) – it combines all the regressors of the ensemble using the weighted mean. For each test pattern
xj, its region of competence W is calculated; W is composed of K patterns. For each pattern in W, a weight is calculated
using Eq. (1):
dk ¼
1

distkPK
j¼1

1
distj

� � ð1Þ

where distk is the distance between a pattern tk 2 W and the test pattern xj.

The vector fd1; d2; . . . ; dKg is used to calculate the weight ai of the regressor f̂ i, using Eq. (2):
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where N is the ensemble size, k represents the index of the neighbor, and sqek;i is the squared error of the regressor i cal-
culated using the pattern tk 2 W.

� Dynamic Weighting with Selection (DWS) – it combines a subset of the regressors. The regressors with the accumulated
error in the upper half of the error interval Ei > ðEmax � EminÞ=2 are discarded, where Emax is the largest accumulated error
of any regressor and Emin is the lowest accumulated error of any regressor. The measure to calculate the performance of
the regressors from the ensemble is the same than the DW algorithm and the remaining regressors are combined using
the same strategy of the DW.

Moreira et al. [20] presented a different experimental protocol when compared to [19]. This work uses heterogeneous
ensembles with size four and tests variations in the region of competence’s size. The conclusion is that DW and DWS per-
formed better than the DS algorithm. Also, this work shows that the size of the region of competence is problem-dependent.

The wMetaComb [25] is a technique for regression problems that fuses two combination techniques: Stacking [28] and
the DWS algorithm. In the wMetaComb, the estimated value of the test pattern is the weighted mean of the predictions of
two combination techniques. The weights to combine the techniques are calculated based on the errors during the training
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phase. wMetaCombmixes two combination techniques. The DWS could be exchanged for DS ou DW. The results showed that
the technique has slightly superior performance than the two combination techniques when performed individually.

In Sergio et al. [26], the proposed technique, for each test pattern, selects the best combination of models, instead of indi-
vidual ones. When a test pattern is evaluated, the region of competence is found, and the combiner (Mean, Median, or Soft-
max [29]) with the lowest error rate in the region is chosen to evaluate the test pattern. The experiments were carried out
using chaotic time series forecasting and show that the dynamic selection of the combiners performs better than each of
them individually. Also, the proposed technique performs better than each model of the ensemble.

Finally, Moura et al. [24] compared eight competence measures using the DS, DW, and DWS algorithms presented by
Moreira et al. [20,27]. Among the measures, seven of them were adapted for the first time to this task. Their homogeneous
ensemble was composed of a hundredmodels trained with the CART [30]. This study showed that none of the eight measures
obtains a superior performance for all datasets used in the experiments. They concluded that the selection of the best mea-
sure should be performed in a problem-dependent fashion. They also highlight that instead of choosing the best measure, an
alternative is to combine the measures to obtain better performance rates.

It is important to notice that the technical literature uses only the error either as a selection criterion or as the measure to
calculate the weights for the combination of the regressors. In the static selection, the error is calculated using the training
set or the validation set. In the dynamic selection, the error calculated in the region of competence is used as a selection cri-
terion. The proposed framework presents an approach that uses not only the error but the composition of other measures as
a criterion for the DRS. In addition, the new framework is not limited to the use of a specific learning algorithm for the gen-
eration of homogeneous ensembles, but it chooses a suitable one for each regression problem.
3. MINE framework

The Meta INtEgration (MINE) framework architecture (Fig. 1) is divided into four phases: Learning Algorithm Selection,
Generation, Optimization, and Generalization. In the first phase, the best learning algorithm is selected for the task under
Fig. 1. Architecture of MINE framework. In Learning Algorithm Selection Phase, T and V are the sets of Training and Validation, respectively.
F0 ¼ ff̂ 1; f̂ 2; :::; f̂ Mg is a heterogeneous set of regressors generated in the first phase. In Generation Phase, T 0 is the training set used to train the homogeneous
ensemble F ¼ ff̂ 1; f̂ 2; . . . ; f̂ Ng.W ¼ fw1;w2; . . . ;wPg is the vector of weights resulting from the Optimization Phase. In the Generalization Phase, X is the test
set, xj is a pattern from test set, and f̂ ensðxjÞ is the ensemble estimative for the pattern xj .
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analysis and a homogeneous ensemble using this learning algorithm is generated in the second phase. After, some compe-
tence measures are extracted and the Optimization phase calculates a weight for each measure; the more important the
measure, the greater your weight. The last phase selects a subset of the ensemble to predict the value of the query pattern.
These four phases are detailed in the following sections.
3.1. Learning algorithm selection

This phase aims at selecting the learning algorithm (among M) given the training set T , and the validation set V. So, M
regressors F0 ¼ ff̂ 1; f̂ 2; . . . ; f̂ Mg are trained, each one using a distinct learning algorithm (Training of Regressors module).
After, the performance of the M regressors is evaluated using the validation set V, and the base learning algorithm that min-
imizes the MSE on V is selected (Selection the Base Learning Algorithm module). This learning algorithm is used to generate
the homogeneous ensemble for the task under analysis in the next phase.
3.2. Generation

This phase generates a homogeneous ensemble F containing N regressors. The learning algorithm selected in previous
phase is employed to train all the regressors using distinct sets generated with the Bagging (Bootstrap AGGegatING) algo-
rithm [31].
3.3. Optimization

Dynamic regressor selection systems use the error of the predictions in the region of competence as a criterion to dynam-
ically select the best regressors. Moura et al. [24] evaluated eight different measures and showed that none of them is the
ideal choice when used isolated and also that the best measure depends on the task. As stated before, we advocate that the
combination of different measures is a better alternative than using only one. So, this phase aims at generating a vector of
weightsW ¼ fw1;w2; . . . ;wPg that gives different importance for each measuremi; i ¼ f1;2; . . . ; Pg, and it is composed of two
modules: Extraction of Measures, and Optimization. In the next section, eight measures are defined, so, P ¼ 8.
3.3.1. Extraction of measures
A total of eight measures fm1;m2; . . . ;m8g are extracted from the region of competence and they correspond to different

criteria to analyze the behavior of each regressor. Measure m1 captures the diversity among the regressors f̂ n 2 F using the
variance of their estimations. On the other hand, m2;m3, and m7 capture different points of view of the prediction error. The
dispersion and centrality of the error in the region of competence are calculated usingm4 andm5 respectively. The similarity
between the estimation of a pattern and the observed values of its nearest neighbors is calculated using measure m6. And
finally, m8 measures the error of the nearest neighbor.

In the next equations, f ðtkÞ refers to the observed value of the neighborhood pattern tk; f̂ nðtkÞ is the estimated value of the

pattern tk given by the regressor f̂ n, and dk is the inverse of the normalized distance in the interval ½0;1�. So, the smaller the
distance the greater the value of dk, according to Eq. (1).

In the Eq. (1), fdist1; dist2; . . . ; distKg is a vector where each element is a distance measure between the neighbor pattern
from the training set T 0 and the training pattern ti, and K is the neighborhood size. The measures are extracted from the
region of competence W ¼ ft1; t2; . . . ; tKg for each pattern ti, where tk is a pattern from the same training set
T 0;8k 2 f1;2; . . . ;Kg.

The eight measures calculated for each regressor f̂ n are described below.

� m1 – Variance: the variance of the neighbors estimated values. The variance is calculated for each regressor using the esti-
mated values for the patterns in the region of competence, according to Eq. (3):
m1;n ¼ Varðf̂ nðt1Þ; f̂ nðt2Þ; . . . ; f̂ nðtKÞÞ ð3Þ

This measure is inspired in the work of Tresp et al. [32], whose variance of the estimated values is used as weight in the
static combination of artificial neural networks.

� m2 – Sum Absolute Error: the sum of the absolute errors is calculated in the region of competence, weighted by dk, accord-
ing to Eq. (4):
m2;n ¼
XK
k¼1

f ðtkÞ � f̂ nðtkÞ
���

���� dk ð4Þ
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� m3 – Sum Squared Error: the sum of the squared errors is calculated using the inverse of the distances dk as weights,
according to Eq. (5):

m3;n ¼
XK
k¼1

ðf ðtkÞ � f̂ nðtkÞÞ
2
� dk ð5Þ

� m4 – Minimum Squared Error: this measure is the lowest value of the errors, weighted by the distance dk. The measure
m4 is computed using Eq. (6):

m4;n ¼ min
16k6K

fðf ðtkÞ � f̂ nðtkÞÞ
2
� dkg ð6Þ

� m5 – Maximum Squared Error: this measure is the maximum value of the errors, weighted by the distance dk. The mea-
sure m5 is computed using Eq. (7):

m5;n ¼ max
16k6K

fðf ðtkÞ � f̂ nðtkÞÞ
2
� dkg ð7Þ

Considering thatm4 andm5 define an interval, these measures present mean and variance, it means that, the interval con-
tains information about implicit measures of dispersion (error variance) and centrality (error mean) of the squared error
in the region of competence.

� m6 – Neighbor’s Similarity: the sum of the differences between the estimated value of the validation pattern from valida-
tion set T 0 and the observed values of each neighborhood pattern, weighted by the inverse of the distance. The measure
m6 is computed using Eq. (8):
m6;n ¼
XK
k¼1

ðf ðtkÞ � f̂ nðtiÞÞ
2
� dk ð8Þ

where f̂ nðtiÞ is the estimated value of the regressor f̂ n for ti. ti is the pattern being tested in the leave-one-out process.
The goal of the measure m6 is to find the degree of similarity between the estimation of the pattern ti 2 T 0 and the
observed values of the nearest neighbors ft1; t2; . . . ; tKg. This is the only measure that uses the estimated value for the

test pattern (f̂ nðtiÞ). So far as we know, this measure is unprecedented and is defined by the authors of this work.
� m7 – Root Sum Squared Error: the root of sum squared errors in the region of competence, with the errors weighted by dk.
The measure m7 is computed using Eq. (9):
m7;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK
k¼1

ðf ðtkÞ � f̂ nðtkÞÞ
2
� dk

vuut ð9Þ

Root squared error is more stable and less sensitive to the difference between the maximum and the minimum
errors, while squared error is very sensitive to extreme error values. The measures m3 and m7 present different points
of view from the error calculated in the region of competence. These two measures have a high correlation, but using
them together allows a better balance in the weights of the combination [33]. Also, m3 and m7 produce the same
result when a single regressor is chosen to estimate a test pattern, but different results in the combination of the
regressors [24].

