
Knowledge-Based Systems 228 (2021) 107290

m
t
s
a
h
p

a
v
a
H
m
c
s

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dynamic selection and combination of one-class classifiers for
multi-class classification
Rogério C.P. Fragoso a,∗, George D.C. Cavalcanti a, Roberto H.W. Pinheiro b, Luiz S. Oliveira c

a Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
b Universidade Federal do Cariri, Juazeiro do Norte, CE, Brazil
c Departamento de Informática, Universidade Federal do Paraná, Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:
Received 5 April 2020
Received in revised form 14 May 2021
Accepted 5 July 2021
Available online 7 July 2021

Keywords:
One-class classification
One-class decomposition
Multiple classifier system
Dynamic ensemble selection

a b s t r a c t

A natural solution to tackle multi-class problems is employing multi-class classifiers. However, in
specific situations, such as imbalanced data or high number of classes, it is more effective to decompose
the multi-class problem into several and easier to solve problems. One-class decomposition is an
alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the
data optimally is a challenge for OCCs, especially when it presents a complex intra-class distribution.
The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the
adoption of multiple OCCs for each class can lead to an improvement for one-class decomposition.
With that in mind, in this work we introduce the method called One-class Classifier Dynamic Ensemble
Selection for Multi-class problems (MODES, for short), which provides competent classifiers for each
region of the feature space by decomposing the original multi-class problem into multiple one-class
problems. So, each class is segmented using a set of cluster validity indices, and an OCC is trained for
each cluster. The rationale is to reduce the complexity of the classification task by defining a region of
the feature space where the classifier is supposed to be an expert. The classification of a test example
is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given
by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases,
4 OCC models, and 3 aggregation methods showed that the proposed architecture outperforms the
literature. When compared with the state-of-the-art, MODES obtained better results, especially for
databases with complex decision regions.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multi-class classification may be tackled in several ways. The
ost common approach is to use multi-class classifiers, where

he objective is to separate the classes of the problem. However,
ome difficulties embedded in the nature of the data, for ex-
mple, class imbalance, complex data distribution, class overlap,
igh number of classes and small data samples, may impair the
erformance if not carefully treated.
Deep learning [1], which is currently one of the most remark-

ble machine learning techniques, show good performance in a
ariety of multi-class problems and, in general, does not require
ny special procedure to deal with the aforementioned issues.
owever, the amount of data required for training a satisfactory
odel depends on the complexity of the problem, i.e., the more
omplex is the problem, the more data is needed. Databases pre-
enting complex data distribution, class overlap, and high number

∗ Corresponding author.
E-mail address: rcpf@cin.ufpe.br (R.C.P. Fragoso).
ttps://doi.org/10.1016/j.knosys.2021.107290
950-7051/© 2021 Elsevier B.V. All rights reserved.
of classes, for example, require more data [2]. Furthermore, class
imbalance is still an important issue regarding deep learning
methods, mainly for non-image databases [3]. Data sampling,
i.e., oversampling and downsampling, may be used to diminish
this issue. Oversampling techniques, such as Synthetic Minority
Over-sampling TEchnique (SMOTE) [4], augments the size of the
minority class, creating synthetic data points to balance the ma-
jority class. Downsampling techniques, perform data reduction
on the majority class. In oversampling, the original distribution
of the minority class is maintained and no data is discarded.
However, since the majority class is ignored, synthetic data points
may include noisy data [5] and/or may be generated over the
majority class increasing class overlap [6]. On the other hand,
Downsampling diminishes the computational effort for training,
since less data is used, however the classification performance
may be hindered due to information loss caused by the exclusion
useful data. Thus, reducing the data may not be a good option
if data is already scarce. Therefore, databases with such impair-
ments may be a difficult to solve problem, even for a powerful

technique such as deep learning.

https://doi.org/10.1016/j.knosys.2021.107290
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107290&domain=pdf
mailto:rcpf@cin.ufpe.br
https://doi.org/10.1016/j.knosys.2021.107290

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

c
p
c
O
t
t
d
d
t

s
l
i
d
t
O
f
i
a
r
s
E
d
o
g
t
e
f
i

u
t
a
o
b
a
t
s
a
g
s
t
c
s
b
c
t
o
e

c
t
e
t
t
d

i
O
p
l
c
e
w
p

An alternative that is recently gaining attention is the one-
lass decomposition, where each class is treated as a separate
roblem [7,8]. The data from each class of the original multi-
lass problem is fed to a one-class classifier (OCC) and each
CC estimates the likelihood of a test example belongs to a
arget class. The final classification decision, i.e., which class the
est example is assigned to, is given by the aggregation of the
ecisions made by the OCCs. The rationale is that, following the
ivide and conquer principle, each one-class problem is simpler
o solve than the original multi-class problem.

It is important to remark that one-class classifiers are not
uperior to standard classifiers for most of the multi-class prob-
ems. OCCs do not access counter-examples in the training phase,
nstead, it uses the target data to define a decision border that
escribes the data and maintains the generalization power. In
his case, inter-class information is lost. However, the nature of
CCs make of one-class decomposition an interesting approach
or specific cases, where the data contain the aforementioned
ssues [7]. For example, because OCCs treat each class individu-
lly, class imbalance is not an issue. Furthermore, for the same
eason, a database with class overlapping may be better de-
cribed by one-class classifiers than with standard classifiers.
ven fuzzy classification does not allow extremely overlapped
ecision regions [9]. One-class decomposition permits to generate
verlapped decision borders in the training phase and the aggre-
ation on the test phase is responsible for deciding which class a
est example belongs to based on the proximity or importance to
ach class, for example. One-class decomposition is also beneficial
or problems in which the number of classes may vary, such as
ncremental learning or open-set problems [10].

The most intuitive approach for one-class decomposition is to
se an OCC for each class of the original problem and aggregate
heir outputs. However, a single one-class classifier, as well as
single standard classifier, hardly ever fits the data distribution
ptimally [11]. Recently, Multiple Classifiers Systems (MCS) have
een adopted in the context of one-class problems aiming to
ddress this issue. MCS may perform better and be more robust
han a single classifier by combining the outputs of distinct clas-
ifiers [12,13]. For this reason, MCS are an increasingly adopted
pproach [14]. The most common way of working with MCS is to
enerate a pool of classifiers using the training data (generation
tep) and to combine the responses of these classifiers to give
he final classification (aggregation step). The classifiers should be
omplementary, i.e., competent in different regions of the feature
pace, and individually accurate. Optionally, a selection step may
e adopted to select the most competent classifiers instead of
ombining all of them. The selection may be static (a subset of
he classifiers in the pool is selected to classify all test examples)
r dynamic (a subset of classifiers is selected on the fly to classify
ach test example).
Recent studies using Multiple Classifiers Systems with one-

lass classifiers have shown promising results [8,10,15,16]. To
he best of our knowledge, a single technique adopted dynamic
nsemble selection for one-class decomposition [8]. However,
his technique does not treat the intra-class complex data dis-
ribution, i.e., the presence of remote examples and multi-modal
ata, as a particular issue.
We propose an architecture for multi-class classification us-

ng one-class decomposition. The proposed architecture, namely
ne-class Classifier Dynamic Ensemble Selection for Multi-class
roblems (MODES, for short), decomposes the multi-class prob-
em into one-class problems, segments the training data of each
lass using different numbers of clusters, and trains an OCC for
ach cluster. Since each OCC is trained with different subsets,
e expect a high diversity among the OCCs in the generated

ool, which is a desirable characteristic of an MCS. The proposed

2

strategy aims at facilitating the classification task because each
OCC deals only with part of the whole classification problem,
which is the rationale behind the divide and conquer principle.
Moreover, this data segmentation strategy is also interesting in
dealing with complex data distribution (as shown in the problem
statement section) because in such situations, locally specialized
OCCs may fit better the data [10]. It is important to remark that
the determination of the ideal number of clusters in a database is
still an open problem [17], so, in this work, we use cluster validity
indices [18] as an alternative to defining the number of clusters in
each class. During the generalization phase, an ensemble (a subset
of the whole pool of OCCs) is selected per test example. This
ensemble should be composed of the most competent OCCs to
classify the test example. Afterwards, these OCCs in the ensemble
are combined to predict the class of the test example.

This research aims at improving the classification performance
in one-class decomposition tackling the issue of complex intra-
class data distribution using multiple one-class classifiers for each
class. The main contributions of this work are: (1) an OCC decom-
position architecture capable of dealing with complex intra-class
data distribution; (2) a dynamic ensemble selection strategy that
selects the most competent OCCs per test example; (3) a per-
formance evaluation of state-of-the-art one-class decomposition
techniques.

This text is organized as follows. Section 2 presents some
problems faced by OCC when dealing with complex data distri-
bution. Section 3 presents the background of one-class decompo-
sition, multiple classifiers systems, dynamic ensemble selection
and other techniques for a better understanding of the follow-
ing sections. Section 4 details the proposed architecture, named
MODES. Section 5 shows the experimental configurations and
results obtained by the proposed architecture. The final remarks
are presented in Section 6.

2. Problem statement

One-class classifiers (OCCs) try to define a closed boundary
around the examples belonging to only one class in the training.
In the test, the class used for training, called the target class, has
to be distinguished from all other possible examples. The class of
non-target examples is known as outlier class.

