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Abstract
Advances in species recognition technologies can contribute to the conservation 
and protection of flora species, especially those threatened with extinction. The aim 
of this research was to compare the early fusion approaches of operators known as 
Local Binary Patterns (LBP) and late fusion, carried out at the level of the decision 
classifiers, in the construction of an automatic recognition system of forest species. 
1901 macroscopic images of wood from 46 Brazilian species were used. The extrac-
tion of image characteristics was done using two variants of the LBP descriptor, 
covering different aspects of spatial and angular resolution. The repeated stratified 
k-fold cross-validation method was used to estimate the performance of the classifi-
ers. The cross-validation folds were created using stratified random sampling, whose 
strata were the prediction classes. An automatic recognition system based on the 
concatenation of rotation-invariant LBP histograms and the SVM classifier showed 
an F1-score of 97.67%. The fusion of classifiers, through majority voting, improved 
the F1-score of this system by 0.33% point. This experiment revealed that more than 
50% of the species showed no misclassification or occurred only once or twice. It 
was identified that some groups of species generally confused by wood anatomists 
were perfectly differentiated by this classification system. The recognition system 
showed good ability to identify species, and if this technology is combined with 
traditional identification tools and empirical knowledge, it is possible to minimize 
errors in the identification of Brazilian flora, especially endangered species, for 
which the proposed classification system showed high accuracy.
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Introduction

Brazil stands out in the world for its extensive native forest areas (IBÁ 2016), with 
a significant fraction of the global diversity of fungi and plants (between 9.5 and 
9.9%), consisting of 18,932 endemic species, one of the highest rates of endemism 
(46.2%) on the planet (Forzza et al. 2010). However, Brazil’s wide plant species bio-
diversity is threatened by habitat destruction and fragmentation, posing a serious 
risk of species extinctions (Costa et al. 2016). In the Brazilian Amazon, for exam-
ple, Martinelli and Moraes (2013) estimated the existence of 87 endangered spe-
cies, 90 with insufficient data and 142 not threatened, but considered of interest for 
conservation and research. The endangered species were fully included in Edict 443 
from the Environmental Ministry (MMA) on December 17, 2014, which established 
the “Official National List of Endangered Flora Species”, classified in the categories 
Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN), and Vul-
nerable (VU), all of which theoretically must be protected in their entirety, including 
the prohibition of collection, harvesting, extraction, transportation, storage, process-
ing, and marketing, among others (MMA 2014).

The correct identification of species is one of the fundamental aspects for the 
conservation of flora. In the scientific community, traditional mechanisms for identi-
fying forest species include botanical or dendrological characterization and/or analy-
sis of macroscopic and microscopic anatomical structures (Muñiz et al. 2016; Bila 
et al. 2018; Soffiatti et al. 2016). The recognition process is commonly guided by 
identification keys, such as that provided by the International Association of Wood 
Anatomists (IAWA) (Wheeler et al. 1989). Although very effective, these identifica-
tion mechanisms require a high level of qualification in terms of theoretical knowl-
edge and practical experience. In the practical activities of forest inventories (FI), 
this professional category exists, called “parabotanist”, but, unfortunately, these 
specialists are increasingly rare. In addition, in the Amazonian context, identifica-
tion activities in FI do not rely on the expertise of a parabotanist, but rather on the 
empirical knowledge of natives, who have gained practical experience over genera-
tions and use vernacular names in the identification process. The use of these names 
is problematic, since it groups distinct species, creating risk of species extinction, 
incorrect use of wood, and, consequently, incredulity in the seller–consumer rela-
tionship (Procópio and Secco 2008).

In this context, studies aimed at the correct identification of flora species are cru-
cial for the conservation and protection of biodiversity. Fortunately, current research-
ers have awakened the potential of modern approaches, such as machine learning 
and computer vision, to recognize plant species (Martins et  al. 2013; Paula  Filho 
et al. 2014; Maruyama et al. 2018; Yigit et  al. 2019). Advances in species recog-
nition technologies are important, and if combined with the traditional identifica-
tion tools and empirical knowledge, they can be an effective strategy to reduce field 
errors in identifying species of Brazilian flora.

Studies involving computer vision commonly focus on the use of leaf and wood 
images (macroscopic and microscopic) for feature extraction and development 
of automatic classifiers. A study reported in Yigit et  al. (2019) used leaf visual 
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characteristics to construct an automatic identifier to recognize 32 plant species, 
achieving accuracy of 92.91% when using the Support Vector Machine (SVM) 
algorithm. In Martins et al. (2013), 2240 microscopic images of 112 forest species 
were employed, and the combined use of the feature extractor known as the Local 
Binary Pattern along with the SVM classifier ensured a better performance (98.6% 
and 86.0%) for both experiments. The study of Martins et al. (2015) used the same 
microscopic imaging base as Martins et  al. (2013) and found 93.03% recognition 
rate using a dynamic sorter selection method. Species-recognition research based 
on native wood charcoal images using the descriptor called Local Binary Patterns 
(LBP) associated with machine learning classifiers and convolutional neural net-
works achieved recognition rates over 90% (Maruyama et  al. 2018). Paula  Filho 
et  al. (2014) proposed a divide and conquer strategy and achieved a 9% improve-
ment in the recognition rate using macroscopic images of wood, and the best accu-
racy was 97.77%. It is noteworthy that the use of digital images has other potential 
advantages, as reported by Kuo and Wang (2019), who obtained promising results 
in the prediction of elastic properties of juvenile and adult Cryptomeria japonica 
wood. In addition, it is possible to use other forms of wood classification. Deklerck 
et al. (2019) proposed a protocol for automated identification using the metabolome 
profile (acquired with direct analysis in real-time mass spectrometry) and obtained 
good results for the differentiation of wood of Meliaceae species.