� m8 – Closest Squared Error: the error obtained by the regressor only on the nearest neighbor. The measurem8 is computed
using Eq. (10):
m8;n ¼ ðf ðt1Þ � f̂ nðt1ÞÞ
2

ð10Þ

For each pair (pattern ti 2 T 0, regressor f̂ n), the eight measures are extracted from the region of competence of the pattern
ti and produces a vector Mi;n ¼ fm1;n;m2;n; . . . ;m8;ng where each element is the value of one measure.

3.3.2. Optimization
This module uses a Genetic Algorithm (GA) [34] to obtain one weight per measure using the vectors Mi;n described in the

last section. Algorithm 1 shows the pseudo-code of the optimization process whose output is the vector
W ¼ fw1;w2; . . . ;wPg that minimizes the Mean Squared Error (MSE) of the training set T 0.
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Algorithm 1 Optimization Process

Input: Ensemble F ; Training set T 0; Neighborhood size K; Population size L
Output: Wbest: Best Individual
1: Pop ¼ InitialPopulationðLÞ;
2: repeat
3: MSEPop ¼ £; {set with the MSE of all individuals}
4: for each individual fw1;w2; . . . ;wPg in Pop do
5: SE ¼ 0
6: for each pattern ti in T 0 do
7: T 0 = T 0 - ti Leave-one-out
8: Find the region of competence W of ti using T 0

9: for each f̂ n in F do
10: Calculate the measures fm1;n;m2;n; . . . ;mP;ng using W

11: an ¼
PP

p¼1wp �mp;n

12: end for

13: f̂ ensðtiÞ ¼ DynamicSelectionðF ;A; tiÞ

14: SE ¼ SEþ ðf ðtiÞ � f̂ ensðtiÞÞ
2

15: end for
16: MSE ¼ SE= j T 0 j
17: MSEPop ¼ MSEPop [MSE
18: end for
19: BestInds ¼ SaveBestIndsElitismðMSEPop; PopÞ
20: Pop ¼ GenerateOffspringðÞ [ BestInds
21: until MSE ¼ 0 or reach maximum iteration
22: Wbest ¼ BestIndðMSEPop; PopÞ
23: return Wbest

In line 1, the initial population is generated. The population is composed of L individuals, and each is a vector of weights
W whose size is given by the number of measures. In this way, each individual is represented by a set of P genes and each
gene is a real value wp 2 IR;8p 2 f1;2; . . . ; Pg.

From line 4 to 18, the fitness function of the genetic algorithm is calculated. For each pattern ti 2 T 0, the region of com-

petence W is defined (line 8) and the measures are extracted for each regressor f̂ n 2 F (lines 9 and 10). Line 11 shows the
weighted combination of the measures to compute a new vector A ¼ fa1;a2; . . . ;aNg, where N is the number of regressors
from the ensemble.

Dynamic Selection uses the vector A to estimate the value f̂ ensðtiÞ for the pattern ti (line 13) and the squared error is com-

puted in line 14. The estimated value f̂ ensðtiÞ can be the result of one of the following DRS techniques: (i) MINE-S – dynamic
selection of a single regressor from the ensemble; (ii) MINE-W – combination of all the regressors from the ensemble; or (iii)
MINE-WS – dynamic selection and combination of a subset of regressors from the ensemble. These DRS techniques are
explained in Section 3.4. The framework works for each DRS technique separately. In other words, the optimization process
is technique-dependent.

The MSE is computed in line 16, and this is the fitness function (Eq. 11) of the optimization procedure.
fitðindÞ ¼ 1
j T 0 j

XjT 0 j

i¼1

ðf ðtiÞ � f̂ ensðtiÞÞ
2

ð11Þ
where ind is an individual that belongs to Pop; ti is a pattern from the training set T 0; f ðtiÞ is the observed value of the pattern
ti, and j T 0 j is the number of instances in the training set T 0.

The MSE of all individuals are stored into the set MSEPop, and after to finish all the individuals, the best ones (lower MSE),
are selected (line 19) to compose the new offspring (line 20). At the end of the algorithm, the best individual (lowest MSE) is
selected and stored into Wbest (line 22).

In the proposed framework, any optimization algorithm can be employed. For the sake of simplicity, we adopt genetic
algorithm. Its parameters, mutation, crossover, and elitism, are discussed in Section 4.2. Besides, the weights per measure
generated by this optimisation procedure are evaluated in Section 4.8.
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3.4. Generalization

In this phase, the estimated value f̂ ensðxjÞ is calculated for each test pattern xj. This phase consists of two modules: Extrac-
tion of Measures and Dynamic Selection. The Extraction of Measures module receives as input the ensemble F , the test set X
and the training set T 0. This module works similarly as described in Section 3.3.1, where for each test pattern xj 2 X , the

region of competence is defined using T 0 and the measures are extracted for each regressor f̂ n 2 F . The Dynamic Selection
module receives as input the measures extracted in the previous module, the ensemble F , the test set X , and the weights W
calculated in the Optimization Phase. This module is responsible for calculating the competence of the regressors using as

criterion the combination of the measures. After the combination of the measures, f̂ ensðxjÞ is computed as the final estimation
for test pattern xj.

The Dynamic Selection module contains two submodules: Selection and Combination. The first one is responsible to
select one or more regressors from the ensemble per test pattern. If more than one regressor is selected, the Combination
submodule is performed. The Combination submodule can also combine all the regressors directly, without executing the
Selection submodule.

In this work, three ways of using the MINE framework are proposed: (i) MINE-S – dynamic selection of a single regressor
from the ensemble; (ii) MINE-W – combination of all the regressors from the ensemble; and (iii) MINE-WS – dynamic selec-
tion and combination of a subset of regressors from the ensemble.

3.4.1. Dynamic selection
This module aims at selecting the best regressor(s) per test pattern xj from the ensemble of regressors F given the vector

of weightsW calculated in the Optimization Phase. If more than one regressor are selected, they should be combined to pro-
duce the estimated value of the test pattern.

The selection process is based on the competence of each regressor f̂ n in the estimation of the value of xj. The competence

of f̂ n is calculated using an (Eq. 12) that multiplies each measure mp;n by its respective weight wp 2 W. It is important to

remember that each vector of measures Mj;n ¼ fm1;n;m2;n; . . . ;mP;ng is calculated using the regressor f̂ n and the region of
competence of the test pattern xj; so, this vector is regressor-dependent.
an ¼
XP

p¼1

wp �mp;n ð12Þ
where mp;n is the measure p calculated for the regressor f̂ n in the region of competence, wp is the weight of the measure p in

the vector W, and an is the result of the measures combination for each regressor f̂ n from the ensemble F .
After the evaluation of the competence of each regressor, we have a vector A that is calculated dynamically using the

region of competence, and is responsible to select and combine the regressors. Depending on how the regressors are selected
using A, we propose three techniques of DRS using the MINE framework: MINE-S, MINE-W, and MINE-WS that are described
below. These variations are similar to the ones in [20], but they use a different measure to calculate the weights to combine
the regressors.

Using the MINE framework, one of the three proposed techniques can be used during the execution of the Optimization
and Generalization phases. In addition to the proposed techniques, MINE framework can be modified to meet another strat-
egy not foreseen in this work.

3.4.1.1. MINE-S. Somemeasures (mp;n) capture different points of view of the error calculated in the region of competence per

regressor f̂ n. So, it is correct to say that the lower the weighted sum of these measures given by an, the more competent is the

regressor f̂ n. Thus, MINE-Selection selects the regressor that obtains the lowest value of an 2 A, for each test pattern xj 2 X .
The regressor index is selected using Eq. (13):
index ¼ argmin
16n6N

ðfa1;a2; . . . ;aNgÞ ð13Þ
and the estimated value for the test pattern is calculated using Eq. (14):
f̂ ensðxjÞ ¼ f̂ indexðxjÞ ð14Þ
where f̂ indexðxjÞ is the estimated value for the test pattern xj. Algorithm 2 presents the pseudo-code of the MINE-S.

3.4.1.2. MINE-W. MINE-Weighting combines all the regressors from the ensemble F using the vectorA ¼ fa1;a2; . . . ;aNg. For
each test pattern, the estimated value is the weighted mean of the regressors estimates. The values an 2 A are normalized
using Eq. (15):
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~an ¼
1
anPN
n¼1

1
an

: ð15Þ
So, the estimated value for the test pattern xj is computed using Eq. (16):
f̂ ensðxjÞ ¼
XN
n¼1

~an � f̂ nðxjÞ: ð16Þ
Algorithm 3 presents the pseudo-code of the MINE-W.

Algorithm 2 Selecting using MINE-S

Input: Ensemble F ; Training set T 0; Test set X; Vector of Weights W; Neighborhood size K
Output: MSE: Mean Squared Error
1: SE ¼ 0
2: for each test pattern xj in X do
3: Find the region of competence W of xj using T 0

4: for each f̂ n in F do
5: Calculate the measures fm1;n;m2;n; . . . ;mP;ng using W

6: an ¼
PP

p¼1wp �mp;n

7: end for
8: index ¼ argmin16n6Nðfa1;a2; . . . ;aNgÞ
9: f̂ ensðxjÞ ¼ f̂ indexðxjÞ

10: SE ¼ SEþ ðf ðxjÞ � f̂ ensðxjÞÞ
2

11: end for
12: MSE ¼ SE= j X j
13: return MSE
Algorithm 3 Combining all the regressors using MINE-W

Input: Ensemble F ; Training set T 0; Test set X; Vector of Weights W; Neighborhood size K
Output: MSE: Mean Squared Error
1: SE ¼ 0
2: A ¼ £
3: for each test pattern xj in X do
4: Find the region of competence W of xj using T 0

5: for each f̂ n in F do
6: Calculate the measures fm1;n;m2;n; . . . ;mP;ng using W