A single OCC may not be capable of capturing well the charac-
teristics of the target class. For example, if the training data is
multi-modal or contains remote examples, empty regions may
appear within the decision boundary due to an over estimation
in training. That is, in order to encompass the remote examples
or the multiple modes present in the training data, the decision
boundary may include regions that are not covered by any train-
ing example. In the test, both target and outlier examples may
appear in the empty regions [8].

Even successful OCCs, such as Support Vector Data Descriptor
(SVDD) suffer from this issue. SVDD defines a spherically shaped
decision boundary around the target data [19]. However, a single
sphere may not be able to best describe the data if there are
some distinctive distributions in it [20]. Kernel functions help to
optimize the decision region in such a way that most of the target
examples are inside it while minimizing its size to diminish the
probability of including outliers. The training data is mapped from
the input space into a higher dimensional feature space which
is easier to distinguish from other distributions. However, SVDD
assumes that all training examples (in the target class) come from
a single distribution, which is not true in many cases. Hence, in
case of distinctive data distributions in the target class, outliers
may be inside the decision region, as well, if only one spherically
shaped decision boundary, i.e., a single SVDD, is used [21].

Consider a target class formed by more than one distribution,
i.e., the data is multi-modal. If only one OCC is trained for the

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

t
d
g
a
t
m

a
c
i
f
b
e

d
e
I
m
n
d

p
i
m
t
c

p
D
o
b
o
a
s
c
p
e

i
m
e
h
n

3

t
u
i
c

3

o
f
e

target class, two scenarios may occur: (a) the OCC will define a
broad (overestimated) decision region to contemplate all target
examples, or (b) the OCC will define a tight decision region to
diminish the proportion of examples from the outlier class inside
it. A broad decision region may lead to a high false positive rate
while a reduced decision region may lead to a high false negative
rate.

Fig. 1 shows a hypothetical database where the data distribu-
ion presents a complex form and the classes present multi-modal
ata. The points in red represent the target class and the points in
reen represent the outlier class. Scenarios (a) and (b), mentioned
bove, are depicted using a single Gaussian one-class classifier, for
he sake of simplicity, however, the concepts may be extended for
ore complex OCCs.
In scenario (a), the decision region is wide enough to embrace

ll examples from the target class. Only examples from the target
lass are used in the training process, i.e., outliers are not seen
n this step. Thus, a wide decision border may lead to a high
alse positive rate, since, in the test, a number of outliers may
e located inside it, such as shown in Fig. 1(a) and be, therefore,
rroneously labeled as target class.
In order to avoid that situation, one may configure a reduced

ecision border, allowing a percentage of the target training
xamples outside the decision region, as shown in scenario (b).
n the example, besides not being able to achieve such objective,
any examples from a specific distribution in the target class are
ot embraced by the decision region. Thus, examples from this
istribution in may be erroneously labeled as outliers.
To avoid the problems explained in scenarios (a) and (b), a

ossible solution is to identify the different data distributions,
.e. modes, present in the target class and train an OCC for each
ode. With this approach, the decision region for each OCC tends

o be simpler than using the original data, leading to more precise
lassification.
Fig. 2 shows the decision regions for the same problem ex-

osed in Fig. 1 using (a) one, (b) two, (c) four and (d) five Gaussian
ata Descriptors. The scenario depicted in Fig. 2(a) is the same
f Fig. 1(a). In Fig. 2(b), two OCCs are used. In this case, it can
e noted that fewer outlier examples are in the decision regions
f both OCCs than in Fig. 2(a). However, some target examples
re not within the decision region of none of the OCCs. The
cenario shown in Fig. 2(c) uses four OCCs. In this case, the target
lass is almost perfectly separated from the outlier class. Fig. 2(d)
resents the scenario using five OCCs, where some target class
xamples are not embraced by none of the OCCs.
It is important to remark that using a high number of OCCs,

.e., more OCCs than the number of modes present in the data,
ay lead to inaccurate results, since training an OCC with data
xcessively segmented leads to a reduced decision region and
igh false negative rate. So an important aspect is to define the
umber of modes present in the data to avoid such impairments.

. Background

This section presents the concepts about one-class classifica-
ion and Multiple Classifiers Systems that are necessary for better
nderstanding the rest of this paper. Additionally, we present
mportant works related with Multiple Classifiers Systems in the
ontext of one-class classification and one-class decomposition.

.1. One-class classification

One-class classification is a kind of problem where it is difficult
r expensive to obtain counter-examples, such as transaction
raud recognition, machine fault detection, anomaly detection,

tc. Thus, only examples belonging to one class are available.

3

Objects from this class are called target objects and all other
objects are called outliers. An OCC tries to describe the set of
objects from the target class and to identify which (new) objects
resemble this training set [19].

One-class classifiers are especially categorized into density
methods, boundary methods, and reconstruction methods [22].
Density methods compute the probability density function (PDF)
of the target class data. In the test, the PDF value for the test
example is compared with a threshold. This technique requires
a large amount of data to overcome the curse of dimension-
ality [23]. Gaussian and Parzen OCCs are examples of density
methods [23]. Boundary methods build a model by optimizing
a closed boundary around the target data and the acceptance
of a test example is given by the distance to the fitted model.
Boundary methods require less training data than density meth-
ods. Among the boundary methods, SVDD [19], One-class Support
Vector Machine (OCSVM) [24] and Nearest Neighbor [25] can be
remarked. Reconstruction methods assume a model of data gen-
eration process and estimate the parameters of this model in the
training. Self-organizing Maps and Learning Vector Quantization
are classified as reconstruction methods [26].

One-class classifiers have been successfully applied to a vari-
ety of applications such as real-time activity error detection [27],
text classification [28], authorship verification [29]. Recently, one-
class decomposition has gained attention from researchers. This
technique separates the training data by class and trains one-
class classifiers for each class. Then, the classification results are
combined. Krawczyk et al. [7] showed the usefulness of one-
class decomposition in some specific cases, such as, complex data
distribution, imbalanced data, presence of noise, high number of
classes. For these cases, the research shows that using an OCC for
each class of the original problem and aggregate them is more
effective than using classical binary decomposition strategies.
Other important application of one-class decomposition is when
the number of classes is not known a priori, since one-class
classifiers are trained for each class separately [10].

3.2. Multiple classifiers systems

The main rationale behind the use of Multiple Classifiers Sys-
tems (MCS) is that, following the no free lunch theorem [30],
there is not a single classifier that is competent to deal with test
examples from all regions of the input space. Thus, MCS com-
bine a set of classifiers expecting to outperform any individual
classifier.

An MCS is commonly divided into 3 steps: generation, se-
lection and fusion/aggregation. In the generation step, a pool of
classifiers is generated, seeking for accuracy and diversity among
the classifiers. The purpose of the generation is to form sets of
classifiers that complement each other, that is, to generate a
pool that contains competent classifiers for different regions of
the feature space. The most effective generation techniques train
the base classifiers with different feature sets or different train-
ing sets or, yet, use different classifier models (heterogeneous
pools) [14].

The goal of the selection step is to select from the pool of
classifiers the most competent classifiers for the problem. Since
this is an optional step, it is omitted in some techniques. It is pos-
sible to build an MCS skipping this step and performing a static
combination of all classifiers in the pool. However, the advantages
of applying the selection step are widely known [12,14].

The selection task can be static or dynamic [31]. In static
selection, a subset of classifiers is formed in the training phase.
Then, in the test phase, the selected ensemble is used to classify
all the test examples. Dynamic selection is performed during the
classification of test examples. For each test example x, a re-
gion of competence is computed, usually based on the k-Nearest

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

N
c
d
(

Fig. 1. Decision region of a single Gaussian OCC. Scenario (a) shows a broad decision region, leading to high false positive rate. Scenario (b) shows a reduced decision
region leading to high false negative rate.
Fig. 2. Decision regions using (a) one, (b) two, (c) four and (d) five Gaussian one-class classifiers.
eighbors of x. The best performing classifiers in the region of
ompetence are selected to classify x. Dynamic selection can be
ivided into two approaches [14]. In Dynamic Classifier Selection
DCS), for each test example x, the most competent classifier is
chosen. In Dynamic Ensemble Selection (DES), a set composed of
the most competent classifiers in the pool is selected.

The fusion, or aggregation, step is responsible for combining
the output of each individual classifier to provide the final output
of the MCS.

3.3. Related works

Multiple Classifiers Systems have recently been adopted in
the context of one-class problems. In [10], the authors used a
clustering-based approach to generate ensembles of One-class
Support Vector Machines. The data from the one-class problem
is segmented and, for each cluster, an OCC is trained. This MCS
does not include selection step, i.e., all the classifiers in the pool
are used to classify all test examples. A classifier trained with
examples from a specific region of the feature space may not be
competent to classify test examples from other regions. Hence,
the combination of all classifiers in the pool may hinder the
performance. Dynamic selection techniques aim to mitigate this
problem.
4

A DCS method for OCC was proposed in [15]. DCS techniques
select a single classifier in execution time to classify each test
example. This work showed that dynamic selection techniques
work well in the context of OCC because during the training
phase it was possible to generate a diverse pool of classifiers.
However, in DCS, the performance depends on the quality of the
algorithm that selects the classifier from the pool [32]. Since only
one classifier is responsible for the classification of a test example,
the performance may be impaired if this selected classifier is
not competent for the classification of the current test example.
Complex data distribution or the presence of noise may worsen
this problem since the chances of selecting a non-competent
classifier are higher.