For the description of texture based on images, the LBP method has attracted a 
good deal of attention by the scientific community (Liu et al. 2017), especially after 
the introduction in 2002 of the operators LBPu2

P,R
 (uniform LBP) and LBPriu2

P,R
 (uni-

form and rotation-invariant LBP) by Ojala, Pietikähen, and Mäenpää (Ojala et  al. 
2002). Therefore, the purpose of this paper is to compare LBP feature aggregation 
strategies, extracted under different realizations of their parameters (P and R), and 
also the fusion of classifiers using the majority vote as a final decision rule, aiming 
to build an accurate automatic forest species recognition system based on macro-
scopic images of wood from Brazilian native and exotic species.

Wood database

Wood samples were from the collection of the Wood Anatomy and Quality Lab-
oratory (LANAQM) of Federal University of Paraná (UFPR), located in Curitiba, 
Paraná. The wood samples’ transversal surfaces were sanded with a 120 sandpa-
per and macroscopic images of 46 species were taken with a Zeiss Discovery V 12 
stereomicroscope, with size of 2080 × 1540 pixels and 10× magnification. The cap-
tured images have a resolution of 150 dpi. A total of 1,901 macroscopic images were 
obtained. Compared to the study by Paula Filho et al. (2014), this base includes new 
commercially confused species, even in replacement of some endangered Brazilian 
species. Furthermore, instead of using a stereomicroscope to capture images as done 
here, Paula  Filho et  al. (2014) applied an acquisition protocol to a box with two 
halogen lamps located on the sides while the wood sample was positioned at the 
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bottom, and took images using a Sony DSC T20 camera with the macro function 
activated.

Of the 46 species used in this study, 7 (15%) are on Brazil’s official list of endan-
gered species. More specifically, the species Araucaria angustifolia and Ocotea 
porosa are classified in the category “Endangered”, Cedrela fissilis, Bertholletia 
excelsa, Mezilaurus itauba, and Swietenia macrophylla are part of the “Vulnerable” 
group, and Euxylophora paraensis is considered “Critically Endangered”. Table 1 
lists the 46 species of Brazilian trees (native and exotic) considered in the pre-
sent study. The number of samples was variable in each species. Two images were 
obtained by samples, i.e., one in each transversal surface. However, some images 
were discarded due to defects, such as very large grooves. Figure 1 presents macro-
scopic images of some wood samples. The data described in this study are available 
at Mendeley Data (DOI: 10.17632/cc78ftcdf9.1).

The scientific names of the species in Table 1 are hyperlinks to Brazilian Flora 
2020 and Tropicos (Missouri Botanical Garden) web pages. In the hyperlinks, a 
detailed description of the species, as well as geographic distribution, phytogeo-
graphic domains, vegetation type of occurrence, among others, is found.

Local binary patterns: review

The process of extracting image characteristics is critical to the success of the auto-
matic classifier modeling step. Good discriminative data increase the chance of 
building smart recognition systems with good ability to identify reality. This section 
provides a brief description of the method known as Local Binary Patterns (LBP), a 
successful texture descriptor widely used in computer vision.

The manuscript published by He and Wang (1990) was a milestone, because it 
described a new statistical method for texture analysis of images called texture spec-
trum, based on the concept of texture unit (TU). TU was defined as the smallest 
complete unit that best characterizes the local texture spectrum of a given pixel and 
its neighborhood in all eight directions of a square scan. From this, the texture of an 
image is characterized by its texture spectrum, which describes the distribution of 
all TUs within the image. Thus, a TU can be represented by eight elements situated 
in a square neighborhood of 3 × 3 pixels, where each element can assume three pos-
sible values (0, 1 or 2). Therefore, from the combination of the eight elements, it is 
possible to extract 38 = 6561 patterns of local textures (He and Wang 1990).

