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Introduction - Motivation

¢ Classification: a fundamental task in Pattern Recognition.

¢ Although the methods available in the literature may differ
in many aspects, the latest research results lead to a
common conclusion:
“Creating a monolithic classifier to cover all the variability

inherent to most pattern recognition problems is somewhat
unfeasible”.



Introduction - Motivation

¢ Alternative: constrution of Multiple Classifier Systems
(MCS).

¢ Main idea: combination of diverse classifiers.

¢ An MCS 1s composed of three possible phases:

Pool Generation EEENNEN Selection > Integration
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Introduction - Motivation

¢ Pool generation
Heterogeneous — different base classifiers
Homogeneous — same base classifier.

The main strategy consists in generating diversity, in other words,
classifiers that make different errors.

¢ Diversity (how to obtain?)
Manipulating the training data:
¢ Bagging, Boosting and Random Subspace Selection (RSS) techniques
Manipulating the classifier parameters
Considering different base classifiers (Neural Net, SVM, KNN, ...)
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Introduction - Motivation

¢ Selection of classifiers
A single or an ensemble of classifiers can be selected.

Static: performed during training, the same selected classifiers are
used for all testing samples.

Dynamic: performed during operational phase, a single classifier or a
subset is selected for each test instance.

¢ Fusion
Combination of the results provided by the selected classifiers.

Different approaches in the literature (max, sum, product, vote, and so
on).



Introduction - Motivation

é Our research:

Dynamic Selection (DS) of Classifier/Ensembles

¢ Main directions:
New DS-based methods.
¢ The KNORA method (proposed in 2007)
¢ The DSOC (under construction/evaluation)

Application of DS methods in different classification problems (forest
species recognition, music genre classification, parking space
classification, etc...)

A meta classifier to predict when a DS can be better then a monolithic
classifier or the combination of all available classifiers.



DS — Why 1t works

¢ Consider for example the problem below and three
classifiers:

C1: predicts always the class black.
C2: predicts always the class grey.
C3: discriminant function is the dashed line.

Individual accuracy 1s about 0.5

¢ Majority vote won’t work.




DS — Why 1t works

¢ Define three competence zones
Assign one classifier to each competence zone.
D1 1mn R1, D2 1n R2, and D3 in R3. 3
Cruz et al, 2015




Current Projects

¢ A Cascade Strategy for Designing Efficient Multiple
Classifier Systems

¢ DSOC — Dynamic Classifier Selection Based on Data
Complexity Analysis

¢ A meta-classifier to predict the most promising classification
strategy for a given problem



A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

Master Project
Eunelson Silva Junior




A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Problem)

¢ Attaining high classification accuracy may frequently lead
us to the construction of classification systems with an
increasing complexity:.

¢ Such a trend in increasing complexity has been a source of
frequent criticism against MCS, mainly when the gain in
terms of accuracy is not substantial enough to justify that.
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A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Hipothesis)

¢ Considering that a classification problem is usually composed of
easy and hard patterns:
By combining a monolithic classifier with an MCS composed of
diverse experts in a cascading approach, we will be able to deal with

problems composed of different levels of difficulty while reducing the
efforts necessary to accomplish the classification task.

In other words, it could means better compromise between accuracy
and complexity.
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A Cascade Strategy for Designing

Efficient Multiple Classifier Systems
(Method Overview)

Training Phase Operational Phase
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A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Classification Problems)

Table 1. Description of the used Datasets

Dataset #classes  #training  #testing  # features
samples samples

Liver Disorder (LD) 2 172 173 6
Haberman (HB) 2 153 153 3
Blood (BD) 2 374 374 4
Pima Diabetes (PD) 2 384 384 8
Vehicle (VE) 4 423 423 18
Sonar (SO) 2 104 104 60
lonosphere (10) 2 175 176 34
Forest Species (FS) 41 11768 35304 1352
Wine (WI) 3 89 89 13
Wisconsin Breast Cancer (WC) 2 284 285 30
Image Segmentation (IS) 7 210 2100 19
Iris (IR) 3 75 75 -
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A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Problem Difficulty)