This problem may be alleviated using DES, which selects a
subset of classifiers from the pool to compose the ensemble re-
sponsible for the classification decision for a test example. To the
best of our knowledge, the first DES for one-class decomposition
was proposed by Krawczyk et al. [8].

In this work, an OCC is trained for each class of the original
problem. To classify a test example, the method selects an ensem-
ble composed of the OCCs trained with the data from the classes
in the neighborhood of that test example. Then, the original
multi-class problem is recomposed by aggregating the decisions
of the selected one-class classifiers. Details of intra-class data

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

c
p
a
r

c
t
i
t
D
c
t

4

b
m
i
o
b
c
o
t

a
t
f
c

a
t
u
t
e
t
T
o

Table 1
Comparison involving MODES and other techniques that use one-class decom-
position, OCC ensemble, for each one-class problem, and/or dynamic selection
(DS).
Ref Title Decomp. Ensemble DS

[10] Clustering-based ensembles for one-class
classification

Yes Yes No

[7] On the usefulness of one-class classifier
ensembles for decomposition of
multi-class problems

Yes No No

[15] Dynamic classifier selection for one-class
classification

No No DCS

[8] Dynamic ensemble selection for
multi-class classification with one-class
classifiers

Yes No DES

[16] Modular ensembles for one-class
classification based on density analysis

No Yes No

[33] Support Vector Data Descriptions and
k-Means Clustering: One Class?

No Yes No

One-class Dynamic Ensemble Selection
for Multi-class problems (MODES)

Yes Yes DES

distribution are not taken into account when using only one OCC
for each class, what may impair the classification performance.
However, to the best of our knowledge, state-of-the-art dynamic
selection techniques for one-class decomposition use only one
OCC for each class of the original problem.

Other methods [16,33] successfully use multiple one-class
lassifiers, however they were not used for one-class decom-
osition. Even so, they served as inspiration to the proposed
rchitecture, since they represent important advances in this
esearch field.

Table 1 summarizes the characteristics of the related works in
omparison with the proposed approach (MODES). We evaluate
hree aspects: (1) Can the technique handle multi-class problems,
.e., can it be used for one-class decomposition? (2) Does the
echnique adopt OCC ensembles for the one-class problem? (3)
oes the technique adopt dynamic selection (DS) for the one-
lass problem? MODES is the only technique that exhibits all
hese characteristics.

. Proposal

The proposed architecture, named One-class Dynamic Ensem-
le Selection for Multi-class problems (MODES), aims to tackle
ulti-class classification by decomposing the original problem

nto one-class problems, generating pools of classifiers for each
ne-class problem, and using dynamically selected OCC ensem-
les to classify each test example. It deals with complex intra-
lass data distribution by segmenting the training data of each
riginal class, using a clustering algorithm such as k-Means, and
raining an OCC for each cluster.

MODES is composed of two main phases: (i) training phase
nd (ii) test phase. The training phase consists of separating the
raining data by class and generating a pool of one-class classifiers
or each class. The data is segmented into different numbers of
lusters and a one-class classifier is trained for each cluster.
To tackle the problem of defining the ideal number of clusters,
set of 13 cluster validity indices [18,34] are computed for

he data from each class. Each index evaluates the clustering
sing from 2 to 10 clusters and outputs the number of clusters
hat it considers ideal for the data. This range was chosen in
xperiments, where we identified that, in general, using more
han 10 clusters worsens the classification accuracy of MODES.
he goal is to minimize the dependency on the determination
f the ideal number of clusters and, thus, to approximate the
5

number of partitions to the number of modes present in the data.
Moreover, training the pool of OCCs with different input data
(different partitions) should increase the diversity, which is an
important aspect for ensemble methods.

Algorithm 1 describes the training phase, which follows these
steps:
Algorithm 1: Training phase

input : Γ : a training set
output: M: an array with pools of OCCs for each class

1 M = ∅

2 for c ∈ C do
3 Γc = examples(Γ , c) // get

examples from class c
4 D = g = ∅

5 for index ∈ {Silhouette, Hartigan, C-index, ...} do
6 D = D ∪ computeIndex(Γc, index)
7 for i = 1 : |D| do
8 gi = segment(Γc, di)

// {k1, ..., kj, ..., kdi }
9 pi = ∅

10 for j = 1 : di do
11 λj = trainOCC(kj)
12 pi = pi ∪ λj

13 Mc = Mc ∪ < pi, gi >

14 return M

1. Separate the training examples by class (lines 2 and 3): let
C be the set of classes, the examples in the training set Γ

are separated by class resulting in |C | training sets: {Γ1, Γ2,
. . . , Γ|C |}.

2. Compute the cluster validity indices for Γc (lines 5 and 6):
for each class c ∈ C , a set of cluster validity indices is
computed. Each index assesses the data segmentation with
2 to 10 clusters and the best number of clusters indicated
by the index is added to the set D. After the computation of
all indices, D contains at least one integer (when all indices
indicate the same number of clusters).

3. Segment Γc using the numbers of clusters in D (lines
7 and 8): Γc is segmented using a clustering algorithm
and each di ∈ D. This results in |D| different partitions
{g1, . . . , gi, . . . , g|D|}, where each gi contains di clusters
{k1, . . . , kj, . . . , kdi}.

4. Train an OCC for each cluster (lines 10 to 12): for each
cluster kj in gi, a one-class classifier λj is trained and added
to the pool pi. Clusters containing only one example are
discarded, since it may represent an outlier.

5. Repeat items 2 to 4 for each class c ∈ C , adding the pairs
⟨pi, gi⟩ to Mc .

The output of the training phase is the array M , which con-
tains c entries Mc , one for each class. Each Mc is an array con-
taining |D| pairs ⟨pi, gi⟩, where pi is a pool composed of di
OCCs {λ1, . . . , λj, . . . , λdi} and gi is Γc segmented into di clusters
{k1, . . . , kj, . . . , kdi}. Mc binds each OCC λj to the cluster kj used
to train it.

In the test phase, for each test example x, MODES uses only
the classifiers trained with data belonging to classes present in
the neighborhood of x. The neighborhood Ψ is defined as the
classes of the k nearest neighbors of x, where k is configured
with 3 x |C |. Additionally, a threshold is applied so that classes
with less than 10% of the examples in the neighborhood are
discarded. This approach is based on that proposed in [8] and
aims to remove non-competent classifiers from the ensemble. For
each class c present in the neighborhood of x, an ensemble E is
c

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

s

dynamically selected to classify x. The classification of x in the
cth one-class problem (i.e, if x belongs or not to class c) is given
by the aggregation of the OCCs in Ec . The final classification of
x, i.e., the final decision that assigns a label to x, is given by the
aggregation of the decisions made by the ensembles E1, . . . , Ec , . . . ,
EC generated for each class c present in the neighborhood of x.
Algorithm 2: Test phase

input : x: a test example
M: an array with pools of OCCs for each class
DSEL: a validation set

output: ω: the predicted class for x
1 nn = kNN(x,DSEL)
2 Ψ = classes ∈ nn // get the set of classes of

examples in nn
3 R = ∅

4 for c ∈ Ψ do
5 Ec = ∅

6 for < pi, gi >∈ Mc do
7 // pi = {λ1, ..., λj, ..., λdi } and gi = {k1, ..., kj, ..., kdi }
8 n = argmin{distance(x, gi)} // index to the

nearest cluster
9 Ec = Ec ∪ λn

10 ωc = mean(Ec, x)
// mean aggregation

11 R = R ∪ ωc

12 ω = agg(R, x) // DTs,
ECOC or MAX

13 return ω

Algorithm 2 describes the test phase, which follows these
teps to classify each test example x:

1. Compute the region of competence Ψ (lines 1 and 2): the
region of competence is defined as the classes of the k
nearest neighbors of x in the validation set DSEL. k is defined
as 3 × |C |. A threshold is applied so that classes with
less than 10% of the examples in the neighborhood are
discarded [8].

2. Select each class c present in the region of competence Ψ

(line 4). If Ψ contains only one class, x is assigned to this
class.

3. Select the ensemble Ec (5 to 9): for each pair ⟨pi, gi⟩ ∈ Mc ,
identify in gi the closest cluster to x and select in pi the OCC
trained with data from that cluster to the ensemble Ec .

4. Aggregate Ec (lines 10 and 11): the mean of probabilities
is used to aggregate the predictions for the one-class prob-
lem. This process is repeated for all the classes in Ψ and
the partial decisions are added to the array R.

5. Aggregate the decisions in R (line 12): Use an aggregation
strategy to recompose the original multi-class problem
from the one-class decisions.

MODES has three hyperparameters, however, it is not nec-
essary to tune or optimize values for them, since previous ex-
periments encountered efficient values that lead to enhanced
classification performance. Table 2 details the values used for
these hyperparameters.

It is important to note that the proposed architecture presents
an increased computational complexity which may lead to in-
creased memory and processing requirements. However, since
the focus of applications for MODES does not include large
databases nor data streams, we focused our efforts on enhancing
the classification accuracy rather than computational require-
ments.
6

Table 2
Default values for MODES hyperparameters.
Hyperparameter Value

Number of clusters 2 to 10
Ψ (region of competence) 3 x |C |, where C is the set of classes
Threshold for Ψ 10%

4.1. Toy example

We present a toy example in order to demonstrate how
MODES works in a visual manner, which helps to understand
it. Figs. 3 and 4 describe the training and test phases, respec-
tively, for a specific class c ∈ C of a hypothetical database. The
target class is represented by the red dots while the green dots
represent the outliers, i.e., the data from other classes.