7: an ¼
PP

p¼1wp �mp;n

8: A ¼ A [ an

9: end for
10: for each an in A do

11: ~an ¼ ð1=anÞ=ð
PN

n¼1ð1=anÞÞ
12: end for

13: f̂ ensðxjÞ ¼
PN

n¼1~an � f̂ nðxjÞ

14: SE ¼ SEþ ðf ðxjÞ � f̂ ensðxjÞÞ
2

15: end for
16: MSE ¼ SE= j X j
17: return MSE
3.4.1.3. MINE-WS. In MINE-Weighting with Selection, for each test pattern, the regressors with an > ðamax � aminÞ=2 are
removed from the ensemble, i.e., the values of A in the upper half of the difference between the largest and lowest values
are discarded. For the remaining regressors, they are combined using Eqs. (15) and (16). Algorithm 4 presents the pseudo-
code of the MINE-WS.
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Algorithm 4 Selecting and Combining the regressors using MINE-WS

Input: Ensemble F ; Training set T 0; Test set X; Vector of Weights W; Neighborhood size K
Output: MSE: Mean Squared Error
1: SE ¼ 0
2: A ¼ £
3: for each test pattern xj in X do
4: Find the region of competence W of xj using T 0

5: for each f̂ n in F do
6: Calculate the measures fm1;n;m2;n; . . . ;mP;ng using W

7: an ¼
PP

p¼1wp �mp;n

8: A ¼ A [ an

9: end for
10: ~F ¼ F
11: ~A ¼ A
12: for each f̂ n in F do
13: if an > ðamax � aminÞ=2 then {Selecting}

14: ~F ¼ ~F � f̂ n
15: ~A ¼ ~A� an

16: end if
17: end for
18: N ¼ sizeð ~FÞ
19: for each an in ~A do {Combining}

20: ~an ¼ ð1=anÞ=ð
PN

n¼1ð1=anÞÞ
21: end for

22: f̂ ensðxjÞ ¼
PN

n¼1~an � f̂ nðxjÞ f̂ n 2 ~F

23: SE ¼ SEþ ðf ðxjÞ � f̂ ensðxjÞÞ
2

24: end for
25: MSE ¼ SE= j X j
26: return MSE

To measure the performance of each proposed technique, the mean squared error (MSE) is calculated according to Eq.
(17):
1 http
2 http
3 http
MSE ¼
PJ

j¼1f ðxjÞ � f̂ ensðxjÞÞ
J

ð17Þ
where J is the size of the test set X ; f ðxjÞ is the observed value of the test pattern xj and f̂ ensðxjÞ is the result of the general-
ization phase.

4. Experiments

The experiments were performed using a total of 20 regression datasets. Table 2 shows the main features of the datasets
including the sources that are: the personal page of Prof. Luís Torgo,1 UCI Repository,2 and Delve Repository.3 To facilitate the
implementation of the framework, we used datasets with only numeric (integer or real) attributes, except for the Abalone data-
set, in which the categorical attribute sex was converted to binary using two bits.

In Section 4.1 the entire experimental protocol is described. Section 4.2 presents the parameters of the genetic algorithm
used in the optimization module (Section 3.3). In Section 4.3, the experiments present the results of the Learning Algorithm
Selection Phase, where the regressors are tested using a validation set. In this phase, for each dataset, the best learning algo-
rithm is chosen. Also, the experiments present the results of MINE-S compared against the DS algorithm (Section 4.4). In Sec-
tion 4.5, the results of MINE-W and MINE-WS are compared against DW and DWS algorithms respectively. In Section 4.6, the
results of MINE techniques are compared against Individual Regressor, Mean, and Median. Section 4.8 analyzes the impor-
tance of each measure extracted from the region of competence per dataset.
://www.dcc.fc.up.pt/�ltorgo/Regression/DataSets.html.
://http://archive.ics.uci.edu/ml/.
://www.cs.toronto.edu/�delve/.

http://http://archive.ics.uci.edu/ml/


Table 2
Datasets characteristics.

Dataset Instances Features Source

Abalone 4177 8 UCI
Airfoil Self Noise 1503 5 UCI
Bank32NH 8192 32 Delve
Bank8FM 8192 8 Delve
Breast Cancer 194 32 Torgo
CCPP [35,36] 9568 4 UCI
Comp Act 8192 22 Delve
Comp Act Small 8192 8 Delve
Concrete [37] 1030 9 UCI
Delta Ailerons 7129 6 Torgo
Delta Elevators 9517 6 Torgo
Housing 506 13 UCI
Kinematics 8192 8 Delve
Machine 209 6 Torgo
Puma32H 8192 32 Delve
Puma8NH 8192 8 Delve
Stock 950 9 Torgo
Triazines [38,39] 186 60 Torgo
Wine Q. Red [40] 1599 12 UCI
Wine Q. White [40] 4898 12 UCI

Table 3
Mean and standard deviation of the results calculated in 20 replications, obtained for each regressor used to compare. For each dataset, the best result is in bold.
Error values are in the scale 10�3.
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4.1. Experimental protocol

For each dataset, all data attributes were normalized into the interval [0,1]. The experiments were conducted using 20
replications, and for each replication, the configurations used are described in the next subsections.
4.1.1. Ensemble generation
So, in this phase, a set of regressors with size M ¼ 10 is generated. All the regressores are generated using the whole

training set T . Ten learning algorithms were used in this phase: CART [30], LINEAR, feedforward neural network with one
hidden layer (FANN-1) with 10 neurons, a feedforward neural network with two hidden layers (FANN-2), with 5 and 10
neurons in each of the layers, Support Vector Regression (SVR) with RBF kernel, SVR with Linear kernel, SVR with polynomial
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order 3 kernel, RBF network with 10 neurons, 3-nearest neighbor (3-NN) and 5-nearest neighbor (5-NN). The learning
algorithms were used with default settings found in MATLAB4 without any specific adjustment. We believe that a fine-
tuning process of these parameters can improve the results of the whole framework.

In the second phase (Generation Phase), homogeneous ensembles with different sizes
N ¼ f5;10;15;20;30;40;50;60;70;80;90;100g are generated using Bagging, a sampling with replacement, as in Bootstrap
AGGregatING [31]. Bagging generates distinct datasets, using sampling with replacement. The outputs of the Bagging are

N training sets fT 0
1; T

0
2; . . . ; T

0
Ng, and each is used to train one regressor f̂ i 2 F . All sets T 0

i have the same size as the original
training set T 0.

4.1.2. Framework validation
For each replication in the Learning Algorithm Selection Phase, a 10-fold cross-validation is carried out using 70% of the

folds for the training set (T ) and 20% for the validation set (V). From the Generation Phase onwards, a 10-fold cross-
validation is carried out, and each replication uses 90% of the folds for training (T 0) and 10% for testing set (X). The result
of each replication is the arithmetic mean of the MSE calculated for the 10 testing sets used in the cross-validation.

4.1.3. Region of competence
In [20], experiments were performed varying the size of the region of competence K in the interval

f2;4;6;8;10;12;14;16;18;20;25;30g. They concluded that the appropriate size for the neighborhood is problem-
dependent, so they fixed the size of the region of competence with K ¼ 10. Analyzing works of classification [21,22],
time-series forecasting [26], and regression [19], it can be verified that the size of the region of competence is fixed for better
validation and comparison of the results. The main objective is to compare and validate state-of-the-art techniques against
the proposed techniques regardless the size of the region of competence. Thus, according to [20], we fixed the size of the
region of competence to K ¼ 10 for all the experiments using DRS techniques.

4.1.4. State-of-the-art techniques
The algorithms DS, DW, and DWS use only one error measure as a criterion to select the most competent regressor [20].

For these techniques, we used the same experimental protocol of the MINE framework: the same data sets, learning algo-
rithms to generate the ensemble and the size of the region of competence was fixed to K = 10.

For each regressor used in comparison, a 10-fold cross-validation is carried out using 90% of the folds for the training set
(T 0) and 10% for testing set (X). For the state-of-the-art techniques, the result for each replication is the arithmetic mean of
the MSE calculated for the 10 testing sets used in the cross-validation.

4.1.5. Hypothesis tests
Non-parametric hypothesis tests were performed for pairwise comparison between the results obtained using the pro-

posed techniques against the results obtained using state-of-the-art DRS techniques, and against the results obtained using
classical combination techniques. Wilcoxon signed rank tests were used to compare two paired samples from the same pop-
ulation, each pair being independent, randomly selected, as suggested in [41]. The null hypothesis H0 indicates whether the
two methods have the same performance and the alternative hypothesis H1 verifies whether the proposed techniques per-
forms better (lowest error). A significance level of 5% was adopted for left-tailed. Values marked with � indicate that the null
hypothesis must be rejected and there is evidence that the alternative hypothesis is correct (pValue 6 0:05). In other words,
the proposed technique achieves superior performance compared to the other techniques.

4.2. Genetic algorithm configurations

This section presents the parameters of the genetic algorithm used in the optimization module and all of them were
defined empirically. For all replications, the genetic algorithm was configured as follows:

� Population Size: 80.
� Fitness Limit: 0.
� Crossover fraction: 0.8.
� Mutation Function: Gaussian with 0 mean and standard deviation 1.0.
� Maximum Generations: 100 � 8 genes = 800.
� Stall Generations Limit: 40.
� Elitism: Best 8 individuals move on to the next generation.
� Initial Population: 71 individuals randomly generated with the values of the genes in the interval [0,1], and nine individ-
uals initialized according to Matrix 18. The first line of the matrix shows the first chromosome initialized with 1 for all
genes. The other chromosomes of the matrix have 1 in only one gene.
4 https://www.mathworks.com/products/matlab.html.

https://www.mathworks.com/products/matlab.html
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firstPop ¼

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð18Þ
Regarding the genetic algorithm (GA), previous works [42,43] suggest that a generic GA (without adjusted parameters)
tends to converge as well as a GA with adjusted parameters (specific). The main difference is in the processing time, where
a generic GA has a processing time much longer than a specific one.

So, we adopted the default Matlab parameters for the genetic algorithms that are the standard values commonly used for
these kinds of algorithms. We believe that a fine-tuning process of these parameters can improve the results of the whole
framework. However, we aim at comparing different combination strategies and not to optimize each parameter.

The exception are elitism and populations size whose parameters were defined as the number of genes in each chromo-
some and as 10� the number of genes: 80ð71þ 9Þ (9 from Matrix 18 and more 71 randomly chromosomes), respectively.

4.3. Learning algorithm selection phase results

This section presentes the Learning Algorithm Selection Phase results. For each dataset, a set of regressors was generated
with the size M ¼ 10. The used learning algorithms are described in the previous section. Table 3 shows the performance of
the regressors in the validation set V. The results were calculated using 20 replications. The best results are in bold.