Ojala et al. (1994) proposed a two-level adapted version of the approach proposed 
by He and Wang, providing a robust way to describe local binary patterns (LBP) 
of image texture, being invariant in grayscale. In the two-level version (0, 1), the 
number of possible texture units has been reduced to 28 = 256 . The LBP operator 
calculation steps can be simplified as follows: (1) neighborhood: establish a 3 × 3 
neighborhood around a center pixel; (2) thresholding: threshold the grayscale values 
of the eight neighbors by comparing them with the intensity of the central pixel, 
and when the central pixel value is greater than or equal to the value of its neighbor, 
assign “1”, otherwise “0”, resulting in an eight-digit binary number (10001011); (3) 
weights: multiply each binary code (Fig. 2b) by a weight, observing its position in 
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Table 1  Family, scientific name, number of samples, number of macroscopic images by species, and 
classification of endangered species in the official list of Brazil

Code Family Scientific Name Samples N Categorya

1 Fabaceae Acrocarpus fraxinifolius Arn. 9 17
2 Araucariaceae Araucaria angustifolia (Bertol.) Kuntze 28 55 EN
3 Apocynaceae Aspidosperma polyneuron Müll. Arg. 10 20
4 Apocynaceae Aspidosperma Mart. & Zucc. 21 41
5 Moraceae Bagassa guianensis Aubl. 26 52
6 Rutaceae Balfourodendron riedelianum (Engl.) Engl. 31 61
7 Lecythidaceae Bertholletia excelsa Bonpl. 18 35 VU
8 Fabaceae Bowdichia sp. Kunth 34 68
9 Moraceae Brosimum parinarioides Ducke 13 25
10 Meliaceae Carapa guianensis Aubl. 11 21
11 Lecythidaceae Cariniana estrellensis (Raddi) Kuntze 18 36
12 Meliaceae Cedrela fissilis Vell. 11 22 VU
13 Fabaceae Cedrelinga cateniformis (Ducke) Ducke 33 65
14 Boraginaceae Cordia goeldiana Huber 18 36
15 Lecythidaceae Couratari sp. Aubl. 21 41
16 Fabaceae Dipteryx sp. Schreb. 14 27
17 Vochysiaceae Erisma uncinatum Warm. 29 58
18 Myrtaceae Eucalyptus sp. L’Hér. 14 27
19 Myrtaceae Eugenia pyriformis Cambess. 18 35
20 Rutaceae Euxylophora paraensis Huber 33 66 CR
21 Goupiaceae Goupia glabra Aubl. 16 32
22 Proteaceae Grevillea robusta A. Cunn. ex R. Br. 24 48
23 Bignoniaceae Handroanthus sp. Mattos 17 33
24 Fabaceae Hymenaea sp. L. 16 32
25 Fabaceae Hymenolobium petraeum Ducke 14 28
26 Fabaceae Hymenolobium sp. Benth. 14 28
27 Fabaceae Inga vera Willd. 20 40
28 Lauraceae Laurus nobilis L. 18 36
29 Fabaceae Machaerium paraguariense Hassl. 19 37
30 Fabaceae Machaerium sp. Pers. 8 15
31 Sapotaceae Manilkara elata (Allemão ex Miq.) Monach. 20 39
32 Meliaceae Melia azedarach L. 24 47
33 Lauraceae Mezilaurus itauba (Meisn.) Taub. ex Mez 42 83 VU
34 Sapotaceae Micropholis venulosa (Mart. & Eichler) Pierre 36 71
35 Fabaceae Mimosa scabrella Benth. 15 30
36 Fabaceae Muellera campestris (Mart. ex Benth.) M.J. 

Silva & A.M.G. Azevedo
20 39

37 Fabaceae Myroxylon balsamum (L.) Harms 27 53
38 Lauraceae Nectandra megapotamica (Spreng.) Mez 14 28
39 Lauraceae Ocotea indecora (Schott) Mez 18 36
40 Lauraceae Ocotea porosa (Nees & Mart.) Barroso 23 46 EN
41 Fabaceae Peltogyne sp. Vogel 30 60
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the matrix (Fig. 2c), producing a result, as shown in Fig. 2d; (4) LBP default: the 
new value of the center pixel will be a number (0–255) resulting from the sum of the 
values in Fig. 2d, i.e., LBP = 1 + 8 + 32 + 128 = 169 . Finally, using the calculated 
values for each pixel in the image, a histogram of 256 patterns can be calculated 
and used as a representation of the image. The original LBP is invariant against any 
monotonous grayscale transformation, that is, as long as the order of pixel values 
remains the same, the output of the LBP operator remains constant (Ojala et  al. 
1994).

Despite the power to describe image textures, the LBP proposed in Ojala et al. 
(1994) is not rotation-invariant, an undesirable condition in certain applications 
(Pietikäinen et al. 2000). Rotation invariance implies that the same features of the 
image can still be extracted if the image is rotated to different angles. In 2000, to 
overcome the LBP invariance problem, Pietikähen, Ojala, and Xu proposed a first 
version of LBP invariant rotation called LBPROT (Pietikäinen et  al. 2000). Ojala 
et al. (2002) introduced a generalization of the LBP, where the 3 × 3 square neigh-
borhood proposed in Ojala et  al. (1994) was replaced by a neighborhood with P 
neighbors evenly distributed at an angle under a circle of radius R (Liu et al. 2017). 
Figure 3 depicts a generic representation of the extended LBP for situations with 
different values of parameters P and R. The mathematical formalization of the oper-
ator is defined in Eq. (1):

where R is the spatial resolution of the operator; P is the number of symmetrical 
circular neighbors; gc is the gray-level intensity of the central pixel; gp represents 
the gray level of neighboring pixels arranged in the circle; and s(x) is the thresh-
old function. Since the central pixel is located at the gc = (0,0) coordinate, then 
the neighborhood coordinates are given by ( xp,yp ), where xp = −R sin(2�p∕P) and 
yp = −R cos(2�p∕P) (Ojala et al. 2002; Ahonen et al. 2009).