The first step of the training phase is the computation of the
cluster validity indices for the target data, in order to define a
set of numbers of clusters to segment the data. Suppose that, in
this toy example, the computation of the cluster validity indices
outputs the set D = {2, 4, 5}. Thus, for each di ∈ D, MODES
segments the target class data into di clusters gi = {k1, . . . , kdi}.
Then, an OCC λj is trained for each cluster kj ∈ gi, making up the
pool pi. For instance, for d1 = 2, the target data is segmented
into g1 = {k1, k2} and the pool of OCCs p1 = {λ1, λ2} is trained.
The pairs ⟨pi, gi⟩ are added to the array Mc . In this toy example,
Mc = {⟨p1, g1⟩, ⟨p2, g2⟩, ⟨p3, g3⟩}. Each of these pairs bind a pool
of OCCs to the clustered data which it was trained with. The
output of the training phase is the array M , composed of the
arrays Mc for c ∈ C .

The test phase starts with a test instance x. The region of
competence Ψ is defined, based on the neighborhood of x. For
each class c ∈ Ψ , MODES retrieves from the array M (composed
in the training phase) the array Mc . MODES then computes, for
each gi, the distance from x to the centers of the clusters. Then,
the OCC in pi trained with the data from the closest cluster is
selected to compose the ensemble Ec . In this toy example, since
the closest clusters to x are k2 for d1, k2 for d2 and k3 for d3,
Ec = {λ12, λ22, λ33}, where λdij is the jth OCC from the pool pdi .
The one class classification for the class c is given by the mean
of probabilities for Ec . Suppose that Ec outputs {0.75, 0.85, 0.8},
then ωc = 0.8, where ωc is the mean probability computed by Ec .
The final classification, is given by the aggregation of the decisions
for each Ec , with c ∈ E. Using MAX aggregation, for instance, the
test example would be assigned to the class c with higher support
ωc .

5. Experiments

In this section, we evaluate the performance of the proposed
architecture. The experiments compare MODES with two dif-
ferent approaches of one-class decomposition: (1) Dynamic En-
semble Selection with THReshold based neighborhood pruning
(DESTHR) [8], a dynamic ensemble selection method with neigh-
borhood pruning based on threshold, which is the state-of-the-art
technique regarding multi-class classification using one-class de-
composition; (2) the aggregation, without selection, of a pool of
one-class classifiers composed of one OCC for each class [7]. In
(2), the training phase consists in dividing the data by class and
training an OCC for each class. In the test phase, a test example
is submitted to all trained OCC and an aggregation technique
is used to give the final classification based on the outputs of
each OCC. Technique (2) is further referred in this work as static
combination of OCCs. The experimental protocol is described in

Section 5.1 and the results are discussed in Section 5.2.

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

t

Fig. 3. Toy example of the training phase of MODES for a class c . The cluster validity indices output a set D = {2, 4, 5} containing the numbers of clusters to segment
he target data. A one-class classifier λj is trained for each cluster kj .
Fig. 4. Toy example of the test phase of MODES for a class c. MODES computes the euclidean distance between the test example x (represented by) and the
centroid of each cluster. The OCC trained with data from the closest cluster is dynamically selected to the ensemble Ec .
5.1. Experimental protocol

Twenty five databases from Keel datasets repository1 were
used. Most of these databases were used in [8] which also aims
to evaluate the decomposition of multi-class problem into one-
class problems. Some of the selected databases are modified
versions of other databases. For example, Glass1 and Glass6 are
binary versions of the database Glass, where the positive exam-
ples belong to the classes 1 and 6, respectively, and the negative
examples belong to the other classes. Furthermore, the databases
Movement Libras, Optidigits and Texture were modified. Some
classes were joined so that the modified databases have 7, 4 and
5 classes respectively. The selected databases present variable
number of features (from 6 to 90), classes (from 2 to 26) and
examples (from 148 to 12,960). Furthermore, there are balanced
and imbalanced databases. Table 3 describes the characteristics
of each database.

As the proposed architecture relies on the distance among
the training examples (for clustering), in a pre-processing step,
the data was scaled using z-score [35]. Non-numerical attributes
were transformed using simple label encoder, where each value
is bound to an integer value (for example, a is transformed to 1,
b is transformed to 2 and so on).

The determination of the numbers of clusters for the training
data of each class was performed using the 13 fastest indexes
present in the R package NbClust [34]: Calinski and Harabasz [36],
PtBiserial [37], Hartigan [38], Ball [39], Mcclain [40], KL [41],
Silhouette [42], Gap [43], Dunn [44], SDindex [45], SDbw [46],
C-index [47], Davies and Bouldin [48]. The evaluation of the
numbers of clusters was performed from 2 to 10 clusters. Since
the average number of clusters returned by the cluster valid-
ity indexes was 5.5 (with standard deviation 3), we did not
evaluate other ranges. The clustering algorithm adopted in the
experiments was k-Means due to its simplicity and good re-
sults [49]. We used the default hyperparameters values given by

1 Available in: http://www.keel.es/dataset.
7

Table 3
Databases description. Imbalance Ratio is computed as the division of the
cardinality of the largest class by the cardinality of the smallest class.
Name Examples Features Numeric Nominal Classes Imbalance

ratio

Automobile 159 25 15 10 6 16.00
Car 1,728 6 0 6 4 18.62
Cleveland 297 13 13 0 5 12.31
Dermatology 358 34 34 0 6 5.55
Ecoli 336 7 7 0 8 71.5
Flare 1,066 11 9 2 6 7.70
Glass 214 9 9 0 6 8.44
Glass1 214 9 9 0 2 1.82
Glass6 214 9 9 0 2 6.38
Led7digit 500 7 7 0 10 1.54
Letter 2,000 16 16 0 26 1.11
Lymphography 148 18 3 15 4 40.50
Movement Libras 360 90 90 0 7 1.50
Nursery 12,960 8 0 8 5 2,160
Optdigits 5,620 64 64 0 4 1.53
Page-blocks 5,472 10 10 0 5 175.5
Penbased 10,992 16 16 0 10 1.08
Satimage 6,435 36 36 0 6 2.45
Segment 2,310 19 19 0 7 1.00
Shuttle 5,780 9 9 0 7 4,558
Texture 5,500 40 40 0 5 5.00
Vehicle 846 18 18 0 4 1.10
Vehicle2 846 18 18 0 2 2.88
Vowel 990 13 13 0 11 1.00
Yeast 1,484 8 8 0 10 92.6

Scikit Learn2 implementation, except for the number of clusters,
which was chosen by clustering validity indices, as explained in
Section 4.

Four one-class classifiers were adopted in this work, all of
them implemented in the Matlab package dd_tools [50]: Gaussian
Data Descriptor (GaussianDD), Parzen Data Descriptor

2 https://scikit-learn.org/.

http://www.keel.es/dataset
https://scikit-learn.org/

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

e

p

5

c
c
a
t
f
i

Table 4
OCCs hyperparameters. Matlab dd_tools library implementation was used in the
xperiments.

GaussianDD Regularization parameter = 0.001
Fraction rejected = 0.05

ParzenDD
Kernel type = normal
Width parameter optimization = Max. likelihood
Fraction rejected = 0.05

SVDD Kernel type = RBF
C = 5.0
γ = 0.0045
Fraction rejected = 0.05

MSTDD Max. path = none
Fraction rejected = 0.05

(ParzenDD), Support Vector Data Descriptor (SVDD) and Mini-
mum Spanning Tree Data Descriptor (MSTDD). SVDD, ParzenDD
and MSTDD are used in [8], which is the state-of-the-art one-
class decomposition technique. Our technique uses centroid-
based clustering to generate the chunks of data used for training.
Thus, we expect that GaussianDD performs well with MODES.
For this reason, we also evaluate GaussianDD one-class classi-
fier. We used the implementations of the OCCs available in the
Matlab library dd_tools [51] and the hyperparameters used in the
experiments are detailed in Table 4.

MODES aggregates the prediction in two levels. The first is
performed in the one-class problem. The output of the one-class
classification, i.e., whether the example resembles the target class
or not, is given by the aggregation of the selected classifiers.
For this level of aggregation, the mean of probabilities [12] is
employed. The second level is in the re-composition of the multi-
class problem, where the predictions of the one-class problems
are aggregated to give the final prediction, i.e., which class the
example belongs to. In the second level, we adopt Decision Tem-
plates (DTs) [52], Error Correcting Output Codes (ECOC) [53] or
Maximum Support (MAX) [12].

The experiments were performed using 5-fold cross-validation
and the final performance is given by the average of the 5 folds.
The performance was evaluated using accuracy [12] and Kappa
statistic [8,54], both metrics used in [8]. Kappa statistics, or Co-
hen’s Kappa Coefficient, was adopted as a complementary metric
to accuracy because it provides a different evaluation for the
results, mainly for minority classes. Eqs. (1) and (2) describe the
computation of such metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP, TN, FP and FN mean true positive, true negative, false
positive and false negative, respectively.

Kappa =
po − pe
1 − pe

, (2)

where po is the empirical probability of agreement on the label
assigned to any sample (the observed agreement ratio between
the predicted class and the actual class), and pe is the hypothetical
robability of chance agreement.

