Random Forests

Parametrization, Tree Selection and Dynamic Induction

Simon Bernard

Document and Learning research team LITIS lab. University of Rouen, France

décembre 2014

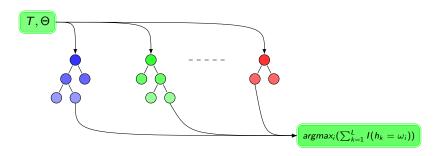
Random Forests Definition [Breiman 2001]¹

Definition

A random forest is a classifier consisting of a collection of tree-structured classifiers, noted

$$\{ h_k = h(x, \theta_k), k = 1, ..., L \}$$

where the $\{\theta_k\}$ are independent and identically distributed random vectors and each tree casts a unit vote for the most popular class at input x.

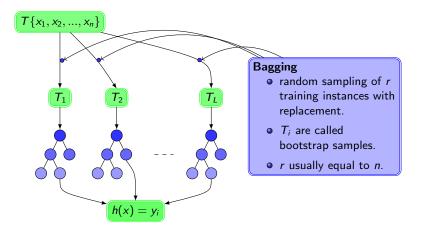


^{1.} L. Breiman, Random Forests. Machine Learning, vol.45, num.1, pp 5-32, 2001

Random Forest Classifiers

Reference algorithm Forest-RI [Breiman 2001]¹

Two randomization principles :

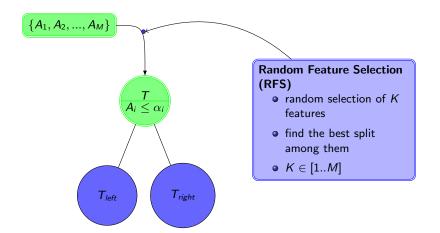


^{1.} L. Breiman, Random Forests. Machine Learning, vol.45, num.1, pp 5-32, 2001

Random Forest Classifiers

Reference algorithm Forest-RI [Breiman 2001]¹

Two randomization principles :



1. L. Breiman, Random Forests. Machine Learning, vol.45, num.1, pp 5-32, 2001

Random Forests Pros and Cons

Random Forest are efficient classifiers... [Fernández et al. JMLR, 2014] But this efficiency is sometimes difficult to obtain

Example : the Madelon dataset (2600 instances, 500 features (= M), 2 classes)

Forest-RI : $K = 22 (\sqrt{M}), L = 300$ \rightarrow test error rate = 30.50%

Forest-RI : K = 260, L = 300 \rightarrow test error rate = 17.73%

Forest-RI : K = 260, L = 100 (tree selection) \rightarrow test error rate = **15.96**%

Why and How these performances fluctuate?

Random Feature Selection

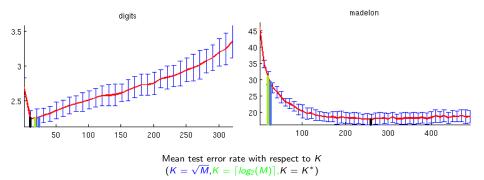
Control the Randomness

What do we know? Control of the randomness : hyperparameter K

- K : number of random features used for each node splitting
 - Allow to control the "amount" of randomness used during the induction procedure

K	1	2		M-1	М
Randomness	max		$\leftarrow \oplus \ldots \ominus \rightarrow$		Ø

- Several arbitrary values in the literature : 1, \sqrt{M} , $\lceil log_2(M) \rceil$



Exhaustive search for K^*

Intuition : the best value for K depends on the relevancy of the features²

Experimental protocol :

- 20 datasets, 50 random splits Training/Test for each
- McNemar statistical test of significance
- Exhaustive search of K^* : all possible values between 1 and M are tested $\rightarrow K^*$: the best value in average, over the 50 splits
- Measure the *information gain* for each feature (estimate the relevancy)

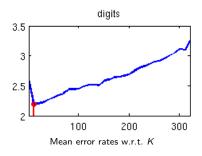
$$Gain(T, A_i) = \Delta I(T, A_i) = I(T) - I(T, A_i)$$

$$I(T) = \sum_{j=1}^{c} -\frac{n_{j.}}{n_{..}} \log_2 \frac{n_{j.}}{n_{..}} \qquad I(T, A_i) = \sum_{k=1}^{m_j} \frac{n_{.k}}{n_{..}} I(T_k))$$

^{2.} Geurts et al, "Extremely Randomized Trees", Machine Learning, 2006

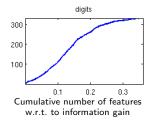
Exhaustive search for K^*

2 types of results :



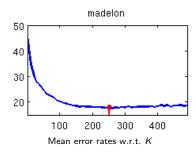
17 of the 20 datasets

- $K = \sqrt{M}$ is always a good choice
- high proportion of relevant features



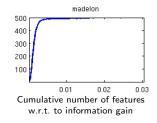
Exhaustive search for K^*

 $\ensuremath{2}$ types of results :



3 of the 20 datasets

- None of the given settings is satisfying
- Very few relevant features



The Forest-RK algorithm

An alternative with a new push-button algorithm, called Forest-RK³

Forest-RK

- Same as Forest-RI, *i.e.* combines Bagging and RFS.
- Except that the value of *K* is randomly set for each node.
 - \rightarrow K is not an hyperparameter of the method anymore.
 - \rightarrow increase diversity by allowing some trees to be "less random"

^{3.} S. Bernard, L. Heutte, S. Adam, Forest-RK : A New Random Forest Induction Method, ICIC, 2008.