The non-rotation-invariant operator ( LBPP,R ) is similar to the original LBP 
(Ojala et al. 1994). For example, if P = 8 and R = 1 are defined for the LBP8,1 
operator, there are basically two differences from the original LBP: (1) the pixels 
in the central pixel neighborhood are indexed to form a circular chain; and (2) the 

(1)LBPP,R =

P−1∑

P=0

s
(
gp − gc

)
2p s(x) =

{
1, x ≥ 0

0, x < 0
,

Table 1  (continued)

Code Family Scientific Name Samples N Categorya

42 Pinaceae Pinus sp. L. 21 42
43 Sapotaceae Pouteria pachycarpa Pires 24 47
44 Simaroubaceae Simarouba amara Aubl. 15 30
45 Meliaceae Swietenia macrophylla King 35 70 VU
46 Vochysiaceae Vochysia sp. Aubl. 22 43

a Endangered species according to the category established by MMA Ordinance No. 443 of December 
17, 2014 (MMA 2014). CR critically endangered, EN endangered, VU vulnerable
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gray-level values of diagonal pixels are determined by interpolation. For this situ-
ation, the four neighbors in the circle diagonal do not coincide with the centers of 
the pixels, thus justifying the use of bilinear interpolation. Similarly, the LBPri

8,1
 

Fig. 1  Samples of macroscopic images of woods of species of Brazilian flora, including some endan-
gered species. Note: The square images are for illustration purposes only. The processed images have a 
size of 2080 × 1540 pixels
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operator is equivalent to LBPROT, but experiments have shown that this operator 
does not provide good discrimination (Pietikäinen et al. 2000; Ojala et al. 2002).

The main contribution of Ojala et al. (2002) was to recognize that some binary 
patterns occur more often than others (these patterns were called uniform). In prac-
tice, the operator called U is used to calculate the amount of spatial transitions (0–1 
or vice versa) in a circular binary sequence (Ahonen et  al. 2009). The pattern is 
“uniform” if U ≤ 2 ; otherwise, it is non-uniform, and these are grouped under the 
same label. The most frequent and uniform binary patterns correspond to primitive 
micro-characteristics such as edges, corners, and points. Experimental results show 
that uniform patterns represent less than 90% of patterns in the vicinity (8,1) and 
about 70% in the vicinity (16,2) (Ojala et al. 2002).

The operators LBPu2
P,R

 and LBPriu2
P,R

 incorporate the concept of uniform patterns, 
and have the advantage of reducing the dimensionality of the feature vector while 
maintaining discriminative capacity. Therefore, the operators LBPu2

P,R
 and LBPriu2

P,R
 

reduce the feature vector’s dimensionality from 2P (standard LBP) to P(P − 1) + 3 
and P + 2 , respectively. The operator LBPriu2

P,R
 is uniform and rotation-invariant, and 

is formally defined in Eqs. (2) and (3) (Ojala et al. 2002):

(2)LBP
riu2

P,R
=

�∑P−1

p=0
s
�
gp − gc

�
if U

�
LBPP,R

�
≤ 2

P + 1, otherwise

6 5 2

7 6 1

9 3 7

(a)

1 0 0

1 0

1 0 1

(b)

1 2 4

8 16

32 64 128

(c)

1 0 0

8 0

32 0 128

(d)

Fig. 2  Example of the original LBP method proposed in Ojala et al. (1994)

gc

(P=8,R=1)

gc
g0g8

g12

g4

gp−2

R

(P=16,R=2)

gc

(P=24,R=3)

Fig. 3  Representation of the extended LBP method proposed in Ojala et al. (2002). When the location of 
the neighbors in the circle does not coincide with centers of the pixels, the gray values are determined by 
bilinear interpolation
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Materials and methods

Feature extraction and experiments

In this study, to cover aspects of spatial and angular resolution, three configurations 
of the uniform and rotation-invariant LBP operator ( LBPriu2

8,1
 , LBPriu2

16,2
 , LBPriu2

24,3
 ) and 

three of the uniform and non-invariant rotation operator ( LBPu2
8,1

 , LBPu2
16,2

 , LBPu2
24,3

 ) 
were considered. The color images were converted to 8-bit grayscale using the 
openCV function cv2.cvtColor() (cv2.COLOR_BGR2GRAY method). Afterward, 
LBP was used for feature extraction from grayscale macroscopic images. Feature 
extraction was done with the local_binary_pattern() function of the scikit-image 
library, available for the Python programming language. From each LBP descrip-
tor configuration, histograms of texture pattern occurrences were obtained and nor-
malized. The LBP feature histograms were used as inputs for supervised learning 
algorithms.