.2. Experimental results

Two experiments were executed in this work: (1) different
onfigurations of the proposed architecture (using a set of one-
lass classifier models and aggregation techniques) were evalu-
ted to determine the most effective one; (2) the best configura-
ion for MODES is compared with the state-of-the-art technique
or one-class decomposition, DESTHR [8]. The results are presented
n Sections 5.2.1 and 5.2.2, respectively.
8

5.2.1. Experiment 1
This experiment aims to identify the most effective configu-

ration for MODES. Thus, we evaluate the proposed architecture
using 4 OCC models and 3 aggregation techniques, making up 12
different configurations for MODES.

Tables 5 and 6 present the accuracy and Kappa statistics
scores, respectively, for all configurations of MODES. The best
result for each database is in bold and the last rows present the
mean performance for all databases, the number of wins, ties
and losses and the average rankings. The average rankings are
computed using all the 12 configurations.

MODES achieved its best performance using MSTDD and De-
cision Templates, for both accuracy and Kappa Statistic. This
configuration presented the best average accuracy and Kappa
statistics scores and the higher number of wins, i.e., the number
of databases in which it achieved the best performance among all
configurations, for both metrics. The best results were achieved
with DTs and the best performing one-class classifiers were
MSTDD and GaussianDD.

Friedman test was employed to determine if the different
configurations present significantly different performance. The
test output p − value = 1.11−16 for both accuracy and Kappa
Statistics, meaning that the difference of performance among the
configurations is significant. Then, Nemenyi post hoc test was
used to identify which of the configurations differ from each
other. Fig. 5 shows the results for Nemenyi post hoc test.

Again, MSTDD with DTs was identified as the best performing
configuration, for both accuracy and Kappa Statistics. It is also
interesting to note that the 7 best performing configurations (all
base OCCs (except for ParzenDD) with DTs and MAX aggregation)
present quite similar performance (mean accuracy between 81.12
and 84.05). The performance of the other 5 configurations (all
base OCCs with ECOC and ParzenDD with DTs) is in a level
below (mean accuracy between 73.43 and 79.28). This can be
interpreted as an evidence that MODES is robust to the choice
of the base one-class classifier, since, except for ParzenDD with
DTs, the base OCCs performed similarly when using the same
aggregation technique.

A quantitative analysis of the generation and selection phases
of the proposed architecture was carried out. In the training
phase, MODES segments the data of each class d using k-Means
clustering algorithm with a set N of numbers of clusters
{n1, n2, . . .} given by the cluster validity indices. For each ni ∈ D,
MODES trains a pool of OCCs, one OCC for each cluster. The
average number of OCCs generated by class ranges from 13.60 to
33.74 (average 25.55) using DTs or MAX and from 16.17 to 35.10
(average 28.48) using ECOC.

In the selection phase, MODES selects one OCC for each num-
ber ni ∈ N to compose the ensemble. Thus, the cardinality of
N represents the number of OCCs selected. The distribution for
the frequency of selection of the OCCs is presented in Fig. 6:
never selected, selected for up to 1%, 2%, 3%, 4%, 5% of the test
examples and selected for more than 5% of the test examples.
The frequencies are equal for DTs and MAX, since these aggrega-
tion strategies use the original classes. ECOC creates meta-binary
problems which use meta-classes, thus, the frequencies for ECOC
are showed separately (right side of Fig. 6). For the majority of
the databases, the highest frequency of selection is between 0%
and 1%, that is, most of the OCCs are selected to classify up to
1% of the test examples. It is worth noting that the majority of
the OCCs is selected at least once. Using ECOC, less than 10% of
the OCCs is never used while for DTs and MAX, less than 20% of
the OCCs are never used. Both figures indicate that the strategy
for pool generation (i.e., segment the training data and train an
OCC for each cluster) is effective, since few OCC are never selected
and most of the OCCs are used for classifying few examples, what
means that they are used for specific regions of the feature space.

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290
Table 5
Accuracy performance of MODES using DTs, ECOC and MAX aggregation methods for four one-class classifiers. Best result for each database in bold. The last row
represents the number of wins, ties and losses achieved by each technique.
Dataset Decision templates Error correcting output codes MAX

GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD

Automobile 66.44 57.12 72.46 78.69 66.56 62.10 60.79 63.11 65.04 72.95 69.19 71.09
Car 89.12 90.80 90.68 84.84 90.05 77.49 85.48 82.00 83.85 89.70 81.71 84.32
Cleveland 58.24 47.43 57.24 53.88 46.46 37.41 48.77 54.18 57.18 55.86 60.28 53.85
Dermatology 93.02 84.89 92.72 92.74 93.28 91.05 92.75 93.03 91.56 92.20 92.41 91.89
Ecoli 75.90 76.80 78.28 77.69 78.61 77.69 77.71 72.93 75.00 76.50 75.30 75.91
Flare 68.76 69.51 66.60 69.61 62.94 68.39 63.41 64.63 64.07 63.60 70.08 69.89
Glass 62.18 64.95 59.41 71.54 57.50 63.11 61.24 56.57 57.48 65.42 64.98 68.69
Glass1 71.01 75.70 69.15 81.33 62.64 71.54 65.91 70.09 75.27 78.98 75.24 81.34
Glass6 94.85 94.85 96.26 95.32 93.44 93.44 93.91 95.78 96.26 95.78 95.79 95.32
Led7digit 70.80 71.60 71.20 72.20 68.00 67.60 69.20 55.00 70.00 71.00 72.00 60.80
Letter 92.48 83.81 68.17 90.52 65.50 44.90 51.55 70.41 95.34 94.22 84.65 93.88
Lymphography 74.37 66.25 76.97 74.32 68.94 71.68 77.72 71.68 66.90 68.97 79.03 70.92
Movement Libras 77.22 52.78 77.78 86.67 79.17 67.22 71.94 70.56 78.06 83.33 76.94 85.56
Nursery 92.23 80.05 83.56 74.58 83.70 54.55 62.82 63.73 92.56 79.61 89.00 72.69
Optdigits 98.02 95.23 97.38 98.02 96.69 90.11 96.30 96.80 97.85 98.11 97.33 98.01
Page-blocks 95.18 94.76 94.32 95.01 93.93 91.25 93.21 92.68 95.14 94.76 94.92 94.96
Penbased 99.36 97.19 97.40 99.27 96.53 81.96 94.13 97.42 99.42 99.19 98.45 99.02
Satimage 87.57 86.03 86.62 90.35 82.50 82.50 81.29 83.26 88.02 88.56 87.80 88.39
Segment 93.77 91.34 90.82 95.37 91.95 94.42 90.43 94.07 94.42 94.72 91.99 95.24
Shuttle 99.23 99.36 99.17 99.42 99.33 99.21 99.17 99.33 99.24 99.31 99.24 99.42
Texture 99.80 93.35 94.76 98.53 98.60 95.84 94.53 96.49 99.78 98.67 96.80 98.95
Vehicle 78.72 62.06 70.44 70.45 77.07 63.24 63.24 63.71 78.60 68.80 69.26 68.44
Vehicle2 99.17 94.21 94.45 97.64 94.33 86.88 92.91 93.50 97.05 96.93 94.44 97.64
Vowel 97.68 80.30 90.10 98.48 89.39 47.17 66.77 89.60 97.58 97.07 88.99 97.88
Yeast 53.98 56.06 52.16 54.78 44.81 54.92 44.20 44.40 49.93 56.40 47.30 51.01

Mean 83.56 78.66 81.12 84.05 79.28 73.43 75.98 77.40 82.62 83.23 82.12 82.60
Win/tie/loss 4/0/21 0/1/24 1/0/24 8/0/17 2/0/23 0/0/25 0/0/25 0/0/25 3/1/21 2/0/23 3/0/22 1/0/24
Avg ranks 4.74 7.73 6.43 3.94 7.44 9.12 9.07 8.51 5.24 4.82 5.94 5.02
Table 6
Kappa performance of MODES using DTs, ECOC and MAX aggregation methods for four one-class classifiers. Best result for each database in bold. The last row
represents the number of wins, ties and losses achieved by each technique.
Dataset Decision templates Error correcting output codes MAX

GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD

Automobile 0.5788 0.5477 0.6346 0.7199 0.5453 0.5012 0.4729 0.5283 0.5290 0.6493 0.5899 0.6176
Car 0.7822 0.8029 0.8028 0.6808 0.7753 0.4328 0.6855 0.6355 0.5905 0.7746 0.5350 0.6526
Cleveland 0.2735 0.2537 0.3054 0.2996 0.2358 0.1781 0.2208 0.1688 0.1955 0.3387 0.2918 0.2984
Dermatology 0.9125 0.8110 0.9082 0.9086 0.9164 0.8887 0.9098 0.9125 0.8934 0.9017 0.9040 0.8977
Ecoli 0.6667 0.6815 0.6979 0.6903 0.6943 0.6980 0.6782 0.6027 0.6419 0.6697 0.6488 0.6615
Flare 0.6039 0.6144 0.5777 0.6146 0.5350 0.5972 0.5362 0.5531 0.5419 0.5377 0.6178 0.6156
Glass 0.4855 0.5314 0.4632 0.6128 0.4095 0.4878 0.4626 0.3970 0.3763 0.5250 0.4996 0.5654
Glass1 0.3649 0.4840 0.3626 0.5810 0.1601 0.4553 0.2114 0.2395 0.3799 0.5284 0.4473 0.5626
Glass6 0.7705 0.7755 0.8226 0.7855 0.7281 0.7281 0.7437 0.8092 0.8134 0.8092 0.7955 0.7855
Led7digit 0.6752 0.6842 0.6797 0.6909 0.6447 0.6403 0.6578 0.4996 0.6666 0.6774 0.6884 0.5642
Letter 0.9218 0.8316 0.6689 0.9014 0.6412 0.4267 0.4962 0.6922 0.9516 0.9399 0.8404 0.9363
Lymphography 0.5038 0.3845 0.5509 0.4977 0.3910 0.4681 0.5620 0.4483 0.3784 0.4059 0.5885 0.4245
Movement Libras 0.7331 0.4518 0.7388 0.8434 0.7542 0.6153 0.6690 0.6559 0.7402 0.8043 0.7280 0.8302
Nursery 0.8875 0.7087 0.7616 0.6315 0.7593 0.3380 0.4487 0.4686 0.8902 0.7018 0.8373 0.6031
Optdigits 0.9733 0.9357 0.9646 0.9733 0.9552 0.8671 0.9500 0.9567 0.9709 0.9745 0.9639 0.9731
Page-blocks 0.7700 0.7550 0.6952 0.7564 0.6860 0.6137 0.6337 0.5711 0.7665 0.7585 0.7131 0.7615
Penbased 0.9929 0.9688 0.9711 0.9919 0.9615 0.7994 0.9348 0.9714 0.9935 0.9910 0.9828 0.9891
Satimage 0.8464 0.8253 0.8357 0.8812 0.7824 0.7856 0.7670 0.7946 0.8511 0.8589 0.8491 0.8570
Segment 0.9273 0.8990 0.8929 0.9460 0.9061 0.9348 0.8884 0.9308 0.9348 0.9384 0.9066 0.9444
Shuttle 0.9785 0.9823 0.9771 0.9837 0.9813 0.9780 0.9769 0.9813 0.9789 0.9807 0.9788 0.9837
Texture 0.9971 0.9048 0.9253 0.9789 0.9798 0.9401 0.9213 0.9496 0.9969 0.9809 0.9538 0.9848
Vehicle 0.7162 0.4935 0.6066 0.6060 0.6943 0.5103 0.5090 0.5151 0.7145 0.5836 0.5901 0.5789
Vehicle2 0.9781 0.8365 0.8593 0.9372 0.8521 0.7071 0.8034 0.8194 0.9197 0.9206 0.8467 0.9370
Vowel 0.9744 0.7833 0.8911 0.9833 0.8833 0.4189 0.6344 0.8856 0.9733 0.9678 0.8789 0.9767
Yeast 0.4064 0.4360 0.3818 0.4221 0.2471 0.4082 0.2379 0.2396 0.3435 0.4337 0.3065 0.3668

Mean 0.7488 0.6953 0.7190 0.7552 0.6848 0.6168 0.6405 0.6491 0.7213 0.7461 0.7193 0.7347
Win/tie/loss 4/0/21 2/0/23 1/0/24 8/1/16 1/0/24 1/0/24 0/0/25 0/0/25 3/0/22 2/0/23 2/0/23 0/1/24
Avg ranks 4.78 7.53 6.48 4.08 7.39 8.65 9.04 8.64 5.58 4.58 6.32 4.93
5.2.2. Experiment 2
In this experiment, we compare MODES and DESTHR [8], which

is the state-of-the-art technique for one-class decomposition. The
comparison involves the most effective configuration for each
technique: MSTDD with DTs for MODES and SVDD with DTs for
9

DESTHR. We also evaluate DESTHR with GaussianDD, using DTs,
ECOC and MAX, since this OCC model was not evaluated in [8].

Additionally, we compare these techniques with the static
combination of one OCC for each class [7]. For this technique, we
carried out a preliminary evaluation involving four OCC models

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

O

d
T
s
d

r
w
p
s

d
M
p
t
a
t
T

Fig. 5. Result for Nemenyi post hoc test for (a) accuracy and (b) Kappa Statistic.
Fig. 6. Frequency of use of base OCCs with MODES architecture for DTs and MAX (a) and ECOC (b).
t
(GaussianDD, ParzenDD, SVDD and MSTDD) and three aggrega-
tion techniques (DTs, ECOC and MAX). The preliminary evaluation
aimed at selecting to Experiment 2 the best performing configu-
ration for each aggregation technique. Considering both Accuracy
and Kappa statistic, the evaluation identified that GaussianDD
with DTs, ParzenDD with MAX, SVDD with MAX and MSTDD with
DTs present the top performances.

Tables 7 and 8 show the results obtained in Experiment 2. The
analysis of the mean performances and the win/tie/loss (number
of databases in which a technique performs better than, equals to
or worse than another technique) indicate that MODES is superior
than all configurations of DESTHR and the static combination of
CCs.
MODES outperformed the other techniques for 10 and 9

atabases, regarding accuracy and Kappa statistic, respectively.
he second best performing technique was DESTHR with Gaus-
ianDD and MAX, which presented the best performance for 6
atabases, for both accuracy and Kappa statistic.
MODES also presented the higher mean scores, for both accu-

acy and Kappa statistic (84.05 and 0.7552, respectively). DESTHR
ith GaussianDD and MAX presented the second best accuracy
erformance (81.71) while DESTHR with GaussianDD and DTs pre-
ented the second best Kappa statistic performance (0.7208).
Wilcoxon signed-rank test [55] was executed to verify if the

ifferences between the average performances obtained by
ODES and the other techniques are significant. The test was
erformed in a pairwise manner, verifying the null hypothesis
hat each of the methods present similar performance and the
lternative hypothesis that MODES presents better performance
han the other techniques. The results of Wilcoxon Signed Rank
est indicate a strong evidence that MODES performance is better
10
han all the other techniques (p − value < 0.002 for all of the
cases).

In order to evaluate the applicability of the proposed architec-
ture, an analysis of the region of competence, i.e., the neighbor-
hood of the test examples was performed. We identified that, for
some databases, a considerable proportion of the examples are
in regions where the neighbors belong to only one class. We say
that such examples are in a homogeneous neighborhood. When
an example is in a homogeneous neighborhood, the classification
is directly given by the class of the examples in the neighbor-
hood, without using the DES of OCCs. Fig. 7 shows the accuracy
for MODES and DESTHR. The figures are divided into databases
where up to 25% of the examples are in homogeneous regions
(a) and databases where more than 25% of the examples are in
homogeneous regions (b).

It is noticeable that, for databases with homogeneous neigh-
borhoods, the performances of the OCCs are more stable. For
databases with heterogeneous neighborhoods the variation of
performance among OCCs is higher. The performance in databases
with homogeneous neighborhoods are higher than in databases
with heterogeneous neighborhoods. This is expected since it is
known that examples in complex neighborhoods are hard to
classify.

It is also important to notice that, for databases with homoge-
neous neighborhoods, MODES and DESTHR perform very similarly.
This happens because, in such databases, more examples are
classified in the same way by both methods (assigning the test ex-
ample to the single class in the neighborhood). For databases with
heterogeneous neighborhood, the difference between MODES and
DESTHR is bigger. It is worth noting that MODES performs mostly
better than DESTHR for both databases with homogeneous or het-
erogeneous neighborhood.

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

a

a

b
(
d
a

Table 7
Accuracy performance of MODES, DESTHR and Static aggregation of OCCs. Best result for each database in bold. The last rows represent the mean performance across
ll databases, the number of wins, ties and losses achieved by each technique, the average rankings and the p − value for Wilcoxon Signed Ranking Test.
Dataset MODES DESTHR Static

MSTDD/DTs SVDD/DTs GaussDD/DTs GaussDD/ECOC GaussDD/MAX GaussDD/DTs ParzenDD/MAX SVDD/MAX MSTDD/DTs

Automobile 78.69 57.82 67.80 68.15 58.54 64.77 75.48 60.93 79.39
Car 84.84 78.42 82.58 78.94 76.56 73.38 89.58 69.16 82.06
Cleveland 53.88 54.83 56.22 53.56 58.90 55.90 42.69 58.13 47.76
Dermatology 92.74 93.55 96.36 96.12 95.20 93.02 92.18 92.99 92.47
Ecoli 77.69 76.49 75.31 69.96 74.42 68.18 41.38 61.60 64.93
Flare 69.61 64.35 69.98 61.44 65.01 69.32 61.54 62.10 64.54
Glass 71.54 50.93 53.73 51.40 59.36 51.86 54.20 51.88 64.51
Glass1 81.33 66.38 71.98 69.16 73.39 62.16 72.46 58.41 74.33
Glass6 95.32 96.26 94.85 94.39 96.26 94.85 93.47 84.06 93.00
Led7digit 72.20 74.00 70.80 68.00 68.80 69.40 72.60 70.20 70.40
Letter 90.52 63.73 76.92 48.15 89.64 70.87 78.96 56.61 92.75
Lymphography 74.32 77.77 76.34 73.68 70.34 73.01 44.92 77.06 43.56
Movement Libras 86.67 78.06 75.28 65.28 74.44 69.44 85.00 75.28 86.11
Nursery 74.58 76.05 74.85 73.75 86.38 64.30 46.16 72.66 51.59
Optdigits 98.02 96.81 97.21 96.01 96.94 93.61 97.92 94.34 97.31
Page-blocks 95.01 93.99 94.99 93.21 94.19 87.43 33.76 92.98 77.50
Penbased 99.27 96.12 98.07 91.38 98.60 95.71 99.14 93.26 99.15
Satimage 90.35 85.72 85.33 83.10 87.58 80.25 88.83 83.37 89.42
Segment 95.37 86.80 92.42 88.70 91.60 91.21 89.22 72.55 93.03
Shuttle 99.42 99.28 99.14 99.19 99.28 95.26 88.28 90.13 93.62
Texture 98.53 93.31 99.24 97.25 99.71 98.84 97.78 83.75 95.47
Vehicle 70.45 64.54 81.21 72.10 82.04 81.32 71.99 57.69 69.98
Vehicle2 97.64 92.79 98.11 94.56 98.47 97.52 96.57 85.22 94.92
Vowel 98.48 67.58 90.71 50.51 90.71 91.21 98.28 58.08 99.60
Yeast 54.78 50.74 54.38 45.08 56.47 42.99 51.62 38.48 47.44