T ST T e——

=

Table 2. Datasets ranked by difficulty. The value

plexity measures and the Mean Rank (MR) for each dataset

Fl N2 N4 MR
LD 0055 091 0342 1.7
HB 0189 076 0.364 2.7
BD 0298 0.63 0.396 3.3
PD 0577 084 0274 4.3
VE 0451 0.62 0.299 5.3
SO 0466 074  0.094 7.0
10 0.614 063 0.159 7.0
FS 1.854 079  0.103 1.3
Wl 3831 054 0.131 100
wC 3405 056 0.013 11.0
IS 8.809 0.05 0.111 11.6
IR 7.097  0.13  0.081  12.0
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* F1 is the Fisher’s discriminant
ratio

* N2 compares the intraclass
dispersion with the interclass
Separability.

* N4 describes the nonlinearity of
the KNN classifier.



A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Experimental Results)

Table 8. The best cascade result for each dataset. The recognition, error and rejection rates of the first and second steps on the test sets.

1st Step 2nd Step Cascade

Base Base Leaming Dynamic Cost
Data | Clas. Recog. Error Rej. | Clas. Tech. Selection  Recog. Error Rej. | Recog.  Reduction
LD SVM 5.78 1.16 93.06 | KNN  Bagging DS-OLA 13.66 870 77.64 18.50 -3.06
HB SVM 9.15 1.31 89.54 | SVM  Bagging - 10.22 292  86.86 18.30 0.46
BD SVM 2.14 0.27 97.59 | SVM  RSS - 35.34 3.84 60.82 36.63 -30.92
PD SVM 8.59 0.52 90.89 | SVM  Bagging - 21.20 .72 77.08 27.86 -0.89
VE SVM 53.19 1.89 4492 | SVM  Boosting - 14.21 10.53  75.26 59.57 45.08
SO SVM 46.15 481 49.04 | KNN  Boosting - 82.35 17.65 0.00 86.54 40.96
10 SVM 55.11 0.57 4432 | SVM  RSS - 70.51 513 2436 86.36 13.18
FS SVM 37.69 1579 46,52 | SVM  Bagging - 43.02 503 5195 57.70 43.48
WI SVM 100.0 0.0 00 | - - - - - - 100.0 90.00
wC SVM 93.33 0.70 596 | SVM  Bagging - 64.71 11.76  23.53 97.19 84.04
IS SVM 81.00 1.62 17.38 | KNN  Boosting - 65.75  34.25 0.0 92.43 72.62
IR SVM 93.33 1.33 533 | SVM  BoostW* - 100.0 0.0 0.0 98.67 84.67

Rejection rate
* Considering error rate <= 1% (validation set)
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A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Experimental Results)

Table 9. Recognition rates (%) of the proposed cascade approach com-
pared with both the performer monolithic and MCS approach for each
dataset. All results considering the rejection scheme. The best results are

in boldface

Dataset ~ Monolithic  MCS  Proposed Cascade
LD 5.78 16.18 18.50
HB 9.15 13.07 18.30
BD 2.14 35.86 36.63
PD 8.59 27.86 27.86
VE 53.19 53.90 59.57
SO 46.15 84.62 86.54
10 55.11 86.36 86.36
FS 37.69 42.51 57.70
WI 100.00 98.88 100.00
WC 93.33 97.19 97.19
IS 81.00 91.62 92.43

IR 93.33 97.33 98.67
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A Cascade Strategy for Designing
Efficient Multiple Classifier Systems

(Conclusions)

¢ The experiments have shown that the cascade method can
really contribute to reduce the cost of classification task.

¢ For easy problems, the reduction was very significant, on 8
over 12 datasets some reduction were observed, being 4
superior to 70%.

¢ Finally, we can say that the observed cost reduction 1s
problem dependent, and it 1s related to the its level of
difficulty.
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Dynamic Classifier Selection
based on Complexity Analysis

PhD Project
André Luiz Brun




Introduction

Hypothesis: The most promising classifiers for a given test
pattern ¢ are those trained on subsets of samples presenting
similar complexity (difficulty) than that estimated for the
neighborhood of ¢ in the training or validation set, and also
showing high local accuracy.