The first experimental approach was to use normalized individual LBP histo-
grams as input sources for machine learning models. Then, two fusion schemes were 
considered: (a) early fusion and (b) late fusion. Basically, the schemes differ with 
respect to the level at which fusion is performed. Early fusion involves concatena-
tion multiple histogram operators before the learning phase to create a new feature 
vector for multi-resolution analysis. For example, the combination LBPriu2

8,1
 + LBPriu2

16,2
 

results in a new vector with dimensionality: 10 + 18 = 28. Late fusion is performed 
at the decision level of the classifiers. First, models are trained separately for each 
LBP feature set, and individual decisions are made. Then, a common decision is 
made by merging individual decisions. Here, the majority vote was used as a final 
decision rule. For the LBPu2

P,R
 operator, the feature space dimensionality increases 

by P(P − 1) + 3 . For example, if P=8, the operator results in feature space with 59 
vectors. However, if P=16 and P=24, the operator results in feature space with 243 
and 555 vectors, respectively. Therefore, principal component analysis (PCA) was 
used to reduce the dimensionality of the feature spaces, except for LBPu2

8,1
 . For the 

other configurations LBPu2
P,R

 , the principal components that cumulatively explained 
95% of the total variance of the original data (threshold = 0.95) were used as input 
vectors in the learning process of predictive models. The PCA was used to reduce 
the dimensionality of the feature space of the training set, and the obtained estimates 
were used to calculate the principal components for the hold-out samples. Figure 4 
shows a simplified flowchart of the main steps of this study, as well as early and late 
fusion strategies.

(3)

U
(
LBPP,R

)
=
||
|
s
(
gP−1 − gc

)
− s

(
g0 − gc

)|
|
|

+

P−1∑

p=1

|
|
|
s
(
gp − gc

)
− s

(
gp−1 − gc

)|
|
|
.

Author's personal copy



 Wood Science and Technology

1 3

Algorithms, cross‑validation, and evaluation metrics

In this study, three supervised learning algorithms were tested: (a) support vector 
machines (SVMs); (b) artificial neural networks (ANN); and (c) random forest (RF). 
Multilayer perceptron (MLP) networks were trained using the back-propagation 
algorithm (Venables and Ripley 2002). The grid search strategy was used  to find 
the optimal tuning hyperparameters. First, for each machine learning algorithm, a 
grid of candidate hyperparameters was established. Then, the optimal tuning hyper-
parameters were found using repeated cross-validation. The hyperparameter vari-
ants for each machine learning algorithm and the respective packages are shown in 
Table 2. Classifiers were trained using the caret package (classification and regres-
sion training) (Kuhn et al. 2016). R language (version 3.5.3) was used to train classi-
fiers and create graphics.

A common approach to estimate the expected performance of a predictive 
model is to implement some resampling method from the original data (Molinaro 
et  al. 2005; Kuhn and Johnson 2013). In this study, to obtain unbiased estimates 
of the performance of the machine learning algorithm variants, the repeated strati-
fied k-fold cross-validation method (fivefold cross-validation, repeated ten times) 
was used. The cross-validation folds were created using stratified random sampling, 
whose stratification factor was the prediction classes. In the repeated k-fold CV, the 
learning data set is reorganized and divided into k-folds each new round of cross-
validation (Refaeilzadeh et al. 2009). More specifically, the complete data set was 
divided into five subgroups of approximately equal and distinct sizes, with repre-
sentatives of all species in each subgroup. This procedure was repeated ten times. 
Repeating the resampling can produce very different values, but if applied enough 
will efficiently estimate the true value (Kuhn and Johnson 2013).

Set of
images

Feature
extraction

early fusion later fusion

LBP1+LBP2+...+LBPn C1+C2+...+Cn

Classifier Majority vote

Decision Decision

Fig. 4  Simplified flowchart of the main study steps, from the feature extraction step with different vari-
ants of the LBP method to the selection of the best species recognition model. Where: C

n
 : nth classifier 

trained with LBP
P,R features
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Unfortunately, it was not possible to control the experiment, so that the images 
from the same block were not in the training and validation set. This information was 
not stored properly during the collection of the images (or it was lost). It could be 
assumed that two images of the same block were made in the sequence, that is, two 
images were not obtained in the same position of the block. Even so, many images 
were excluded due to the presence of grooves (or other reasons). This is important 
information for this type of experiment that we intend to control in future research. 
It is emphasized that this dataset was assembled over many years and the main pur-
pose was to visualize macroscopic characteristics of the woods (parenchyma, rays, 
pores, among others) in the context of anatomical identification.

In the repeated cross-validation method, confusion matrices were computed for 
each cross-validation fold (hold-out samples). Then, a simple confusion matrix was 
calculated by adding the 50 matrices determined on the hold-out samples. This con-
fusion matrix that gathers all out-of-sample predictions was used to evaluate the 
confusion between species by the most accurate classifier. The performance metrics 
of the classifiers were extracted using the confusionMatrix() function of the caret 
package, which generates the confusion matrix and numerous metrics using the one 
versus all approach. The overall accuracy of the system was calculated by Eq. (4). 
Due to class imbalance, the Recall (Eq.  5) and F1-score ( � = 1) (Eq.  6) metrics 
were obtained for greater reliability of the performance estimation. The precision 
was obtained by Eq. 7:

where True positive (TP) = number of correctly classified samples in class Ci ; True 
negative (TN) = number of samples correctly classified as not belonging to class Ci ; 
False positive (FP) = number of misclassified samples in class Ci ; False negative 
(FN) = number of samples misclassified as not belonging to class Ci . All these met-
rics were also computed for each hold-out sample, and then, a final average was cal-
culated as an estimate of the classifier’s performance. The variance of performance 
metrics was also estimated in repeated cross-validation folds.