Mean 84.05 77.45 81.35 75.32 81.71 77.43 74.56 72.04 78.59
Win/tie/loss 10/0/15 2/1/22 2/0/23 0/0/25 6/1/18 0/0/25 1/0/24 0/0/25 3/0/22
Avg ranks 2.68 5.42 3.88 6.28 3.96 6.00 5.00 7.02 4.76
Wilcoxon – 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
Table 8
Kappa statistic performance of MODES, DESTHR and Static aggregation of OCCs. Best result for each database in bold. The last rows represent the mean performance
cross all databases, the number of wins, ties and losses achieved by each technique, the average rankings and the p − value for Wilcoxon Signed Ranking Test.
Dataset MODES DESTHR Static

MSTDD/DTs SVDD/DTs GaussDD/DTs GaussDD/ECOC GaussDD/MAX GaussDD/DTs ParzenDD/MAX SVDD/MAX MSTDD/DTs

Automobile 0.7199 0.4412 0.5775 0.5727 0.4220 0.5380 0.6910 0.4797 0.7344
Car 0.6808 0.5287 0.6157 0.5728 0.4104 0.4697 0.7704 0.1914 0.6362
Cleveland 0.2996 0.2946 0.3091 0.1840 0.3313 0.3126 0.2080 0.3250 0.2581
Dermatology 0.9086 0.9190 0.9543 0.9514 0.9395 0.9130 0.9013 0.9110 0.9050
Ecoli 0.6903 0.6770 0.6630 0.5573 0.6521 0.5782 0.3230 0.4979 0.5507
Flare 0.6146 0.5503 0.6183 0.5190 0.5610 0.6107 0.5236 0.5140 0.5563
Glass 0.6128 0.3657 0.3740 0.3202 0.4096 0.3580 0.3860 0.3742 0.5429
Glass1 0.5810 0.3371 0.4189 0.2253 0.3586 0.2697 0.3883 0.0784 0.4567
Glass6 0.7855 0.8197 0.7699 0.7549 0.8134 0.7699 0.7746 0.5548 0.7514
Led7digit 0.6909 0.7110 0.6752 0.6450 0.6528 0.6594 0.6953 0.6688 0.6709
Letter 0.9014 0.6228 0.7599 0.4608 0.8923 0.6970 0.7812 0.5488 0.9245
Lymphography 0.4977 0.5711 0.5375 0.4681 0.4152 0.5183 0.2882 0.5550 0.2508
Movement Libras 0.8434 0.7426 0.7090 0.5922 0.6959 0.6388 0.8241 0.7066 0.8373
Nursery 0.6315 0.6542 0.6391 0.6129 0.8000 0.5050 0.3985 0.5999 0.4247
Optdigits 0.9733 0.9569 0.9622 0.9460 0.9586 0.9137 0.9719 0.9231 0.9637
Page-blocks 0.7564 0.6675 0.7557 0.6070 0.7375 0.5319 0.1078 0.5776 0.3521
Penbased 0.9919 0.9568 0.9786 0.9042 0.9844 0.9523 0.9905 0.9251 0.9906
Satimage 0.8812 0.8248 0.8202 0.7893 0.8478 0.7577 0.8631 0.7924 0.8703
Segment 0.9460 0.8460 0.9116 0.8682 0.9020 0.8975 0.8742 0.6798 0.9187
Shuttle 0.9460 0.9798 0.9761 0.9773 0.9798 0.8773 0.7112 0.6952 0.8403
Texture 0.9789 0.9046 0.9890 0.9606 0.9958 0.9833 0.9683 0.7511 0.9361
Vehicle 0.6060 0.5284 0.7496 0.6278 0.7607 0.7512 0.6263 0.4350 0.5997
Vehicle2 0.9372 0.8225 0.9510 0.8528 0.9591 0.9360 0.9128 0.5339 0.8736
Vowel 0.9833 0.6433 0.8978 0.4556 0.8978 0.9033 0.9811 0.5389 0.9956
Yeast 0.4221 0.3707 0.4075 0.2501 0.4386 0.3065 0.3937 0.2699 0.3600

Mean 0.7552 0.6695 0.7208 0.6270 0.7126 0.6660 0.6542 0.5651 0.6880
Win/tie/loss 9/0/16 3/1/21 2/0/23 0/0/25 6/1/18 0/0/25 1/0/24 0/0/25 3/0/22
Avg ranks 2.85 5.38 3.76 6.52 4.08 5.76 4.95 7.12 4.59
Wilcoxon – 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
We also carried out a performance analysis regarding the Im-
alance Ratio (IR). The databases were separated in two groups:
a) low IR databases, composed of 16 databases; and (b) high IR
atabases, composed of 9 databases. Fig. 8 and Table 9 show the
ccuracy performance obtained by MODES and DES in the two
THR

11
groups of databases. The boxplots show that the performances
of both methods are higher and more stable in databases with
low IR than in databases with high IR. For both groups, MODES
present higher mean accuracy than DESTHR for all, except one,
configuration. Furthermore, from Table 9, we notice that the

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

p
p

T

Fig. 7. Accuracy for MODES and DESTHR using Decision Templates according to the homogeneity of the neighborhood. Databases where more than 25% of the examples
resent more than one class in the neighborhood are showed in the left side of the figure. The right side shows databases where less than 25% of the examples
resent more than one class in the neighborhood.
Fig. 8. Accuracy for MODES and DESTHR using Decision Templates according to the Imbalance Ratio. Databases with IR < 10 are showed in the left side of the figure.
he right side shows databases with IR ≥ 10.
Table 9
Accuracy for MODES and DESTHR using decision templates according to the
imbalance ratio.

IR < 10 IR ≥ 10

MODES DESTHR MODES DESTHR
GaussDD 86.53 84.52 78.30 75.74
ParzenDD 81.11 78.47 74.29 75.75
SVDD 82.79 79.43 78.32 73.93
MSTDD 88.00 87.00 77.02 76.24

difference of performance is higher for databases with high IR.
For instance, with SVDD, MODES accuracy is 3.36 p.p. higher than
DESTHR for databases with low IR while this difference is 4.39 p.p.
for databases with high IR. The only exception is observed with
ParzenDD, where DESTHR presents a slightly higher accuracy than
MODES for databases with high IR.

6. Final remarks

This research proposed an architecture for multi-class clas-
sification, named MODES. MODES aims to improve the robust-
ness and classification performance in problems with complex
12
intra-class data distribution. It decomposes the original multi-
class problem into multiple one-class problems and employs a
clustering-based approach to generate pools of OCC. Dynamic
Ensemble Selection is applied to classify each test example.

Experiments were carried out in a comprehensive experimen-
tal setting. The first experiment identified the best configuration
for MODES. The best performance was achieved using the OCC
model Minimum Spanning Tree Data Descriptor and the aggrega-
tion technique Decision Templates. In the second experiment, this
configuration was compared with state-of-the-art techniques, us-
ing a variety of configurations. The results showed that MODES
average performance is superior than all the configurations of
the other methods. Additionally, we identified that MODES per-
forms better for databases containing both complex and simple
neighborhood (high or low presence of examples of other classes
in the neighborhood, respectively) and for both balanced and
imbalanced databases.

MODES does not require any parameter tuning and can be
used along with any OCC. MODES architecture is composed of
two levels: the first is responsible for one-class classification,
i.e., whether the test example belongs or not to the target class;

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290

n
w
n
t
n
t

C

w
G
v
c
c

D

c
t

A

(
a
P

R

and the second is responsible for the re-composition of the multi-
class problem, i.e., aggregating the outputs of the one-class prob-
lems. Hence, MODES can, optionally, be easily adapted to be used
in one-class problems.

For future works, we aim to analyze other clustering tech-
iques, such as Density Based Spatial Clustering of Application
ith Noise (DBSCAN) [56], along with MODES, since this tech-
ique does not require parametrization for the number of clus-
ers. Furthermore, we aim to explore the use of deep neural
etworks for feature extraction. These networks have reported in
he literature good results [57].

RediT authorship contribution statement

Rogério C.P. Fragoso: Conceptualization, Methodology, Soft-
are, Formal analysis, Investigation, Writing - original draft.
eorge D.C. Cavalcanti: Conceptualization, Methodology, Super-
ision, Writing - review & editing. Roberto H.W. Pinheiro: Con-
eptualization, Writing - review & editing. Luiz S. Oliveira: Con-
eptualization, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors would like to thank Brazilian agencies: CNPq
Conselho Nacional de Desenvolvimento Científico e Tecnológico)
nd FACEPE (Fundação de Amparo à Ciência e Tecnologia de
ernambuco).

eferences

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.-L. Shyu, S.-C.
Chen, S. Iyengar, A survey on deep learning: Algorithms, techniques, and
applications, ACM Comput. Surv. 51 (5) (2018) 1–36.