According to the literature, we observe in Table 3 that no learning algorithm is better than the others for all situations.
The best learning algorithm is problem dependent. For each dataset in the next experiments, the best-performing learning
algorithm is used to generate the homogeneous regressor ensemble.

The worst-performing regressors were those trained with the following learning algorithms: CART, LINEAR, and SVR with
Linear kernel. These regressors did not perform as the best one in any dataset, so these algorithms are not selected for any
dataset in the next phases.

4.4. MINE-S results

This section presents the results of the experiments performed using the MINE-S technique that selects the most suitable
regressor per test pattern. Table 4 compares MINE-S with DS for different ensemble sizes N ¼ f5;10;15;20;30;40;
50;60;70;80;90;100g. The results are the MSE arithmetic mean and the standard deviation of the 20 replications for each
dataset.

Table 5 shows that MINE-S is better than DS, on average, in 15 out of 20 datasets. The biggest difference is obtained when
the size of the ensemble is equal to 40. After performing a hypothesis tests (Wilcoxon signed rank test), MINE-S was signif-
icantly better than DS in 12 out of 20 datasets.

MINE-S has better results for any ensemble size when compared to the DS technique. For MINE-S and DS, increasing the
size of the ensemble does not guarantee better results. In some datasets, the error increases when the size of the ensemble
increases. A possible explanation to this fact is that selecting a suitable regressor among too many is a difficult task.

4.5. MINE-W and MINE-WS results

This section presents the results of the experiments performed using MINE-W and MINE-WS techniques, Tables 5 and 6,
respectively. The results show the arithmetic mean and the standard deviation of the MSE computed for the 20 replications
using different sizes of the ensemble N ¼ f5;10;15;20;30;40;50;60;70;80;90;100g.

According to Table 5, MINE-W performs better than DW for any ensemble size, and an increase in the ensemble size
leaded to a decrease in the error rates MINE-W obtained superior performance on average in 13 out of 20 datasets, and
reached smaller error rates when compared with MINE-S. The Wilcoxon signed rank test showed that MINE-W was signif-
icantly better than DW in 13 out of 20 datasets.

According to Table 6, MINE-WS performs better than DWS for any ensemble size. Similarly to MINE-W, in MINE-WS,
increasing the ensemble size leaded to a decrease of the error rates. MINE-WS obtained superior performance on average
in 11 out of 20 datasets. Also, MINE-WS reached smaller error rates when compared with MINE-S, but worse results when
compared to MINE-W. The reduction in the variance achieved by weighted average of all regressors can explain why using all
of them is better than the selection a subset of the regressors or just one of them. MINE-WS was significantly better than
DWS in 10 out of 20 datasets based on the Wilcoxon signed rank test.



Table 4
Mean and standard deviation of the results calculated in 20 replications. For each dataset, the best result is in bold. Line ‘‘Win/Tie/Loss” shows the total of the results compared with MINE-S. The values marked with a �
indicate that the null hypothesis must be rejected (pValue 6 0:05), in other words, the result of MINE-S achieves superior performance. The values are in the scale 10�4.

Dataset 5 10 15 20 30 40

DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S

Abalone 58.83(1.26)� 57.16(0.84) 60.20(1.50)� 58.06(1.03) 60.68(1.75)� 59.01(2.88) 61.05(1.62)� 58.42(0.91) 62.11(1.62)� 59.00(1.11) 62.55(1.98)� 58.95(0.88)
Airfoil Self

Noise
18.24(3.71)� 17.23(3.81) 15.61(3.82)� 14.60(3.70) 14.56(3.79)� 13.13(1.07) 13.43(0.92)� 12.69(0.77) 12.59(0.89)� 12.05(0.79) 12.21(0.81)� 11.68(0.70)

Bank32NH 109.73
(3.80)�

106.42
(1.54)

110.97
(3.00)�

108.16
(1.81)

113.20
(2.97)�

109.00
(1.96)

113.82
(2.45)�

109.31
(1.72)

115.23
(3.36)�

109.73
(2.54)

116.58
(3.41)�

111.35
(3.27)

Bank8FM 13.05(0.15) 13.07(0.14) 13.12(0.18) 13.13(0.17) 13.29(0.32) 13.17(0.15) 13.30(0.16) 13.26(0.14) 13.34(0.12) 13.29(0.15) 13.40(0.16)� 13.32(0.18)
Breast Cancer 716.15

(13.38)
714.54
(14.81)

715.74
(14.92)

718.17
(13.82)

713.96
(12.80)

716.78
(14.10)

712.50
(12.42)

715.17
(15.67)

713.02
(14.21)

713.24
(25.73)

712.96
(14.47)

712.25
(20.84)

CCPP 26.73(0.29) 26.68(0.53) 26.84(0.28) 27.27(0.67) 26.94(0.28) 27.23(0.54) 27.16(0.24) 27.31(0.61) 27.36(0.31)� 26.97(0.75) 27.48(0.30)� 26.96(0.59)
Comp Act 5.84(0.19)� 5.65(0.08) 5.89(0.73)� 5.60(0.12) 5.90(0.69)� 5.65(0.16) 5.97(0.71)� 5.70(0.29) 5.85(0.34)� 5.65(0.14) 5.88(0.34)� 5.69(0.17)
Comp Act

Small
8.55(0.54)� 8.31(0.11) 8.57(1.02)� 8.14(0.14) 8.93(1.61)� 8.04(0.14) 8.62(1.18)� 8.00(0.12) 8.64(1.20)� 7.96(0.12) 8.64(1.19)� 7.93(0.08)

Concrete 47.93(36.21) 39.40(7.20) 43.89
(15.05)�

36.31(3.46) 41.24
(13.66)

37.96(9.44) 41.30
(13.29)

42.48
(21.48)

37.20(4.19)� 35.47(3.07) 35.46(3.39) 35.33(4.38)

Delta Ailerons 14.79(0.04) 14.80(0.06) 14.71(0.04) 14.75(0.05) 14.68(0.04) 14.72(0.05) 14.66(0.04) 14.69(0.05) 14.64(0.04) 14.67(0.04) 14.63(0.04) 14.65(0.06)
Delta Elevators 28.37(0.76)� 28.02(0.12) 28.61(0.69)� 28.11(0.13) 29.24(2.09)� 28.22(0.14) 29.38(1.85)� 28.22(0.21) 29.67(1.96)� 28.20(0.13) 29.83(1.94)� 28.24(0.19)
Housing 58.76(8.35)� 52.56(5.44) 55.03(6.24)� 51.71(5.27) 56.20(6.15)� 50.07(6.02) 56.31(7.32)� 52.22(6.21) 55.77(6.38)� 49.36(6.03) 54.83(5.30)� 51.93(5.43)
Kinematics 31.60(0.36)� 31.42(0.39) 30.23(0.25)� 30.02(0.27) 29.64(0.29)� 29.52(0.26) 29.32(0.29)� 29.21(0.25) 29.06(0.24)� 28.93(0.25) 28.89(0.27)� 28.78(0.29)
Machine 57.06(11.97) 58.66

(11.42)
50.48(10.60) 51.68

(10.26)
49.18
(10.87)

50.47
(10.37)

48.33
(10.88)

49.29
(10.54)

48.00(11.06) 49.67
(10.80)

47.44(11.00) 48.18
(10.98)

Puma32H 13.05(0.24)� 12.92(0.27) 13.01(0.16)� 12.86(0.25) 12.98(0.14)� 12.83(0.25) 13.05(0.14)� 12.79(0.21) 13.10(0.16)� 12.85(0.24) 13.17(0.12)� 12.84(0.15)
Puma8NH 173.52

(0.72)�
173.01
(0.75)

174.63
(0.92)�

173.51
(0.90)

175.31
(0.80)�

173.30
(0.84)

175.85
(0.88)�

173.51
(0.77)

176.81
(0.90)�

173.22
(1.00)

177.48
(0.97)�

173.19
(0.98)

Stock 5.95(0.32)� 5.82(0.27) 5.95(0.35) 5.93(0.28) 5.90(0.30) 5.90(0.26) 5.91(0.25) 5.85(0.24) 5.93(0.26) 5.85(0.29) 5.96(0.27) 5.94(0.28)
Triazines 207.96(8.81) 208.78

(8.31)
206.84(7.69) 208.86

(11.21)
206.37
(7.79)

208.95
(11.87)

205.76
(6.36)

208.38
(10.66)

204.88(7.06) 206.75
(9.82)

202.31(7.34) 206.47
(11.12)

Wine Q. Red 164.18(1.49) 164.00
(1.53)

163.47(1.16) 163.74
(1.36)

163.62
(1.20)

163.61
(1.11)

163.76
(1.13)

163.66
(1.13)

163.99(1.40) 163.92
(1.27)

164.23(1.07) 164.18
(1.21)

Wine Q. White 142.28
(4.21)�

136.39
(1.44)

141.83
(3.83)�

136.74
(3.27)

142.11
(3.61)�

136.15
(1.24)

142.61
(3.78)�

136.21
(1.50)

150.11
(21.26)�

137.29
(2.18)

153.72
(22.37)�

136.43
(1.29)

Win/Tie/Loss 4/0/16 16/0/4 7/0/13 13/0/7 5/1/14 14/1/5 6/0/14 14/0/6 4/0/16 16/0/4 3/0/17 17/0/3

Dataset 50 60 70 80 90 100

DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S

Abalone 62.95(2.35)� 58.85(1.15) 64.00(3.43)� 59.05(1.09) 64.37(3.30)� 59.20(1.00) 64.87(3.31)� 59.32(1.06) 65.49(3.46)� 59.53(1.04) 65.64(3.33)� 59.06(1.05)
Airfoil Self

Noise
11.91(0.76)� 11.35(0.68) 11.64(0.83)� 11.21(0.66) 11.57(0.84)� 11.05(0.70) 11.67(1.71)� 11.18(1.75) 11.55(1.66)� 10.75(0.66) 11.42(1.71)� 10.84(0.88)

Bank32NH 117.44
(3.60)�

110.97
(2.65)

118.70
(4.81)�

111.49
(2.29)

118.97
(4.83)�

111.60
(2.60)

119.55
(4.95)�

111.08
(2.30)

