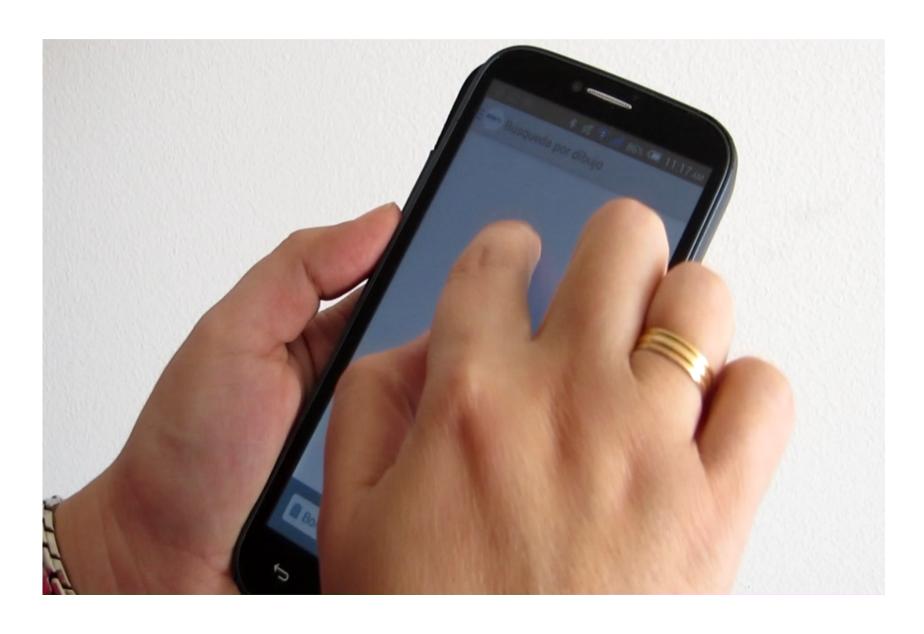
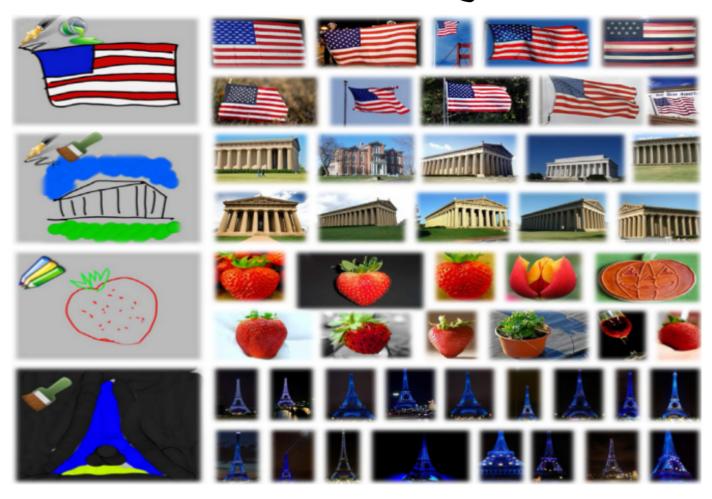
Sketch based Image Retrieval using Learned KeyShapes (LKS)

José M. Saavedra (PhD.)

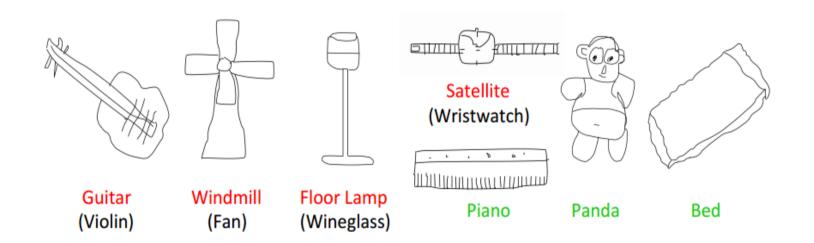




Xinghai Sun, Changhu Wang, Avneesh Sud, Chao Xu, and Lei Zhang. 2013. MagicBrush: image search by color sketch. In Proceedings of the 21st ACM international conference on Multimedia (MM '13). ACM, New York, NY, USA