Forest-RK

The Forest-RK algorithm

Forest-RK \equiv Forest-RI/ $K_{\sqrt{M}}$ on the 17 "regular" datasets

For the 3 "atypical" datasets (with very few relevant features) :

	DigReject	Madelon	Musk				
Forest-RI/ K^*	7.12 ± 0.34	17.73 ± 1.60	2.34 ± 0.30				
Forest-RI/ $K_{\sqrt{M}}$	7.58 ± 0.34	$\textbf{30.50} \pm \textbf{1.94}$	2.40 ± 0.29				
Forest-RK	7.16 ± 0.33	18.34 ± 1.52	2.34 ± 0.31				
Test de McNemar							
RK vs RI/ $K_{\sqrt{M}}$	RK	RK	≡				
RK vs RI/K*	≡	≡	≡				

 $\rightarrow \text{Forest-RK} > \text{Forest-RI}/\textit{K}_{\sqrt{\textit{M}}}$

Forest-RK \equiv Forest-RI/K* for all the 20 datasets

Tree Selection and Dynamic Induction

Control the Diversity

What do we know? Generalization error convergence

For an increasing number of trees in the forest, generalization error rate converges to a minimum. $^{1\,4\,5}$

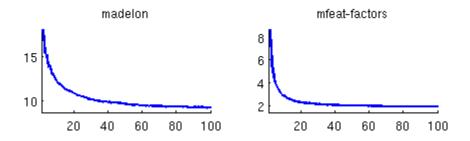
- Strength : $s = E_{X,Y}[mr(X, Y)]$ where $mr(X, Y) = P_{\Theta}(h(X, \Theta) = Y) - max_{j \neq Y}P_{\Theta}(h(X, \Theta) = j)$ is the margin of the forest
- **Correlation** : $\overline{\rho} = E_{\Theta,\Theta'}[\rho(rmg(\Theta, X, Y), rmg(\Theta', X, Y))]$ where $rmg(\Theta, X, Y) = I(h(X, \Theta) = Y) - I(h(X, \Theta) = \hat{j}(X, Y))$ is the raw margin of a tree
- Generalization error bound :

$$PE^* \leq rac{\overline{
ho}(1-s^2)}{s^2} \leq rac{\overline{
ho}}{s^2}$$
 (1)

- 1. L. Breiman, Random Forests. Machine Learning, vol.45, num.1, pp 5-32, 2001
- 4. Latinne et al., Limiting the Number of Trees in Random Forests, MCS, 2001.
- 5. Bernard et al., Using Random Forests for Handwritten Digit Recognition, ICDAR, 2007.

What do we know? Generalization error convergence

For an increasing number of trees in the forest, generalization error rate converges to a minimum. $^{1\,4\,5}$



1. L. Breiman, Random Forests. Machine Learning, vol.45, num.1, pp 5-32, 2001

4. Latinne et al., Limiting the Number of Trees in Random Forests, MCS, 2001.

5. Bernard et al., Using Random Forests for Handwritten Digit Recognition, ICDAR, 2007.

Analysis of several sub-forests

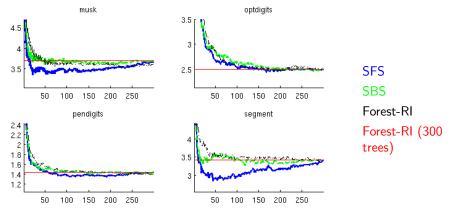
What makes an ensemble of trees more accurate than another?

 \rightarrow Generate different sub-forests and examine their performances

Experimental protocol :

- 20 datasets, 50 random splits Training/Test
- Sequential classifiers selection techniques :
 - Sequential Forward Search (SFS)
 - Sequential Backward Search (SBS)
 - \rightarrow Selection criteria : validation error rate

Analysis of several sub-forests Results



Error rate w.r.t. the number of trees in the sub-forests

 \to 18 datasets : at least one sub-forest significantly better than the forest \to Sometimes only 10% of the trees can reach the performance of the forest

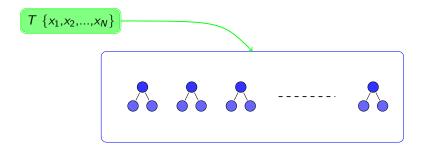
Analysis of several sub-forests

Datasets	SFS	5	SBS		Forest-RI
	error rates	# trees	error rates	# tree	300 trees
Diabetes	23.57	142	23.61	32	24.31
Digits	2.45	276	2.46	289	2.47
DigReject	7.53	289	7.54	245	7.55
Gamma	12.60	76	12.67	219	12.71
Isolet	6.93	213	6.73	249	7.03
Letter	6.21	265	6.27	228	6.28
Madelon	33.01	103	34.33	101	34.88
Mfeat-factors	3.98	153	4.18	236	4.28
Mfeat-fourier	17.37	297	17.33	292	17.46
Mfeat-karhunen	4.80	272	4.74	268	4.83
Mfeat-zernike	22.39	298	22.26	281	22.40
MNIST	5.92	210	5.93	288	5.95
Musk	3.35	21	3.61	49	3.70
OptDigits	2.43	168	2.47	274	2.50
Page-block	3.01	105	2.96	88	3.06
Pendigits	1.34	191	1.40	154	1.44
Segment	2.85	44	3.26	119	3.43
Spambase	5.30	47	5.45	161	5.51
Vehicle	24.75	79	25.35	53	26.17
Waveform	14.81	262	14.71	145	14.90