Main idea: dynamically select the classifier(s) trained on data
with similar complexity than that observed in the local region
where the test pattern is located.



Proposed Method
(Tranning Phase)
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Proposed Method
(Operational Phase)




Proposed Method

f1 - Complexity similarity: the similarity between the néiéhborhood of t
and each classifier complexity signature using the euclidean distance.

f2 - Centroid Distance: Based on the class predicted by each classifier for
the new query, this feature represents the distance (in the feature space) of
the test instance to the centroid of the class assigned by the classifier.

f3 - Local Accuracy: Consists on the local accuracy of each classifier
estimated on the test neighborhood.

f4 - Classifier Complexity: the classifier complexity signature CS obtained
in the training phase of the process.




Experimental Results
(Classification Problems)

Instances  Train Validation Features Classes % Bag Source '
Blood 8 / : 2
° CTG 2126 1063 531 532 21 3 10 ucl
‘ 30 dlfferent Diabetes 766 383 192 191 8 2 10 ucl
Ecoli 336 168 84 84 7 8 10 ucl
Faults 1941 971 485 485 27 7 10 ucl
datasets German 1000 500 250 250 24 2 10 | STATLOG
Glass 214 107 53 54 9 6 20 ucl
Haberman 306 153 76 77 3 2 20 ucl
Heart 270 135 67 68 13 2 20 | STATLOG
ILPD 583 292 145 146 10 6 10 ucl
Segmentation | 2310 1155 577 578 19 7 10 ucl
lonosphere 350 176 87 87 34 2 10 UcCl
Laryngeall 213 107 53 53 16 2 20 LKC
Laryngeal3 353 177 88 88 16 3 10 LKC
Lithuanian 2000 1000 500 500 2 2 10 PRTools
Liver 345 173 86 86 6 2 20 ucl
Magic 19020 9510 4755 4755 10 2 10 KEEL
Mammo 830 415 207 208 5 2 10 KEEL
Monk 432 216 108 108 6 2 10 KEEL
Phoneme 5404 2702 1351 1351 5 2 10 ELENA
Sonar 208 104 52 52 60 2 20 ucl
Thyroid 692 346 173 173 16 2 10 LKC
Vehicle 847 423 212 212 18 4 10 | STATLOG
Vertebral 300 150 75 75 6 2 20 ucl
WBC 569 285 142 142 30 2 10 ucl
WDVG 5000 2500 1250 1250 21 3 10 ucl
Weaning 302 151 75 76 17 2 20 LKC
Wine 178 89 44 45 13 3 20 ucl




Experimental Results

Single Best ALL A Priori A Posteriori KNORA-U KNORA-E DSOC

Diabetes
Ecoli 63.69
Faults 31.18

German 59.52 75.70
Glass 58.02 59.91 KRS

Haberman 73.68 75.26

Heart 79.10 83.81
ILPD 68.10
Image 16.13
lonosphere| 78.30
Laryngeall| 80.00
Laryngeal3| 66.02
Lithuanian| 67.87

Magic

Mammo 64.18
Monk 78.38 86.48
Phoneme 62.16 .
Sonar 61.44 . 70.29
Thyroid 93.32 . 95.55
Vehicle 26.42 . 59.50
Vertebral 80.93 . 81.80
WBC 85.28 . 93.24

WDVG 44.64
Weaning 76.93
Wine 59.20




Experimental Results
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Fig. 4. Pairwise comparison with all methods. The blue bars represent the number of problems where the adoption of complexity
outperformed competitor method. Since the red bars refer to the number of times that the proposed approach loses.
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Conclusions

¢ Although the promising results achieved, there is still the need for
further study on the influence of the complexity of the data on the
selection process.

¢ It is necessary to have ensembles that better cover complexity
space.