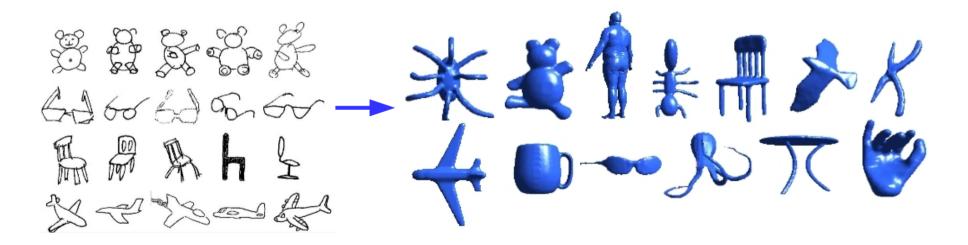
A sketch is a simple hand-made drawing composed of just a sequence of strokes. A sketch may lack of color and texture.

Related applications:



Sketch Classification

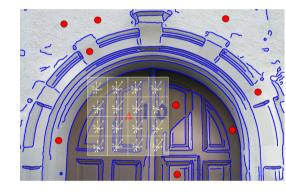
Related applications:



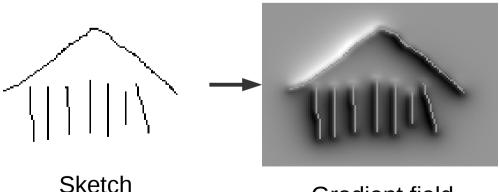
Sketch Classification

Related Work: Commonly using low-level features.

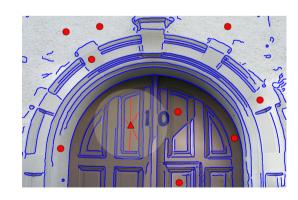
- · Gradient Field [Hu et al. 2011, 2013]
- · Spark Descriptor [Eitz et al. 2011]
- · DoIGOH Descriptor [Eitz et al. 2011]



DolGOH



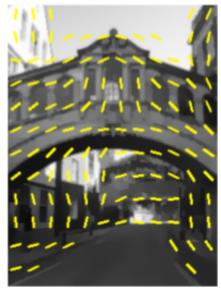
Gradient field

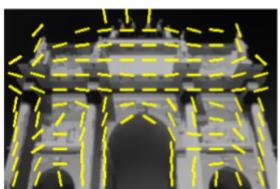


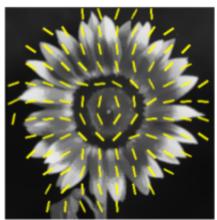
Spark

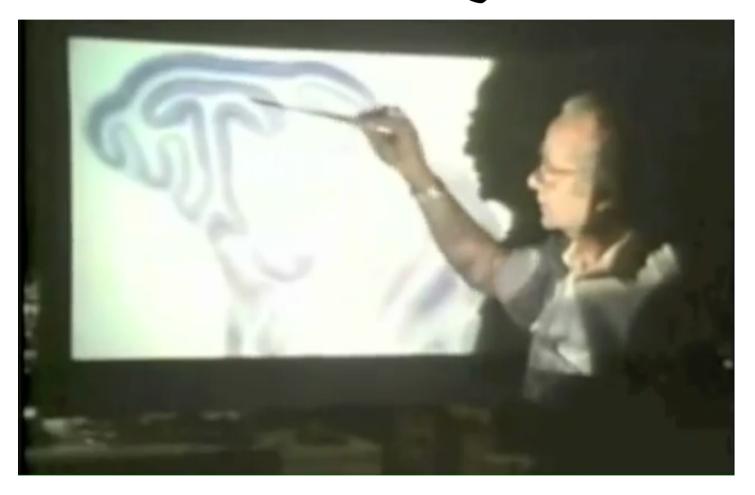
Related Work: Commonly using low-level features.

- HELO (Histogram of Edge Local Orientations) [Saavedra, 2010]
- · SHELO (Soft HELO) [Saavedra, 2014]









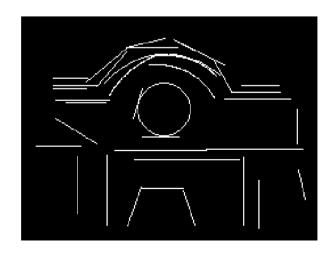
Huebel and Wiesel cat experiment on Visual Perception

How can we apply MID-LEVEL features in the SBIR problem?