 \to 18 datasets : at least one sub-forest significantly better than the forest \to Sometimes only 10% of the trees can reach the performance of the forest

Dynamic Random Forest (DRF)¹ Principe</sup>

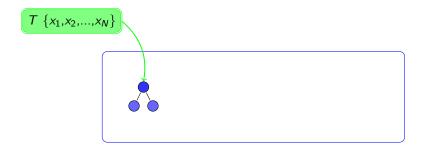
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

Dynamic Random Forest (DRF)¹ Principe</sup>

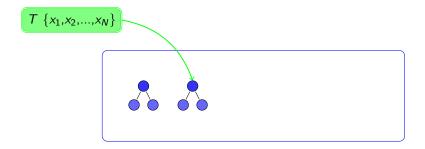
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

Dynamic Random Forest (DRF)¹ Principe</sup>

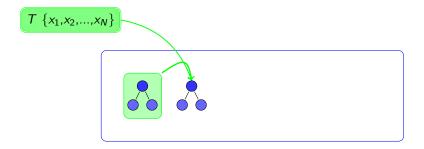
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

Dynamic Random Forest (DRF)¹ Principe</sup>

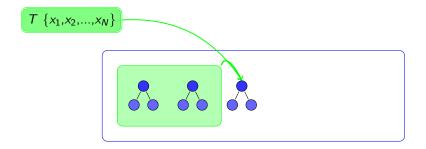
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

Dynamic Random Forest (DRF)¹ Principe</sup>

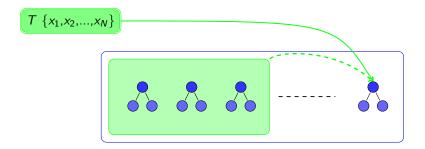
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

Dynamic Random Forest (DRF)¹ Principe</sup>

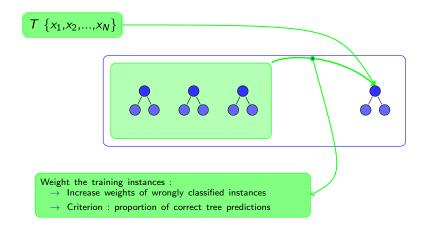
Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

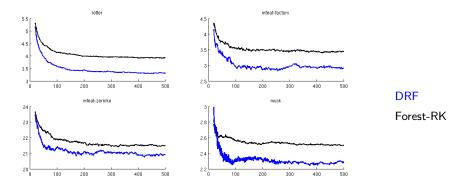
Dynamic Random Forest (DRF)¹ Principe</sup>

Key idea : guide the tree induction



^{1.} Bernard et al. Dynamic Random Forests, Pattern Recognition Letters, 2012

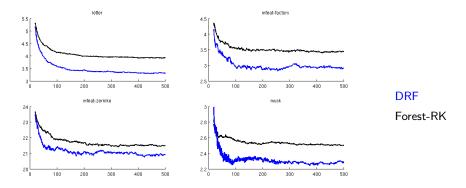
Dynamic Random Forest Evaluation



Test error rate w.r.t. the number of trees

- 500-trees Forests :
 - \rightarrow DRF significantly better than Forest-RK for 14 datasets
 - \rightarrow DRF > Forest-RK > *Forest-RI/K**

Dynamic Random Forest Evaluation



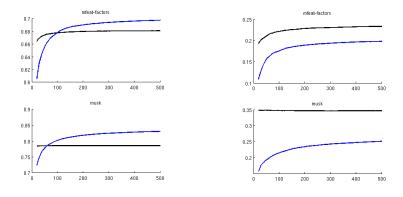
Test error rate w.r.t. the number of trees

② Generalization error convergence

 \rightarrow Not mathematically proven anymore, but experimentally observed

Strength and Correlation in Dynamic Random Forest

The strength must be maximized and the correlation must be minimized (for minimizing $\frac{\overline{p}}{s^2}$)



Correlation w.r.t. the number of trees

DRF, Forest-RK

Works in progress with Random Forests

In the chronological order...

- **Oynamic Random Forest** : weighting the features to guide the Decision Tree induction
- **One-Class Random Forest**² : Random Forests for One-Class classification
- Random Forests with Random Hierarchies : Randomization principle for Hierarchical Multilabel classification
- **Cost-Sensitive Random Forests** : Random Forests for Cost-Sensitive classification with multi-objective evolutionnary techniques

^{2.} Désir et al. One-Class Random Forests, Pattern Recognition, 2013