120.10
(5.14)�

110.80
(3.31)

120.60
(4.99)�

110.87
(2.45)

Bank8FM 13.51(0.22)� 13.32(0.20) 13.56(0.22)� 13.40(0.30) 13.67(0.29)� 13.41(0.26) 13.75(0.32)� 13.46(0.23) 13.81(0.34)� 13.45(0.25) 13.87(0.41)� 13.53(0.43)
Breast Cancer 712.68

(13.54)
707.98
(17.93)

713.75
(12.22)�

705.98
(14.15)

712.96
(12.53)

710.66
(14.10)

712.30
(12.55)

707.22
(18.53)

713.54
(12.46)

711.42
(17.19)

713.60
(10.68)

713.56
(19.43)

CCPP 27.58(0.43)� 26.62(0.64) 27.68(0.43)� 26.64(0.54) 27.78(0.46)� 26.61(0.61) 27.91(0.44)� 26.41(0.66) 28.01(0.50)� 26.35(0.99) 28.09(0.46)� 26.22(0.63)
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Table 4 (continued)

Dataset 5 10 15 20 30 40

DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S DS MINE-S

Comp Act 5.90(0.38)� 5.69(0.15) 5.96(0.53)� 5.72(0.16) 5.96(0.52) 5.75(0.21) 5.96(0.43) 5.70(0.19) 5.91(0.40) 5.80(0.30) 5.88(0.33) 5.75(0.28)
Comp Act

Small
8.63(1.23)� 7.95(0.10) 8.63(1.21)� 7.91(0.10) 8.65(1.18)� 7.90(0.10) 8.67(1.24)� 7.92(0.15) 8.74(1.26)� 7.89(0.11) 8.64(1.20)� 7.88(0.10)

Concrete 36.05(4.50) 35.33(4.01) 35.59(4.38) 35.52(4.04) 35.23(4.25) 35.18(4.72) 35.30(3.83) 34.85(4.39) 36.01(4.85) 34.89(3.71) 36.07(4.60) 34.42(3.33)
Delta Ailerons 14.62(0.04) 14.64(0.04) 14.61(0.05) 14.63(0.06) 14.60(0.05) 14.63(0.06) 14.60(0.04) 14.62(0.07) 14.59(0.04) 14.62(0.06) 14.59(0.04) 14.62(0.06)
Delta Elevators 29.94(1.92)� 28.30(0.16) 30.11(1.89)� 28.23(0.21) 30.10(1.88)� 28.27(0.14) 30.21(1.86)� 28.26(0.19) 30.61(2.43)� 28.27(0.17) 30.69(2.45)� 28.25(0.18)
Housing 54.38(4.46)� 51.92(5.41) 55.24(6.27)� 50.84(4.90) 55.15(6.01)� 50.45(5.41) 55.32(5.91)� 51.89(5.38) 55.15(6.52)� 51.86(8.07) 54.68(6.47) 53.22(6.95)
Kinematics 28.71(0.23)� 28.62(0.26) 28.62(0.29) 28.56(0.26) 28.52(0.28) 28.47(0.27) 28.50(0.25)� 28.42(0.26) 28.45(0.22)� 28.35(0.25) 28.43(0.24) 28.36(0.26)
Machine 47.55(10.97) 48.73

(11.47)
47.09(10.87) 49.00

(10.54)
46.99
(10.88)

48.17
(10.80)

46.93
(10.91)

48.27
(11.12)

46.85(10.82) 48.81
(10.34)

47.01(10.90) 48.59
(10.50)

Puma32H 13.19(0.12)� 12.88(0.21) 13.20(0.15)� 12.90(0.21) 13.23(0.16)� 12.87(0.18) 13.20(0.17)� 12.92(0.21) 13.22(0.17)� 12.89(0.23) 13.27(0.18)� 12.98(0.20)
Puma8NH 177.99

(1.05)�
173.28
(0.62)

178.27
(1.06)�

173.33
(0.90)

178.79
(1.00)�

173.25
(0.72)

179.17
(1.24)�

173.39
(0.80)

179.45
(1.22)�

173.22
(0.85)

179.73
(1.22)�

173.43
(0.79)

Stock 5.89(0.27) 5.87(0.31) 5.87(0.26) 5.90(0.29) 5.85(0.28) 5.81(0.27) 5.84(0.34) 5.85(0.31) 5.85(0.34) 5.88(0.24) 5.89(0.37) 5.88(0.32)
Triazines 201.48(7.83) 207.24

(10.12)
201.58(7.45) 205.07

(10.62)
202.65
(7.83)

206.92
(13.75)

201.60
(7.96)

207.14
(11.10)

201.72(7.83) 210.19
(12.61)

201.23(7.85) 210.55
(11.21)

Wine Q. Red 164.26(1.06) 164.58
(1.08)

164.00(1.33) 164.06
(1.07)

164.02
(1.28)

164.36
(2.02)

164.10
(1.14)

164.24
(1.44)

164.14(1.07) 164.70
(1.39)

164.20(1.03) 164.38
(1.16)

Wine Q. White 152.05
(21.02)�

137.08
(2.14)

152.02
(21.08)�

136.90
(1.31)

146.27
(6.54)�

137.56
(2.29)

147.22
(6.37)�

137.70
(2.10)

149.48
(8.00)�

138.09
(2.41)

148.92
(7.32)�

138.89
(5.78)

Win/Tie/Loss 4/0/16 16/0/4 5/0/15 15/0/5 4/0/16 16/0/4 5/0/15 15/0/5 5/0/15 15/0/5 4/0/16 16/0/4
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Table 5
Mean and standard deviation of the results calculated in 20 replications. For each dataset, the best result is in bold. Line ‘‘Win/Tie/Loss” shows the total of the
results compared with MINE-W. The values marked with a � indicate that the null hypothesis must be rejected (pValue 6 0:05), in other words, the result of
MINE-W achieves superior performance. The values are in the scale 10�4.

Dataset 5 10 15 20 30 40

DW MINE-W DW MINE-W DW MINE-
W

DW MINE-
W

DW MINE-
W

DW MINE-
W

Abalone 55.32
(0.39)�

55.25
(0.40)

54.90
(0.28)

54.87
(0.24)

54.74
(0.21)

54.72
(0.20)

54.68
(0.18)

54.68
(0.19)

54.62
(0.18)

4.63
(0.22)

54.59
(0.19)

54.58
(0.20)

Airfoil Self
Noise

20.45
(0.70)�

16.81
(1.14)

18.65
(0.61)�

14.33
(1.02)

18.15
(0.54)�

13.46
(0.72)

17.92
(0.50)�

13.07
(0.67)

17.69
(0.50)�

12.56
(0.54)

17.54
(0.42)�

12.29
(0.46)

Bank32NH 92.69
(0.68)�

92.52
(0.64)

90.42
(0.43)

90.44
(0.43)

89.76
(0.46)

89.84
(0.45)

89.45
(0.34)

89.55
(0.35)

89.09
(0.29)

89.23
(0.30)

88.93
(0.28)

89.06
(0.31)

Bank8FM 12.45
(0.07)

12.45
(0.07)

12.35
(0.05)�

12.34
(0.05)

12.31
(0.04)�

12.30
(0.04)

12.30
(0.04)�

12.29
(0.04)

12.27
(0.03)�

12.26
(0.03)

12.26
(0.03)�

12.25
(0.03)

Breast
Cancer

722.52
(11.52)

724.68
(12.42)

718.31
(9.00)

721.26
(10.58)

716.69
(7.31)

719.39
(7.62)

716.53
(7.12)

720.59
(7.49)

716.33
(7.17)

719.81
(7.88)

715.85
(6.95)

719.12
(7.46)

CCPP 24.16
(0.17)�

24.03
(0.16)

23.61
(0.13)�

23.48
(0.13)

23.42
(0.12)�

23.29
(0.12)

23.32
(0.12)�

23.18
(0.11)

23.23
(0.12)�

23.09
(0.11)

23.18
(0.12)�

23.04
(0.11)

Comp Act 5.51
(0.06)�

5.43
(0.05)

5.41
(0.05)�

5.34
(0.05)

5.37
(0.03)�

5.31
(0.04)

5.36
(0.03)�

5.30
(0.03)

5.34
(0.02)�

5.29
(0.03)

5.33
(0.02)�

5.28
(0.03)

Comp Act
Small

8.52
(0.08)�

8.37
(0.05)

8.41
(0.09)�

8.24
(0.06)

8.36
(0.06)�

8.18
(0.04)

8.33
(0.04)�

8.15
(0.03)

8.31
(0.04)�

8.12
(0.03)

8.30
(0.03)�

8.10
(0.03)

Concrete 39.35
(4.44)�

35.71
(1.35)

36.47
(1.71)�

33.25
(1.30)

35.73
(1.15)�

32.52
(1.09)

35.32
(1.04)�

32.17
(1.19)

34.90
(1.20)�

32.32
(4.04)

34.55
(1.06)�

31.63
(2.63)

Delta
Ailerons

15.04
(0.04)�

15.03
(0.04)

15.03
(0.03)�

15.02
(0.03)

15.02
(0.02)

15.02
(0.03)

15.02
(0.03)

15.02
(0.03)

15.02
(0.02)�

15.01
(0.03)

15.02
(0.02)�

15.01
(0.02)

Delta
Elevators

27.69
(0.77)�

27.50
(0.08)

27.45
(0.19)

27.41
(0.05)

27.40
(0.10)

27.39
(0.04)

27.37
(0.06)

27.38
(0.04)

27.34
(0.03)

27.35
(0.03)

27.33
(0.03)

27.34
(0.03)

Housing 54.98
(5.06)�

50.74
(3.16)

52.69
(2.93)�

49.25
(2.64)

51.41
(3.04)�

48.20
(2.74)

50.79
(3.21)�

47.78
(2.95)

50.36
(2.92)�

47.38
(2.67)

50.12
(2.97)�

47.37
(2.96)

Kinematics 33.28
(0.36)�

32.14
(0.35)

32.38
(0.33)�

31.00
(0.29)

32.13
(0.28)�

30.63
(0.25)

31.98
(0.23)�

30.42
(0.21)

31.83
(0.19)�

30.20
(0.17)

31.78
(0.17)�

30.10
(0.16)

Machine 71.19
(9.13)

74.52
(7.05)