KEYSHAPES

Related Work: Using keyshapes

• Sketch-based image retrieval using keyshapes [Saavedra, 2011(14)]

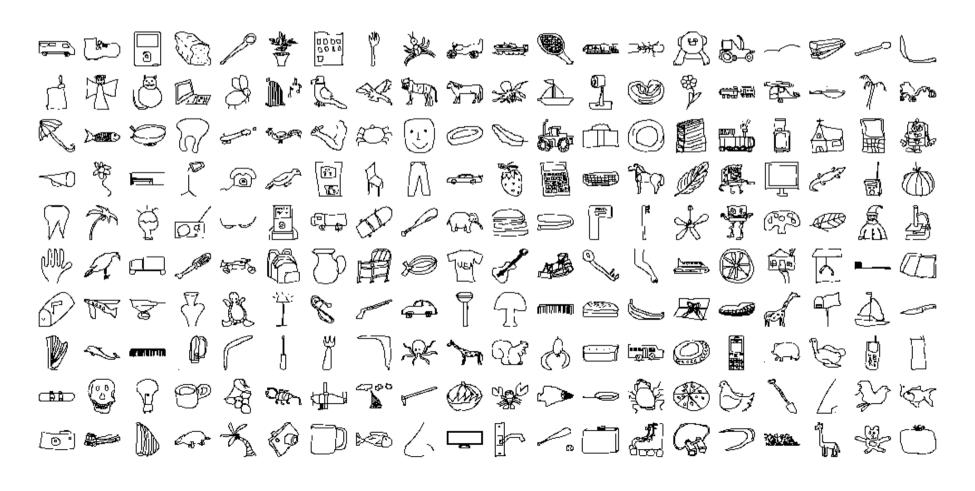


Sketch based Image Retrieval using Learned KeyShapes

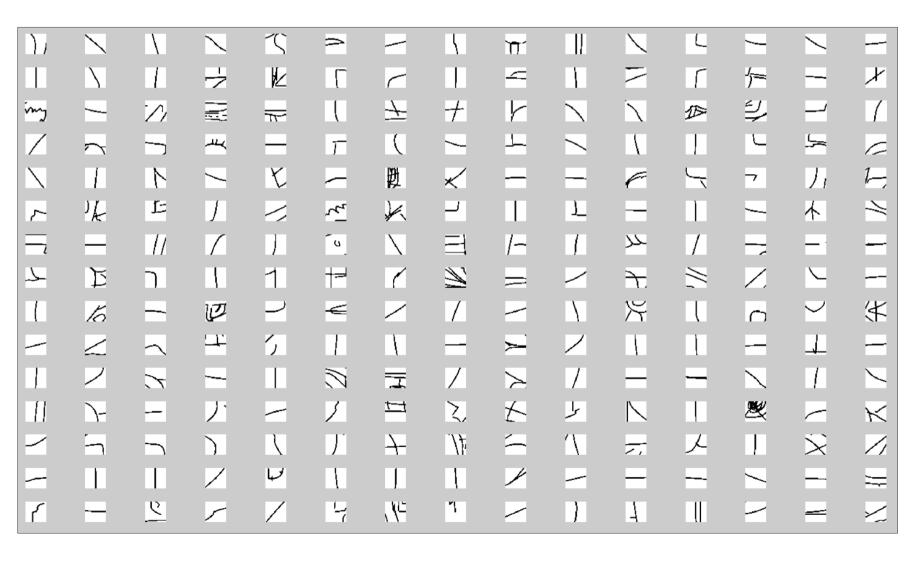
(LKS) Keyshape Discovering Sketch dataset [Eitz et al 2012] Sketch Patch Keyshape keyshapes Extraction Discovering Sketch Token Normalization omputation **KS-Histogram** KeyShape image Detection Histogram st **Contour Detection** LKS descriptor query sketch decription

Jose M. Saavedra, Juan Manuel Barrios. Sketch based Image Retrieval using Learned KeyShapes (LKS). 26th British Machine Vision Conference (BMVC), Swansea, UK, 2015

Training Dataset: 250 classes, 80 sketches/class, total = 20K sketches.