(4)Accuracy =
TP + TN

TP + FP + TN + FN

(5)Recall =
TP

TP + FN

(6)F1-score =(1 + �2)
Precision.Recall

[(�2.Precision)+Recall]

(7)Precision =
TP

TP + FP

Author's personal copy
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Results and discussion

Classifier performance

Tables 3 and 4 show the performance estimates and standard deviations in the cross-
validation (fivefold cross-validation, repeated ten times), for the classifiers con-
structed using feature spaces LBPriu2

P,R
 and LBPu2

P,R
 , respectively. The results found 

using the LBPu2
P,R

 and LBPriu2
P,R

 operators showed that individual LBP texture patterns 
extracted from macroscopic images of the wood provide good information for spe-
cies discrimination, and that when concatenated, improve classifier performance. It 
was found that the Artificial Neural Network (ANN) and Support Vector Machine 
(SVM) algorithms showed better learning ability based on LBP texture patterns. 

The strategy of concatenating uniform and rotation-invariant LBP histograms 
with different resolutions ( LBPriu2

8,1
 + LBPriu2

16,2
 + LBPriu2

24,3
 ) provided the learning of 

more accurate classifiers, for all considered algorithms. The average F1-score in 
the cross-validation was 97.67% using SVM classifier (degree = 3, scale = 0.001, 
C = 2 11 ; classifier C7 in Table  3). This was the most accurate classifier using the 
early fusion strategy. The use of this SVM classifier resulted in 4.17% increases in 
F1-score, compared to the performance of the best SVM classifier built using indi-
vidual LBP histograms ( LBPriu2

24,3
 ). Likewise, this SVM classifier outperformed the 

best ANN and random forest (RF) classifiers. The average F1-score was 2.09 and 
14.65% points higher for this SVM classifier compared to the best ANN and RF 
classifiers, respectively.

The concatenation of features from the non rotation-invariant LBP also showed 
good results. The average F1-score in the cross-validation was 95.15% using SVM 
classifier (degree = 2, scale = 0.05, C = 4; classifier C7 in Table 4). However, the 
estimated average F1-score of this classifier was 2.52% points less than the best clas-
sifier learned from rotation-invariant LBP features. We identified that the best RF 
classifiers were built from non rotation-invariant LBP features.

The classifier combination strategy (late fusion) aimed to use the strengths inher-
ent in each classifier, seeking to improve the recognition system. Despite this, the 
best combination of classifiers resulted in an increase of only 0.33% point in the 
F1-score (98%) compared to the more accurate classifier using the early fusion strat-
egy. This classifier was obtained by combining four SVM classifiers from Tables 3 
( C6 , C7 ) and 4 ( C2 , C7 ) and one ANN (MLP) classifier from Table 3 ( C7 ). It was 
found that most classifiers showed a tendency to incorrectly predict the same obser-
vations in the hold-out sample. This was the most likely reason for the little improve-
ment found.

Box plot comparing the distributions of the F1-score metric in repeated cross-
validation using the most accurate early fusion and late fusion classifiers is shown 
in Fig. 5. These classifiers presented a coefficient of variation less than 1% for the 
metric F1-score, which indicate the stability of both to predict future samples (not 
used to build the classifier).

The problem of recognizing forest species from wood images (macroscopic or 
microscopic) has been addressed by other scientific studies. Studies often evaluate 
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different image capture techniques, feature extraction methods [color features, Gray-
Level Co-occurrence Matrix (GLCM), Gabor filters, Local Binary Patterns (LBP), 
Fractals, Local Phase Quantization, and others] and their combinations, machine 
learning techniques (especially SVM and ANN) and convolutional neural net-
works (CNN) (e.g., Khalid et al. 2008; Nasirzadeh et al. 2010; Yusof et al. 2013; 
Paula Filho et al. 2014; Hafemann et al. 2014; Martins et al. 2015; Yadav et al. 2015; 
Ibrahim et al. 2016; Siew et al. 2017; Kobayashi et al. 2017; Ravindran et al. 2018; 
Figueroa-Mata et al. 2018; Kobayashi et al. 2019).

Khalid et  al. (2008) developed a system for automatic recognition of tropical 
species from macroscopic wood images (n = 1949) based on the feature extractor 
GLCM and ANN (MLP network). This system showed an accuracy greater than 
95% for the recognition of 20 species of tropical wood. Nasirzadeh et  al. (2010) 
designed a recognition system based on the nearest-neighbor classifier and local 
binary pattern histograms extracted from enhanced wood images of 37 tropical spe-
cies. The experiments carried out revealed greater accuracy using the Histogram 
Fourier feature (96.6% and 100%) with P = 24 and R = 3.