68.83
(8.60)

71.32
(8.24)

68.49
(8.06)

71.17
(7.74)

68.10
(7.96)

71.55
(7.80)

67.71
(7.91)

72.15
(7.92)

67.67
(7.89)

70.45
(7.71)

Puma32H 11.26
(0.19)�

11.25
(0.18)

10.94
(0.15)�

10.93
(0.14)

10.82
(0.10)�

10.81
(0.09)

10.79
(0.08)�

10.77
(0.07)

10.73
(0.05)�

10.72
(0.05)

10.72
(0.04)�

10.70
(0.04)

Puma8NH 168.08
(0.31)

168.13
(0.31)

167.51
(0.28)

167.55
(0.27)

167.30
(0.24)

167.34
(0.22)

167.19
(0.19)

167.23
(0.19)

167.11
(0.16)

167.15
(0.15)

167.05
(0.17)

167.09
(0.16)

Stock 5.40
(0.21)�

5.23
(0.22)

5.18
(0.19)�

5.02
(0.20)

5.11
(0.17)�

4.97
(0.17)

5.07
(0.16)�

4.94
(0.16)

5.03
(0.16)�

4.91
(0.17)

5.02
(0.16)�

4.90
(0.17)

Triazines 207.73
(6.57)

207.58
(6.65)

206.08
(5.43)

206.77
(5.79)

206.28
(5.49)

206.51
(6.25)

206.46
(5.28)

207.71
(6.56)

205.93
(5.24)

207.53
(7.09)

205.53
(4.95)

206.28
(6.08)

Wine Q. Red 164.74
(1.23)�

164.65
(1.34)

164.31
(0.85)

164.25
(0.94)

164.25
(0.66)�

164.16
(0.68)

164.15
(0.63)�

164.09
(0.66)

164.09
(0.65)�

164.03
(0.69)

164.04
(0.64)�

163.99
(0.69)

Wine Q.
White

135.45
(1.48)�

133.82
(1.36)

133.75
(1.06)�

132.30
(0.97)

133.17
(0.71)�

131.69
(0.73)

132.91
(0.66)�

131.50
(0.79)

132.67
(0.65)�

131.14
(0.52)

132.48
(0.59)�

131.18
(0.76)

Win/Tie/
Loss

3/1/16 16/1/3 5/0/15 15/0/5 5/1/14 14/1/5 6/2/12 12/2/6 7/0/13 13/0/7 6/0/14 14/0/6

Dataset 50 60 70 80 90 100

DW MINE-W DW MINE-W DW MINE-
W

DW MINE-
W

DW MINE-
W

DW MINE-
W

Abalone 54.55
(0.20)

54.55
(0.21)

54.55
(0.23)

54.54
(0.23)

54.53
(0.20)

54.53
(0.21)

54.51
(0.19)

54.50
(0.19)

54.50
(0.18)

54.50
(0.18)

54.50
(0.18)

54.50
(0.17)

Airfoil Self
Noise

17.48
(0.41)�

12.08
(0.40)

17.41
(0.39)�

11.93
(0.38)

17.40
(0.38)�

11.85
(0.35)

17.35
(0.38)�

11.75
(0.33)

17.34
(0.36)�

11.69
(0.31)

17.33
(0.37)�

11.65
(0.33)

Bank32NH 88.83
(0.28)

88.95
(0.34)

88.77
(0.31)

88.91
(0.37)

88.75
(0.32)

88.86
(0.37)

88.70
(0.29)

88.83
(0.34)

88.69
(0.29)

88.78
(0.33)

88.68
(0.27)

88.77
(0.29)

Bank8FM 12.26
(0.03)�

12.24
(0.03)

12.25
(0.03)�

12.24
(0.03)

12.25
(0.02)�

12.23
(0.03)

12.24
(0.03)�

12.23
(0.03)

12.24
(0.02)�

12.23
(0.03)

12.24
(0.02)�

12.23
(0.03)

Breast
Cancer

715.39
(6.69)

720.70
(7.30)

715.11
(6.83)

720.00
(7.64)

714.94
(6.57)

718.83
(7.45)

714.75
(6.33)

718.36
(7.94)

714.82
(6.55)

718.09
(8.42)

714.91
(6.53)

719.04
(8.18)

CCPP 23.14
(0.13)�

23.00
(0.12)

23.12
(0.12)�

22.98
(0.12)

23.10
(0.12)�

22.96
(0.12)

23.10
(0.13)�

22.96
(0.12)

23.09
(0.13)�

22.95
(0.12)

23.09
(0.12)�

22.95
(0.12)

Comp Act 5.32
(0.02)�

5.28
(0.03)

5.32
(0.02)�

5.27
(0.02)

5.32
(0.02)�

5.27
(0.02)

5.32
(0.02)�

5.27
(0.02)

5.31
(0.02)�

5.26
(0.02)

5.31
(0.02)�

5.26
(0.02)

Comp Act
Small

8.29
(0.02)�

8.10
(0.03)

8.29
(0.03)�

8.10
(0.05)

8.28
(0.03)�

8.09
(0.04)

8.28
(0.02)�

8.08
(0.03)

8.28
(0.03)�

8.08
(0.03)

8.28
(0.03)�

8.08
(0.03)
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Table 5 (continued)

Dataset 5 10 15 20 30 40

DW MINE-W DW MINE-W DW MINE-
W

DW MINE-
W

DW MINE-
W

DW MINE-
W

Concrete 34.37
(1.02)�

31.23
(2.02)

34.30
(1.03)�

31.11
(1.91)

34.21
(0.94)�

30.90
(1.55)

34.16
(0.93)�

30.76
(1.36)

34.13
(0.91)�

30.69
(1.21)

34.17
(0.88)�

30.74
(1.18)

Delta
Ailerons

15.02
(0.02)�

15.01
(0.02)

15.02
(0.02)�

15.01
(0.02)

15.02
(0.02)�

15.01
(0.02)

15.02
(0.02)�

15.01
(0.02)

15.02
(0.02)�

15.00
(0.02)

15.02
(0.02)�

15.00
(0.02)

Delta
Elevators

27.32
(0.03)

27.34
(0.04)

27.32
(0.03)

27.33
(0.04)

27.31
(0.03)

27.33
(0.04)

27.31
(0.03)

27.33
(0.04)

27.31
(0.03)

27.32
(0.03)

27.31
(0.03)

27.32
(0.03)

Housing 50.08
(2.89)�

47.23
(3.05)

49.91
(2.79)�

47.14
(2.83)

49.89
(2.80)�

47.17
(2.80)

49.86
(2.84)�

47.12
(2.73)

49.79
(2.85)�

47.08
(2.80)

49.77
(2.90)�

47.06
(2.92)

Kinematics 31.73
(0.16)�

30.02
(0.15)

31.70
(0.11)�

29.97
(0.13)

31.66
(0.11)�

29.90
(0.11)

31.65
(0.10)�

29.88
(0.12)

31.64
(0.09)�

29.86
(0.10)

31.63
(0.08)�

29.83
(0.09)

Machine 67.48
(7.73)

69.61
(7.74)

67.04
(7.66)

69.95
(7.56)

66.84
(7.66)

68.91
(7.09)

66.62
(7.64)

69.77
(6.77)

66.70
(7.63)

70.13
(6.39)

66.79
(7.74)

70.10
(6.62)

Puma32H 10.70
(0.04)�

10.69
(0.04)

10.68
(0.03)�

10.67
(0.03)

10.68
(0.03)�

10.66
(0.03)

10.67
(0.03)�

10.65
(0.03)

10.67
(0.03)�

10.65
(0.03)

10.66
(0.03)�

10.65
(0.03)

Puma8NH 167.00
(0.18)

167.05
(0.17)

166.98
(0.17)

167.04
(0.16)

166.96
(0.17)

167.01
(0.16)

166.95
(0.16)

167.00
(0.16)

166.94
(0.16)

167.00
(0.16)

166.94
(0.15)

166.99
(0.15)

Stock 4.99
(0.16)�

4.88
(0.17)

4.98
(0.15)�

4.86
(0.16)

4.97
(0.15)�

4.86
(0.16)

4.97
(0.15)�

4.86
(0.16)

4.97
(0.15)�

4.85
(0.16)

4.97
(0.15)�

4.86
(0.16)

Triazines 205.39
(4.89)

206.31
(6.01)

205.31
(4.95)

206.63
(6.21)

205.33
(4.93)

206.16
(5.66)

205.25
(5.08)

206.17
(5.62)

205.23
(5.05)

206.04
(5.00)

205.12
(5.14)

206.05
(5.44)

Wine Q. Red 164.00
(0.60)

163.95
(0.67)

163.98
(0.65)�

163.92
(0.70)

163.96
(0.66)�

163.88
(0.70)

163.97
(0.63)�

163.90
(0.66)

163.97
(0.61)�

163.91
(0.65)

163.96
(0.62)�

163.91
(0.67)

Wine Q.
White

132.43
(0.52)�

131.01
(0.75)

132.37
(0.55)�

130.89
(0.63)

132.32
(0.50)�

130.76
(0.45)

132.30
(0.51)�

130.69
(0.45)

132.27
(0.46)�

130.68
(0.42)

132.23
(0.43)�

130.61
(0.44)

Win/Tie/
Loss

6/1/13 13/1/6 6/0/14 14/0/6 6/1/13 13/1/6 6/0/14 14/0/6 6/1/13 13/1/6 6/1/13 13/1/6
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In [44], an empirical study using time-series data concluded that the error rate decreases when the number of models in
the combination increases. To the best of our knowledge, there is no such study for regression problems. To fulfill this gap,
we present results varying the ensemble size, and it is possible to verify that the error rates decrease when the ensemble size
increases, as shown in Tables 5 and 6.

4.6. Comparing MINE with static techniques

This section compares the three MINE techniques against Individual Regressor, and the combination of the regressors
using Mean and Median as the combination rule (Table 7). The ‘‘Individual Regressor” column shows the results per dataset
when only one regressor is applied. Each dataset is trained using the best performing regressor as listed in Table 3. In the
previous section, the best results in Tables 5 and 6 were obtained with ensemble sizes of 80, 90, and 100 regressors. For
the sake of simplicity, all the results in Table 7 use 90 regressors.