[2] P. Cao, S. Zhang, J. Tang, Preprocessing-free gear fault diagnosis using small
datasets with deep convolutional neural network-based transfer learning,
Ieee Access 6 (2018) 26241–26253.

[3] J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class
imbalance, J. Big Data 6 (1) (2019) 1–54.

[4] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[5] H.-J. Kim, N.-O. Jo, K.-S. Shin, Optimization of cluster-based evolutionary
undersampling for the artificial neural networks in corporate bankruptcy
prediction, Expert Syst. Appl. 59 (2016) 226–234.

[6] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data
Eng. 21 (9) (2009) 1263–1284.

[7] B. Krawczyk, M. Woźniak, F. Herrera, On the usefulness of one-class
classifier ensembles for decomposition of multi-class problems, Pattern
Recognit. 48 (12) (2015) 3969–3982.

[8] B. Krawczyk, M. Galar, M. Woźniak, H. Bustince, F. Herrera, Dynamic
ensemble selection for multi-class classification with one-class classifiers,
Pattern Recognit. 83 (2018) 34–51.

[9] T.H. Cupertino, L. Zhao, M.G. Carneiro, Network-based supervised data
classification by using an heuristic of ease of access, Neurocomputing 149
(2015) 86–92.

[10] B. Krawczyk, M. Woźniak, B. Cyganek, Clustering-based ensembles for
one-class classification, Inform. Sci. 264 (2014) 182–195.

[11] D.M. Tax, R.P. Duin, Combining one-class classifiers, in: International
Workshop on Multiple Classifier Systems, Springer, 2001, pp. 299–308.

[12] L. Kuncheva, Combining pattern classifiers. Hoboken, 2014.
[13] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman and

Hall/CRC, 2012.
[14] R.M. Cruz, R. Sabourin, G.D. Cavalcanti, Dynamic classifier selection: Recent

advances and perspectives, Inf. Fusion 41 (2018) 195–216.
[15] B. Krawczyk, M. Woźniak, Dynamic classifier selection for one-class

classification, Knowl.-Based Syst. 107 (2016) 43–53.
13
[16] J. Liu, Q. Miao, Y. Sun, J. Song, Y. Quan, Modular ensembles for one-
class classification based on density analysis, Neurocomputing 171 (2016)
262–276.

[17] A. Kolesnikov, E. Trichina, T. Kauranne, Estimating the number of clusters
in a numerical data set via quantization error modeling, Pattern Recognit.
48 (3) (2015) 941–952.

[18] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J.M. PéRez, I. Perona, An extensive
comparative study of cluster validity indices, Pattern Recognit. 46 (1)
(2013) 243–256.

[19] D.M. Tax, R.P. Duin, Support vector data description, Mach. Learn. 54 (1)
(2004) 45–66.

[20] T. Le, D. Tran, W. Ma, D. Sharma, A theoretical framework for multi-sphere
support vector data description, in: International Conference on Neural
Information Processing, Springer, 2010, pp. 132–142.

[21] Y. Xiao, B. Liu, L. Cao, X. Wu, C. Zhang, Z. Hao, F. Yang, J. Cao, Multi-sphere
support vector data description for outliers detection on multi-distribution
data, in: 2009 IEEE International Conference on Data Mining Workshops,
IEEE, 2009, pp. 82–87.

[22] S.S. Khan, M.G. Madden, A survey of recent trends in one class classifica-
tion, in: Irish Conference on Artificial Intelligence and Cognitive Science,
Springer, 2009, pp. 188–197.

[23] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons,
2012.

[24] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Esti-
mating the support of a high-dimensional distribution, Neural Comput. 13
(7) (2001) 1443–1471.

[25] D.M. Tax, R.P. Duin, Data description in subspaces, in: Proceedings 15th
International Conference on Pattern Recognition. ICPR-2000, 2, IEEE, 2000,
pp. 672–675.

[26] T. Kohonen, M. Schroeder, T. Huang, S.-O. Maps, Springer-Verlag New York,
Inc., Secaucus, NJ, 43, (2).

[27] B. Das, D.J. Cook, N.C. Krishnan, M. Schmitter-Edgecombe, One-class
classification-based real-time activity error detection in smart homes, IEEE
J. Sel. Top. Sign. Proces. 10 (5) (2016) 914–923.

[28] L.M. Manevitz, M. Yousef, One-class SVMs for document classification, J.
Mach. Learn. Res. 2 (Dec) (2001) 139–154.

[29] M. Koppel, J. Schler, Authorship verification as a one-class classification
problem, in: Proceedings of the Twenty-First International Conference on
Machine Learning, ACM, 2004, p. 62.

[30] D.H. Wolpert, The lack of a priori distinctions between learning algorithms,
Neural Comput. 8 (7) (1996) 1341–1390.

[31] M. Woźniak, M. Graña, E. Corchado, A survey of multiple classifier systems
as hybrid systems, Inf. Fusion 16 (2014) 3–17.

[32] A.H. Ko, R. Sabourin, A.S. Britto Jr, From dynamic classifier selection to
dynamic ensemble selection, Pattern Recognit. 41 (5) (2008) 1718–1731.

[33] N. Görnitz, L.A. Lima, K.-R. Müller, M. Kloft, S. Nakajima, Support vector
data descriptions and k-means clustering: One class? IEEE Trans. Neural
Netw. Learn. Syst. 29 (9) (2017) 3994–4006.

[34] M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, M.M. Charrad, Package
‘nbclust’, J. Stat. Softw. 61 (2014) 1–36.

[35] A. Jain, K. Nandakumar, A. Ross, Score normalization in multimodal
biometric systems, Pattern Recognit. 38 (12) (2005) 2270–2285.

[36] T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Comm.
Statist. Theory Methods 3 (1) (1974) 1–27.

[37] G.W. Milligan, A Monte Carlo study of thirty internal criterion measures
for cluster analysis, Psychometrika 46 (2) (1981) 187–199.

[38] J.A. Hartigan, Clustering Algorithms, Wiley, 1975.
[39] G.H. Ball, D.J. Hall, ISODATA, a novel method of data analysis and pattern

classification, Tech. rep., Stanford research inst Menlo Park CA, 1965.
[40] J.O. McClain, V.R. Rao, Clustisz: A program to test for the quality of

clustering of a set of objects, J. Mar. Res. (1975) 456–460.
[41] W.J. Krzanowski, Y. Lai, A criterion for determining the number of groups

in a data set using sum-of-squares clustering, Biometrics (1988) 23–34.
[42] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to

Cluster Analysis, Vol. 344, John Wiley & Sons, 2009.
[43] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in

a data set via the gap statistic, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2)
(2001) 411–423.

[44] J.C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. Cybern.
4 (1) (1974) 95–104.

[45] M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality scheme assessment in the
clustering process, in: European Conference on Principles of Data Mining
and Knowledge Discovery, Springer, 2000, pp. 265–276.

[46] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation
techniques, J. Intell. Inf. Syst. 17 (2–3) (2001) 107–145.

[47] L.J. Hubert, J.R. Levin, A general statistical framework for assessing
categorical clustering in free recall., Psychol. Bull. 83 (6) (1976) 1072.

[48] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-1 (2) (1979) 224–227.

[49] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett.
31 (8) (2010) 651–666.

http://refhub.elsevier.com/S0950-7051(21)00552-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb6
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb6
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb6
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb12
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb34
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb34
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb34
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb35
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb35
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb35
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb42
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb42
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb42
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb49

R.C.P. Fragoso, G.D.C. Cavalcanti, R.H.W. Pinheiro et al. Knowledge-Based Systems 228 (2021) 107290
[50] D. Tax, Ddtools, the data description toolbox for matlab, Delft University
of Technology Ed, 2005.

[51] D. Tax, Ddtools, the data description toolbox for matlab, 2018, version
2.1.3.

[52] L.I. Kuncheva, J.C. Bezdek, R.P. Duin, Decision templates for multiple
classifier fusion: an experimental comparison, Pattern Recognit. 34 (2)
(2001) 299–314.

[53] O. Pujol, P. Radeva, J. Vitria, Discriminant ECOC: A heuristic method for
application dependent design of error correcting output codes, IEEE Trans.
Pattern Anal. Mach. Intell. 28 (6) (2006) 1007–1012.
14
[54] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol.
Meas. 20 (1) (1960) 37–46.

[55] A. Benavoli, G. Corani, F. Mangili, Should we really use post-hoc tests based
on mean-ranks, J. Mach. Learn. Res. 17 (5) (2016) 1–10.

[56] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm
for discovering clusters in large spatial databases with noise, in: Kdd, 96,
(34) 1996, pp. 226–231.

[57] T. Wiatowski, H. Bölcskei, A mathematical theory of deep convolutional
neural networks for feature extraction, IEEE Trans. Inform. Theory 64 (3)
(2017) 1845–1866.

http://refhub.elsevier.com/S0950-7051(21)00552-9/sb50
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb50
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb50
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb52
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb52
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb52
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb52
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb52
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00552-9/sb57

	Dynamic selection and combination of one-class classifiers for multi-class classification
	Introduction
	Problem statement
	Background
	One-class classification
	Multiple classifiers systems
	Related works

	Proposal
	Toy example

	Experiments
	Experimental protocol
	Experimental results
	Experiment 1
	Experiment 2

	Final remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