Similar to the present study, the operator LBPu2
P,R

 was among the operators cho-
sen by Paula Filho et al. (2014) to search for species recognition from macroscopic 
images of wood, for offering good discrimination characteristics. The classifiers 
trained using the SVM algorithm and non rotation-invariant LBP histogram were 
less accurate than those reported in this study. The best recognition rate found in 
the study by Paula  Filho et  al. (2014) was 97.77%, using a combination of clas-
sifiers trained on different descriptors. The LBPriu2

P,R
 patterns extracted from macro-

scopic wood images  in the present study also provided robust information for clas-
sifiers, ensuring high species recognition rates. Using the LBPriu2

P,R
 descriptor over 

LBP
u2
P,R

 provides computational advantage by reducing the dimensionality of the 
LBP feature vector. For example, for LBPu2

8,1
 , the feature vector dimension is 59, 

but decreases to 10 ( P + 2 ) using the LBPriu2
8,1

 operator. The increase in P makes the 

Fig. 5  Box plot comparing the 
distributions of the F1-score 
metric in repeated cross-vali-
dation using the most accurate 
early fusion and late fusion clas-
sifiers. Vertical bars represent 
Q1 - 1.5*IQR (1st quartile minus 
1.5 times the interquartile range) 
and Q3 + 1.5*IQR (3rd quartile 
plus 1.5 times the interquartile 
range); the cross represents the 
average performance
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discrepancy between operators in relation to the vector size even greater. In addition, 
LBP

riu2

P,R
 is rotation-invariant, an important property that increases the classification 

system’s ability to predict nature.
Figure 6 shows the average recall per species (true positives rate per species) for 

hold-out samples in repeated cross-validation. The best early fusion classifier (SVM 
classifier in Table 3) showed a 100% recognition rate for 16 species, including three 
from Brazil’s official list of endangered species (Mezilaurus itauba, Euxylophora 
paraensis, and Cedrela fissilis) (Fig. 6a). The fusion of classifiers improved the aver-
age recall of some species. For example, all samples of wood images from Berthol-
letia excelsa were recognized correctly. This species is also listed as endangered. 
Only Carapa guianensis showed an average recall of less than 90%. The fusion of 
classifiers increased the average recall of this species by almost 1% point (Fig. 6b).

Fig. 7  Confusion matrix gathering all out-of-sample predictions in repeated cross-validation for the late 
fusion classifier. The endangered species included in the official list of Brazil are highlighted in bold
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Misclassification and wood anatomical features on transversal surface

The quality of a classifier’s predictions can be verified by examining its confusion 
matrix (CM). The CM for the late fusion classifier is shown in Fig. 7. This confu-
sion matrix gathers all out-of-sample predictions (n = 19,010) in repeated cross-
validation. This experiment revealed that more than 50% of the species showed no 
misclassifications or occurred only once or twice. These results are very promising, 
especially when considering the endangered species of Brazilian flora.

However, it is pointed out that in a quick analysis, for example, a wood anatomist 
would not confuse Aspidosperma polyneuron wood (pink) with Aspidosperma sp. 
(yellow color). On the other hand, there are groups that are possible to be confused 
even by specialists in wood anatomy, but which presented satisfactory results when 
analyzing the classifier’s behavior.

In this study, several species which are confused in practice due to the similarities 
of the anatomical characteristics were correctly classified by the proposed system. 
These species are divided into 4 main groups: 

 (i) Group 1: This group is composed of the species Simarouba amara and Bro-
simum parinarioides. The confusion occurs mainly when the wood is trans-
formed into laminated wood, because the two species have confluent aliform 
parenchyma.

 (ii) Group 2: The wood of the species Bertholletia excelsa and Cariniana estrel-
lensis, are confused, because both have reticulate parenchyma. In this case, 
the absence of confusion by the system is even more advantageous, as the spe-
cies Bertholletia excelsa, in addition to being protected from exploitation by 
Brazilian legislation, is also on the list of the Convention on the International 
Trade in Endangered Species (CITES).

 (iii) Group 3: This group is formed by the species of Lauraceae (Ocotea indecora, 
Ocotea porosa, and Nectandra megapotamica), which have a great similarity, 
often making it impossible to differentiate due to the characteristics of the 
anatomical structure.

 (iv) Group 4: This group is formed by the species Cedrela fissilis, Swietenia mac-
rophylla, Carapa guianensis, and Cedrelinga cateniformis. Again, the pres-
ence of species (Cedrela fissilis and Swietenia macrophylla) in the extinction 
list further justifies the potential use of the system.