¢ An alternative would be to generate the pool of classifiers taking
into account the complexity of the data.
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Further Analysis
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Fig. 3. Overlapping between complexity distributions, in yellow the distribution estimated from the neighborhood of each test
instance, and in blue the distribution estimated from the training subsets: (a),(c) and (e) are related to the measures F1, N2 and N4
for the phonema dataset; similarly (b),(d) and (f) are related to the sonar dataset
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Meta Classifier to Predict the
Classification Strategy

Kelly Lais Wiggers
PhD Project




Hypothesis

¢ We may predict the most promising classification strategy
(monolothic or MCS) for a given problem from data
complexity analysis.
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Methodology - Databases

¢ 300 problems presenting different D104 533
levels of difficulty D105 626
D106 627

¢ Artificial datasets D107 324
D108 301

¢ Two-class problems. D103 304
D10 302

D110 237

D111 301

D112 348

D113 543

D114 493



Methodology — Meta Classifier

¢ Monolithic Classifiers: a decision tree (DT) for each
problem

¢ MCS

N classifiers (an ensemble without selection)
Homogeneous pool - DT as base classifier

¢ The 300 datasets were labeled considering the most
promising classification strategy (monolithic or ensemble).



Methodology — Meta Classifier

- 90,7285 89,4040 Anyone
B ~ " 101 91,1063 93,7093 Ensemble

Labeling procedure 102 85,6678 87,9479  Ensemble

.. . ' 103 89,0000 89,3333  Anyone

- Critical difference between the results 104 92,4953 93,6210  Anyone
. . 105 93,4505 94,4089 A

(monolithic and ensemble) based on e

statistical analysis of significance 107 83,0247 85,4938  Ensemble

108 84,7176 88,0399 Ensemble
109 84,8684 87,5000 Ensemble

. 10 92,7152 93,3775 Anyone
- C]‘asses' . ) 110 83,1224 82,7004 Anyone
- 2 Monolithic or ensemble 111 88,3721 873754  Anyone
. . 112 82,1839 84,7701 Ensemble
- 3 Monolithic, ensemble or anyone 113 97,2376 97,2376  Anyone

114 79,3103 80,5274 Anyone
115 81,0631 81,7276 Anyone
116 75,6667 80,6667 Ensemble
117 77,7457 78,3237 Anyone
118 79,1749 79,1749 Anyone
119 78,0992 83,0579 Ensemble



Methodology — Meta Classifier

¢ After labeling the datasets, 12 complexity measures were calculated

for each base:

F1: Maximum Fisher's discriminant ratio

F1v: Directional-vector maximum Fisher's discriminant ratio

F2:
F3:
F4:
L1:
L2:
L3:
N1:
N2:
Na3:
N4:

Overlap of the per-class bounding boxes

Maximum (individual) feature efficiency

Collective feature efficiency (sum of each feature efficiency)
Minimized sum of the error distance of a linear classifier (linear SMO)
Training error of a linear classifier (linear SMO)

Nonlinearity of a linear classifier (linear SMO)

Fraction of points on the class boundary

Ratio of average intra/inter class nearest neighbor distance
Leave-one-out error rate of the one-nearest neighbor classifier