The ‘‘Individual Regressor” did not obtain the best performance in any of the used datasets, while Mean was better in 1
and Median in 2 out of 20 datasets. The MINE family obtained better results in 17 out of 20 datasets (MINE-S was better in 3,
MINE-W in 7, and MINE-WS also in 7 out of 20 datasets). In general, combining the models has better performance than
selecting just one. MINE-WS deserves a special highlight because it obtained similar performance when compared with
MINE-W, however, it uses only a subset of the ensemble while MINE-W uses the whole ensemble.

4.7. Computational effort

Our proposal has four phases. The first phase (Learning Algorithm Selection) aims at choosing the best learning algorithm
for each regression problem. The execution time of this phase is similar to any of the techniques presented in the paper. The
second phase (Generation Phase) also has equal processing time for all techniques presented in the paper, since its task is
only to generate the ensemble.

Phase 3 (Optimization Phase) is only performed by the MINE framework. It uses a genetic algorithm, which is a well-
known time-consuming task. However, it is important to highlight that this task is performed offline, during the system’s
training. Once the genetic algorithm defines the best set of weights, this set is not modified in the next phase (Generalization
Phase).

The computational effort of phase 4 is slightly different comparing the proposal with the literature DRS algorithms. While
the algorithms in the literature extract only one error measure from the region of competence, the proposed algorithm
extracts eight. However, the difference regarding the processing time is minimal.



Table 6
Mean and standard deviation of the results calculated in 20 replications. For each dataset, the best result is in bold. Line ‘‘Win/Tie/Loss” shows the total of the results compared with MINE-WS. The values marked with a
� indicate that the null hypothesis must be rejected (pValue 6 0:05), in other words, the result of MINE-WS achieves superior performance. The values are in the scale 10�4.

Dataset 5 10 15 20 30 40

DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS

Abalone 55.34(0.40) 55.29(0.39) 54.94(0.30) 54.87(0.29) 54.81(0.23) 54.78(0.24) 54.76(0.20) 54.78(0.21) 54.69(0.18) 54.75(0.35) 54.77(0.28) 54.80(0.30)
Airfoil Self

Noise
19.45(0.83)� 15.73(1.06) 16.52(0.88)� 13.34(0.79) 15.19(0.79)� 12.78(0.67) 14.59(0.70)� 12.54(0.55) 13.81(0.59)� 12.55(0.43) 13.56(0.53)� 12.35(0.51)

Bank32NH 92.87(0.80)� 92.65(0.67) 90.93(0.68)� 90.72(0.47) 90.66(0.68)� 90.22(0.42) 90.56(0.63)� 90.15(0.39) 90.84(0.81)� 90.28(0.88) 91.17(1.02)� 90.36(0.52)
Bank8FM 12.45(0.07) 12.47(0.08) 12.35(0.05) 12.37(0.06) 12.31(0.04) 12.35(0.05) 12.30(0.05) 12.35(0.07) 12.28(0.05) 12.34(0.08) 12.27(0.05) 12.32(0.05)
Breast Cancer 722.52

(11.52)
724.90
(14.29)

718.31
(9.00)

722.44
(13.81)

716.69
(7.31)

720.95
(11.54)

716.53
(7.12)

720.81
(11.65)

716.33
(7.17)

722.07
(11.50)

715.85
(6.95)

718.61
(10.98)

CCPP 24.21(0.22)� 24.06(0.20) 23.74(0.21)� 23.54(0.19) 23.65(0.21)� 23.32(0.15) 23.62(0.19)� 23.26(0.17) 23.65(0.21)� 23.19(0.19) 23.67(0.20)� 23.13(0.18)
Comp Act 5.54(0.12)� 5.47(0.06) 5.45(0.08)� 5.37(0.06) 5.42(0.05)� 5.35(0.09) 5.41(0.05)� 5.31(0.05) 5.41(0.12)� 5.26(0.04) 5.38(0.03)� 5.25(0.06)
Comp Act

Small
8.53(0.08)� 8.37(0.05) 8.51(0.40)� 8.20(0.08) 8.42(0.12)� 8.08(0.06) 8.38(0.12)� 8.02(0.04) 8.34(0.11)� 7.96(0.06) 8.31(0.08)� 7.93(0.05)

Concrete 43.92
(27.89)�

35.87(1.61) 35.89(3.11)� 33.97(3.01) 34.31(2.35)� 33.55(5.73) 33.74(2.09)� 32.02(1.27) 32.95(2.79)� 31.33(1.59) 31.94(1.61)� 31.17(1.66)

Delta Ailerons 15.04(0.04) 15.04(0.04) 15.03(0.03) 15.03(0.03) 15.02(0.02) 15.02(0.03) 15.02(0.03) 15.02(0.04) 15.02(0.02) 15.03(0.03) 15.02(0.02) 15.02(0.03)
Delta Elevators 27.70(0.77) 27.52(0.09) 27.46(0.19) 27.43(0.06) 27.41(0.11) 27.45(0.11) 27.39(0.07) 27.40(0.08) 27.36(0.05) 27.37(0.05) 27.39(0.16) 27.40(0.10)
Housing 55.95(5.11)� 51.39(3.60) 53.56(3.07)� 49.74(3.06) 52.54(3.33)� 48.70(3.85) 51.89(3.50)� 47.80(5.33) 50.90(3.18)� 47.01(4.12) 50.63(3.39)� 46.59(3.42)
Kinematics 33.25(0.36)� 31.76(0.32) 32.27(0.33)� 30.10(0.29) 31.93(0.30)� 29.26(0.27) 31.72(0.24)� 28.85(0.24) 31.42(0.21)� 28.38(0.17) 31.25(0.18)� 28.12(0.21)
Machine 66.01(11.05) 67.05(10.32) 58.78(10.42) 58.27(10.23) 55.10

(10.51)
56.43(10.16) 54.43

(10.30)
57.41(10.22) 53.90

(10.30)
58.23(10.40) 53.50(9.99) 55.57(10.86)

Puma32H 11.26(0.19) 11.27(0.19) 10.95(0.15) 10.95(0.15) 10.83(0.10) 10.84(0.10) 10.80(0.08)� 10.80(0.08) 10.76(0.06)� 10.75(0.05) 10.76(0.05)� 10.73(0.05)
Puma8NH 168.08(0.31) 168.14(0.31) 167.51

(0.28)
167.56(0.27) 167.30

(0.24)
167.35(0.24) 167.19

(0.19)
167.24(0.17) 167.11

(0.16)
167.28(0.51) 167.05

(0.16)
167.14(0.18)

Stock 5.44(0.24)� 5.39(0.21) 5.31(0.22)� 5.23(0.22) 5.25(0.20)� 5.15(0.22) 5.17(0.19)� 5.07(0.20) 5.07(0.17)� 4.91(0.13) 5.02(0.16)� 4.82(0.15)
Triazines 208.31(6.72) 208.44(7.68) 207.33

(5.65)
208.45(7.43) 208.08

(5.42)
208.44(7.17) 208.16

(5.45)
210.21(8.38) 207.65

(5.66)
208.58(8.04) 207.00

(5.50)
207.87(6.16)

Wine Q. Red 164.68
(1.25)�

164.50(1.27) 164.16(0.95) 164.12(1.08) 164.01
(0.69)

164.06(0.83) 163.86
(0.67)

163.87(0.81) 163.75(0.72) 163.70(0.79) 163.66
(0.76)

163.68(0.77)

Wine Q. White 135.71
(1.66)�

133.80(1.08) 134.05
(1.44)�

132.56(1.12) 133.71
(1.10)�

131.86(0.81) 133.68
(1.22)�

131.71(0.68) 133.51
(1.41)�

131.04(0.54) 133.70
(2.06)�

131.01(0.92)

Win/Tie/Loss 6/1/13 13/1/6 4/2/14 14/2/4 8/1/11 11/1/8 8/2/10 10/2/8 8/0/12 12/0/8 8/1/11 11/1/8

Dataset 50 60 70 80 90 100

DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS

Abalone 54.74(0.24) 54.71(0.35) 54.77(0.28) 54.78(0.30) 54.76(0.25) 54.85(0.33) 54.76(0.43) 54.81(0.32) 54.78(0.47) 55.13(0.61) 54.80(0.40) 54.93(0.34)
Airfoil Self

Noise
13.25(0.41)� 12.25(0.39) 13.17(0.39)� 12.17(0.39) 13.07(0.44)� 12.11(0.51) 13.11(0.46)� 12.14(0.42) 13.17(0.45)� 11.92(0.48) 13.23(0.48)� 12.03(0.45)

Bank32NH 91.60(1.01)� 90.62(0.60) 91.90(0.98)� 90.59(0.54) 92.41(1.51)� 90.43(0.92) 92.68(1.73)� 90.08(0.57) 93.06(1.73)� 89.94(0.57) 93.25(1.38)� 89.99(0.73)
Bank8FM 12.27(0.05) 12.32(0.07) 12.26(0.05) 12.31(0.06) 12.26(0.05) 12.32(0.06) 12.26(0.04) 12.34(0.13) 12.27(0.07) 12.36(0.16) 12.27(0.07) 12.33(0.12)
Breast Cancer 715.39(6.69) 721.03(8.87) 715.11

(6.83)
721.21(9.86) 714.94

(6.57)
720.55
(10.53)

714.75
(6.33)

720.80
(10.90)

714.82
(6.55)

718.71
(10.24)

714.91
(6.53)

721.39
(12.96)

CCPP 23.70(0.26)� 23.07(0.18) 23.70(0.28)� 23.06(0.19) 23.74(0.28)� 23.01(0.15) 23.80(0.26)� 23.03(0.16) 23.84(0.29)� 23.02(0.18) 23.90(0.29)� 23.00(0.15)
Comp Act 5.36(0.03)� 5.23(0.06) 5.35(0.03)� 5.22(0.02) 5.34(0.03)� 5.21(0.03) 5.35(0.04)� 5.21(0.05) 5.35(0.04)� 5.20(0.03) 5.35(0.03)� 5.19(0.02)
Comp Act

Small
8.29(0.07)� 7.92(0.05) 8.28(0.08)� 7.90(0.05) 8.27(0.08)� 7.89(0.07) 8.25(0.07)� 7.87(0.06) 8.23(0.05)� 7.87(0.09) 8.22(0.04)� 7.85(0.05)
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Table 6 (continued)