 Ravindran et al. (2018) trained Convolutional Neural Networks (CNN), at the spe-
cies and genus levels, to recognize woods of Neotropical species of the Meliaceae 
family. The data set used included sample images of Cedrela fissilis and Swietenia 
macrophylla wood, which is also presented in the present study and listed on CITES. 
At the species level, the learned CNN classifier showed confusion (approximately 
20%) between Cedrela fissilis and Cedrela odorata. The recognition rate for Swiet-
enia macrophylla was approximately 91%, being confused with Carapa guianensis 
and Swietenia mahagoni. In the present study, Cedrela fissilis and Swietenia macro-
phylla had 100% and 98.71%, respectively, of their images recognized correctly by 
the late fusion classifier.
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Finding reasonable explanations for the system’s misclassifications based on 
the anatomical characteristics of the transversal surface of the wood is not simple. 
Despite this, it is believed that similarities in the anatomical structures of the trans-
versal section may explain, at least in part, the misclassifications among some spe-
cies. For example, we found in Fig.  6b that Carapa guianensis showed less sen-
sitivity (or recall). This species was mostly misclassified as Mimosa scabrella or 
Bertholletia excelsa. Likewise, Mimosa scabrella was sometimes misclassified as 
Carapa guianensis. These misclassifications may be associated with the similarity 
of the anatomical structure of these species, as they all have diffuse porosity, average 
pore diameter between 100 and 200 �m and fiber wall thickness between thin and 
thick (Détienne and Jacquet 1983; Fedalto et al. 1989; Marchiori 1995; Miller and 
Détienne 2001; Lens et al. 2007; White and Gasson 2008; Muñiz et al. 2012; Car-
reras et al. 2012; Bhikhi et al. 2016).

Handroanthus sp. showed the second-highest misclassification rate. This species 
was most often misclassified as Goupia glabra or Erisma uncinatum. These species 
have anatomical similarities, such as diffuse porosity, on average between 5 and 20 
pores per square millimeter, rays with an average width between 1 and 3 cells, aver-
age between 4 and 12 rays per linear millimeter (Kribs 1968; Détienne and Jacquet 
1983; Berti and Abbate 1992; Miller and Détienne 2001; Richter and Dallwitz 2009; 
Pace and Angyalossy 2013; Bhikhi et al. 2016).

Machaerium sp. was misclassified only as Aspidosperma polyneuron. Again, 
similar anatomical characteristics are observed among the woods of these species, 
such as diffuse porosity, the average pore diameter between 50 and 100 �m, between 
40 and 100 pores per square millimeter and the presence of diffuse-in-aggregates 
axial parenchyma (Tortorelli 1956; Détienne and Jacquet 1983).

Other species showed lower misclassification rates when considering the total 
number of out-of-sample predictions by species. For example, of the 280 images of 
Hymenolobium petraeum included in the hold-out samples, the classifier predicted 
only 12 (4.3%) as Hymenaea sp. The literature also reports similarities between the 
characteristics of the anatomical structure of these species, such as diffuse poros-
ity, pores with an average diameter greater than 200 �m, an average of less than 
5 pores per square millimeter, cell wall of the fibers classified from thin to thick, 
axial parenchyma types: aliform, lozenge-aliform, confluent, and marginal, among 
other characteristics (PROTA 2002; Détienne and Jacquet 1983; Miller and Déti-
enne 2001; Richter and Dallwitz 2009).

Likewise, a few samples of Simarouba amara (n = 300) were misclassified 
as Pinus sp. (3.3%) or Vochysia sp. (3%). First, it is important to emphasize that 
Pinus sp. belongs to Gymnosperms and its anatomical structure is mostly com-
posed of tracheids, rays, and resin canals. On the other hand, Simarouba amara 
and Vochysia sp. are classified as Angiosperms, presenting in their structure 
mainly fibers, pores, rays, and axial parenchyma. Thus, Simarouba amara and 
Pinus sp., despite presenting different anatomical structures, constitute elements 
that have certain structural similarities, such as tracheids that resemble fibers and 
resin canals that are similar to pores. It is possible that this fact contributed to 
the confusion between these species. Simarouba amara and Vochysia sp. also 
have high similarity in their anatomical structure, sharing characteristics such as 
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diffuse porosity, average less than five pores per square millimeter, fiber wall with 
thickness classified as thin to thick, axial parenchyma aliform, confluent, and oth-
ers (Mainieri 1958; Quirk 1980; Détienne and Jacquet 1983; Fedalto et al. 1989; 
Berti and Abbate 1992; Miller and Détienne 2001; Muñiz et al. 2012).

Conclusion

The Local Binary Patterns texture descriptor extracted from macroscopic images 
of wood samples provides excellent information for species discrimination. The 
use of histograms of simple LBP operators with the powerful supervised learning 
algorithms such as SVM and ANN allowed the construction of classifiers with 
F1-score higher than 90%, in most cases.

The concatenation strategy of LBPriu2
P,R

 operators (early fusion) enabled multi-
resolution analysis and generally contributed to increase the accuracy of the clas-
sifiers, reaching F1-score of 97.67%. Similarly, the approach of classifier com-
bination (late fusion) was able to improve the system F1-score by 0.33% point 
compared to the early fusion strategy.

It was identified that some groups of species (group 1, group 2, group 3, and 
group 4) present in this study, which are generally confused by specialists in 
wood anatomy, were perfectly differentiated by our classification system.

The results here of using computer vision for the recognition of forest species 
from macroscopic images of wood were effective, and if combined with tradi-
tional identification mechanisms and empirical experience, it can be an important 
tool to minimize identification errors of species of Brazilian flora, in particular 
endangered species, for which the proposed classification system showed high 
accuracy.
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