Nonlinearity of the one-nearest neighbor classifier



Methodology — Meta Classifier
Cbamset PV R P Fa UL L2 13 NI N2 N3 NG cuass

D100 0.041 0.411 0.308 0.652 1.000 0.259 0.129 0.500 0.354 0.917 0.268 0.101 Anyone
D101 0.120 0.505 0.001 0.627 0.993 0.256 0.128 0.500 0.310 0.885 0.200 0.114  Ensemble
D102 3.457 8.066 0.072 0.599 0.909 0.444 0.134 0.070 0.352 0.930 0.277 0.088  Ensemble
D103 2.677 6.757 0.010 0.613 0.997 0.384 0.173 0.500 0.313 0.872 0.227 0.107 Anyone
D104 3.917 8.466 0.060 0.606 0.795 0.519 0.169 0.386 0.270 0.856 0.159 0.103 Anyone
D105 3.596 7.958 0.020 0.641 0.826 0.508 0.168 0.420 0.235 0.844 0.128 0.089 Anyone
D106 3.625 7.989 0.024 0.641 0.826 0.511 0.159 0.387 0.234 0.844 0.128 0.099 Anyone
D107 3.038 6.651 0.145 0.562 0.858 0.475 0.154 0.083 0.426 0.927 0.262 0.099  Ensemble
D108 3.376 7.656 0.042 0.571 0.890 0.480 0.146 0.098 0.389 0.920 0.276 0.075  Ensemble
D109 2.569 6.147 0.021 0.572 0.885 0.563 0.178 0.201 0.401 0.905 0.263 0.087  Ensemble
D10 0.022 0.284 0.005 0.523 0.993 0.676 0.338 0.500 0.573 0.994 0.450 0.132 Anyone
D110 0.784 1.008 0.044 0.367 0.506 0.376 0.186 0.500 0.401 0.804 0.316 0.283 Anyone
D111 2.929 6.972 0.047 0.585 0.867 0.492 0.153 0.090 0.462 0.936 0.332 0.100 Anyone
D112 0.520 1.766 0.013 0.184 0.517 0.388 0.193 0.500 0.362 0.910 0.261 0.145  Ensemble
D113 0.020 0.264 0.006 0.177 0.976 0.461 0.230 0.500 0.361 0.883 0.215 0.192 Anyone
D114 0.038 0.297 0.028 0.055 0.333 0.373 0.187 0.500 0.438 0.927 0.294 0.222 Anyone
D115 0.018 0.208 0.026 0.143 0.518 0.352 0.176 0.500 0.409 0.910 0.296 0.179 Anyone
D116 1.080 3.156 0.042 0.150 0.490 0.602 0.163 0.155 0.493 0.944 0.347 0.108  Ensemble
D117 0.040 0.349 0.039 0.043 0.358 0.428 0.214 0.500 0.436 0.940 0.301 0.207 Anyone
D118 0.022 0.149 0.081 0.031 0.248 0.417 0.208 0.500 0.444 0.933 0.316 0.196 Anyone
D119 0.863 2.607 0.043 0.070 0.202 0.688 0.347 0.500 0.264 0.747 0.169 0.153  Ensemble
D11 0.025 0.307 0.011 0.484 1.000 0.704 0.352 0.500 0.605 0.985 0.484 0.163 Anyone
D120 0.742 1.173 0.370 0.032 0.049 0.496 0.237 0.500 0.396 0.802 0.288 0.280  Ensemble
D121 0.442 0.968 0.127 0.093 0.142 0.547 0.267 0.500 0.370 0.787 0.250 0.273  Ensemble
D122 0.744 1.694 0.482 0.051 0.076 0.568 0.278 0.500 0.389 0.803 0.272 0.218  Ensemble
D123 0.939 2.229 0.040 0.104 0.264 0.683 0.199 0.139 0.429 0.816 0.307 0.167 Anyone




Preliminary Results

Three classes

¢ correctly classified instances: 73.66% (cross validation)

¢ correctly classified instances: 89% (use training set)

Confusion Matrix

Cross validation Use training set
a b ¢ <--classified as a b ¢ <--classified as
3 5 5 | a=Monolithic 13 0 0 | a=Monolithic
2 60 44 | b= Ensemble 0 83 23 | b= Ensemble

1 22158 | ¢ = Anyone 1 9171 | c= Anyone
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Figure 2. Decision tree of the complexities (2% difference)



Preliminary Results

Two classes

correctly classified instances: 75,33% (cross validation)
correctly classified instances: 81,66% (use training set)

Confusion Matrix

Cross validation Use Training Set

a b <--classified as a b <--classified as
153 28 | a = Monolithic 169 12 | a = Monolithic

46 73 | b = Ensemble 43 76 | b = Ensemble
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Figure 2. Decision tree of the complexities (2% difference — 2 classes)




Future work

¢ T-student test in the labeling process: Monolithic, Ensemble
or Anyone

¢ Use leave-one-out strategy
¢ Evaluate other complexity measures

¢ Add new datasets in the protocol.