Dataset 5 10 15 20 30 40

DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS DWS MINE-WS

Concrete 31.89(1.54)� 30.87(1.35) 31.41(1.56) 31.06(1.43) 31.02(1.42) 31.02(1.29) 31.03(1.39) 31.18(1.56) 31.11(1.38) 30.88(1.13) 30.95(1.25) 30.70(1.04)
Delta Ailerons 15.02(0.02) 15.02(0.03) 15.02(0.02) 15.02(0.03) 15.02(0.02) 15.01(0.03) 15.01(0.02) 15.01(0.03) 15.02(0.02) 15.02(0.03) 15.02(0.02) 15.02(0.03)
Delta Elevators 27.39(0.17) 27.37(0.06) 27.40(0.17) 27.79(1.85) 27.39(0.17) 27.36(0.06) 27.51(0.53) 27.38(0.06) 27.51(0.53) 27.41(0.17) 27.52(0.53) 27.40(0.11)
Housing 50.64(3.49)� 45.98(3.55) 50.38(3.46)� 45.64(3.67) 50.27(3.22)� 45.16(3.70) 50.10(3.16)� 45.04(3.15) 49.98(3.21)� 45.28(3.46) 49.74(3.29)� 44.39(2.60)
Kinematics 31.08(0.17)� 27.97(0.20) 30.97(0.17)� 27.84(0.17) 30.83(0.16)� 27.74(0.16) 30.73(0.13)� 27.71(0.16) 30.67(0.12)� 27.68(0.15) 30.61(0.12)� 27.62(0.14)
Machine 53.16(10.15) 55.96(10.05) 52.67(9.82) 55.31(10.06) 52.50(9.81) 56.60(10.42) 52.46(9.88) 55.84(10.37) 52.34(9.91) 56.24(10.73) 52.34(9.97) 56.60(10.35)
Puma32H 10.76(0.05)� 10.72(0.04) 10.76(0.04)� 10.71(0.04) 10.77(0.05)� 10.70(0.04) 10.77(0.04)� 10.70(0.04) 10.78(0.04)� 10.69(0.03) 10.78(0.04)� 10.69(0.04)
Puma8NH 167.01(0.17) 167.08(0.20) 166.99

(0.16)
167.10(0.19) 166.96

(0.17)
167.08(0.19) 166.96

(0.16)
167.04(0.18) 166.95

(0.17)
167.02(0.15) 166.95

(0.16)
167.01(0.15)

Stock 4.98(0.17)� 4.77(0.16) 4.92(0.19)� 4.75(0.15) 4.87(0.18)� 4.74(0.17) 4.85(0.18)� 4.75(0.16) 4.84(0.16)� 4.74(0.17) 4.84(0.16)� 4.74(0.15)
Triazines 206.74(5.54) 206.86(6.49) 206.49

(5.87)
208.91(7.75) 206.39

(5.74)
209.36(6.57) 206.78

(5.74)
209.59(7.32) 206.68

(5.82)
210.11(7.24) 206.69

(5.74)
208.41(6.78)

Wine Q. Red 163.63(0.73) 163.68(0.78) 163.59
(0.76)

163.65(0.79) 163.53
(0.75)

163.69(0.67) 163.54
(0.72)

163.75(0.69) 163.58
(0.74)

163.73(0.69) 163.55
(0.75)

163.77(0.71)

Wine Q. White 133.65
(1.63)�

130.69(0.70) 133.50
(1.44)�

130.79(1.58) 133.43
(1.38)�

130.70(1.44) 133.30
(1.26)�

130.64(1.58) 133.19
(1.13)�

130.11(0.76) 133.11
(1.11)�

130.54(1.28)

Win/Tie/Loss 7/1/13 13/1/7 8/1/11 11/1/8 7/1/12 12/1/7 8/1/11 11/1/8 7/1/12 12/1/7 7/1/12 12/1/7
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Fig. 2. Mean of the weights of the measures calculated for MINE-S.

Table 7
Mean and standard deviation of the results calculated in 20 replications. For each dataset, the best result is in bold. The values are in the scale 10�4. Ensemble
Size = 90.

Dataset Individual Regressor Mean Median MINE-S MINE-W MINE-WS

Abalone 56.58(0.68) 54.51(0.19) 54.46(0.17) 59.53(1.04) 54.50(0.18) 55.13(0.61)
Airfoil Self Noise 32.00(4.54) 21.48(0.43) 20.89(0.4 10.75(0.66) 11.69(0.31) 11.92(0.48)
Bank32NH 98.04(0.96) 88.79(0.29) 89.15(0.25) 110.80(3.31) 88.78(0.33) 89.94(0.57)
Bank8FM 12.79(0.08) 12.27(0.02) 12.32(0.02) 13.45(0.25) 12.23(0.03) 12.36(0.16)
Breast Cancer 730.74(9.40) 715.72(6.52) 716.95(7.10) 711.42(17.19) 718.09(8.42) 718.71(10.24)
CCPP 24.46(0.15) 23.37(0.12) 23.42(0.12) 26.35(0.99) 22.95(0.12) 23.02(0.18)
Comp Act 6.03(0.16) 5.37(0.02) 5.38(0.02) 5.80(0.30) 5.26(0.02) 5.20(0.03)
Comp Act Small 9.28(0.20) 8.42(0.02) 8.45(0.02) 7.89(0.11) 8.08(0.03) 7.87(0.09)
Concrete 52.83(2.70) 39.36(0.89) 38.08(0.76) 34.89(3.71) 30.69(1.21) 30.88(1.13)
Delta Ailerons 15.05(0.02) 15.03(0.02) 15.03(0.02) 14.62(0.06) 15.00(0.02) 15.02(0.03)
Delta Elevators 27.76(0.10) 27.32(0.03) 27.35(0.03) 28.27(0.17) 27.32(0.03) 27.41(0.17)
Housing 55.79(4.32) 51.75(2.62) 51.01(2.25) 51.86(8.07) 47.08(2.80) 45.28(3.46)
Kinematics 39.61(1.03) 33.01(0.10) 33.04(0.12) 28.35(0.25) 29.86(0.10) 27.68(0.15)
Machine 82.03(5.37) 78.79(6.21) 81.56(5.44) 48.81(10.34) 70.13(6.39) 56.24(10.73)
Puma32H 12.29(0.43) 10.71(0.03) 10.64(0.02) 12.89(0.23) 10.65(0.03) 10.69(0.03)
Puma8NH 169.48(0.64) 166.93(0.16) 166.95(0.17) 173.22(0.85) 167.00(0.16) 167.02(0.15)
Stock 5.52(0.22) 5.26(0.14) 5.23(0.16) 5.88(0.24) 4.85(0.16) 4.74(0.17)
Triazines 211.96(4.99) 206.27(4.89) 209.16(5.19) 210.19(12.61) 206.04(5.00) 210.11(7.24)
Wine Q. Red 164.81(0.55) 164.30(0.59) 164.67(0.62) 164.70(1.39) 163.91(0.65) 163.73(0.69)
Wine Q. White 143.12(3.19) 133.35(0.39) 133.56(0.34) 138.09(2.41) 130.68(0.42) 130.11(0.76)
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All the experiments we performed on an AMD Ryzen 5 1600 6-core processor, 8 Gb DDR 4 2666Mhz and MatLab R2017a.
The Generalization phase requires, on average, 2:29� 7:63 seconds per dataset. While the Optimization phase needs
85:26� 96:50;89:02� 97:08 and 95:65� 101:69 on average, per dataset, for MINE-S, MINE-W, and MINE-WS, respectively.
4.8. Evaluating the measures

As explained in the previous sections, all the eight measures presented in Section 3.3.1 were combined using a vector of
weights W calculated in the Optimization Phase of the MINE framework. For each test pattern, the combination of the mea-
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sures generates a new vector of weights A that was used to select the most competent regressor in MINE-S, to select and
combine the regressors in MINE-WS, and to combine all the regressors in MINE-W.

Figs. 2–4 show the arithmetic mean of the weights over 20 replications per datasets for the MINE-S, MINE-W, and MINE-
WS, respectively. These tables also show the mean of the weights per measure (these values are at the bottom of each figure).
Fig. 3. Mean of the weights of the measures calculated for MINE-W.

Fig. 4. Mean of the weights of the measures calculated for MINE-WS.
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We can observe that the weights of the measures vary depending on the technique under analysis. In MINE-S, the range of
the weights is wider than in MINE-W and MINE-WS. For instance, in MINE-W, some weights are zero or close to it. This
means that this measure has little or no influence in the decision process, observem6, for instance. MINE-WS uses more mea-
sures, on average, when compared with MINE-W, but the values of the weights are not as high as in MINE-S.

This analysis shows that the importance of the measures varies from dataset to dataset and also from technique to tech-
nique indicating that their combination is more advantageous than using only one.

5. Conclusion

This paper proposed the MINE framework for dynamic regressor selection that aims to select and combine the best
regressors per query pattern from a homogeneous ensemble. MINE uses information extracted from the region of compe-
tence as a criterion to select the competent regressors. Instead of using only one measure from the region of competence,
knowing that no single measure is the best for any task, the proposal combines a set of measures to better select the com-
petent regressors.

Three algorithms were presented, and their difference resides in how many regressors are selected from the ensemble.
MINE-S selects only the most competent regressor while MINE-W combines all the regressors. MINE-WS, in turn, selects
a subset of the regressors. Experiments showed that the MINE techniques presented in this work perform better compared
to state-of-the-art DRS techniques, and classical combination techniques, such as Mean and Median. Among the MINE fam-
ily, a highlight to MINE-WS because it performed similarly to MINE-W but required fewer regressors in the combination
phase.

The results showed that the combination of multiple measures extracted from the region of competence generates more
accurate results than using only a single measure. We also observed that some measures received zero-weight for some
datasets. In other words, the set of measures is problem-dependent and can be selected instead of using all of them. The pro-
posed framework is modular and can be evaluated using more significant set measures. Also, as presented in [20,27], the size
of the region of competence is problem-dependent and for better error rates a study must be done to find the ideal neigh-
borhood size for each dataset.

For future work, we intend to evaluate different optimization algorithms in the Optimization Phase, such as PSO (Particle
Swarm Optimization) [34], and Differential Evolution [34]. We also intend to analyze some parameters of the framework,
such as the size of the region of competence.
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