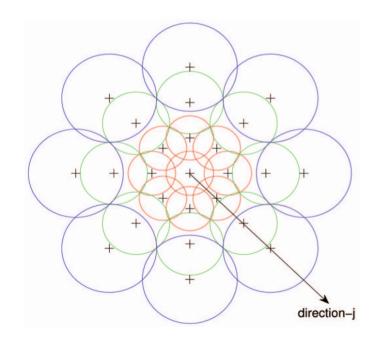


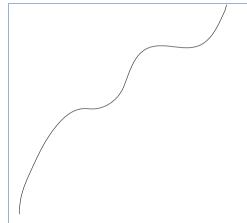
Patch Extraction



Patch Description

 Sketch patches are represented by DAISY descriptors

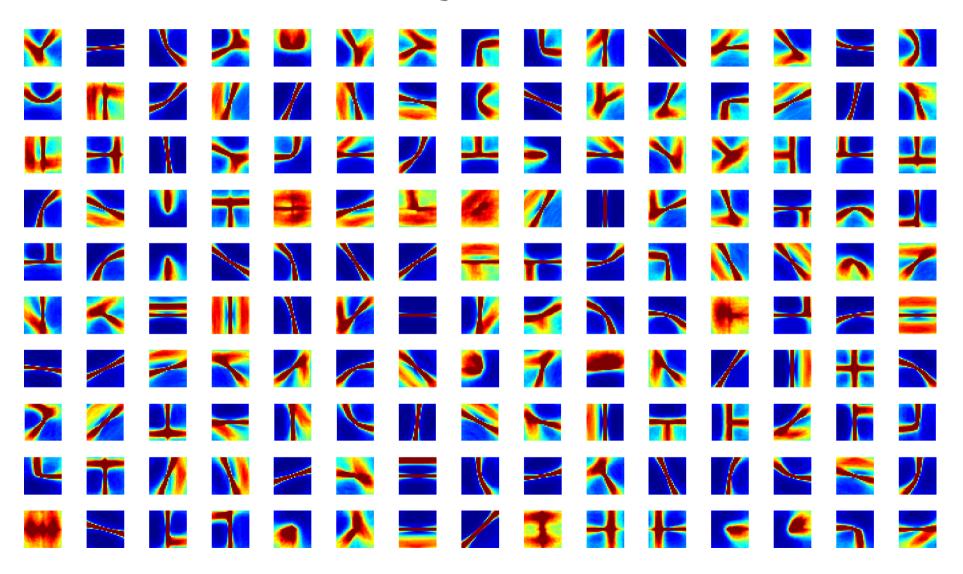




$$\mathcal{D}(u_0, v_0) = \overline{\left[\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0), \overline{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \dots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \overline{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \dots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)), \dots, \overline{\mathbf{h}}_{\Sigma_Q}^{\top}(\mathbf{l}_T(u_0, v_0, R_Q))\right]^{\top}}$$

Tola, Engin; Lepetit, V.; Fua, P., "DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.32, no.5, pp.815,830, May 2010

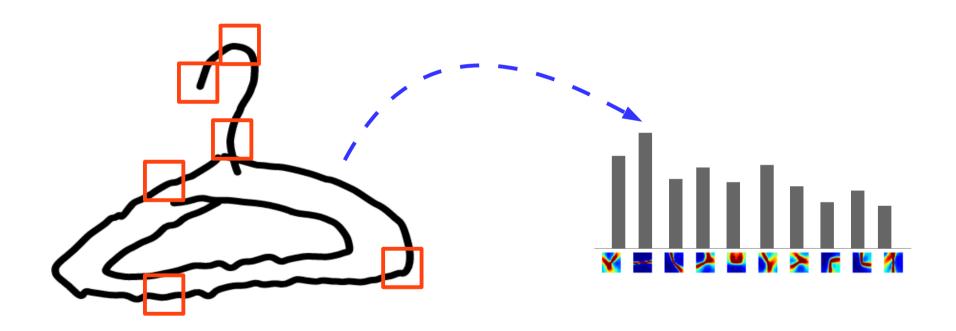
Clustering (on 1M patches)



Clustering

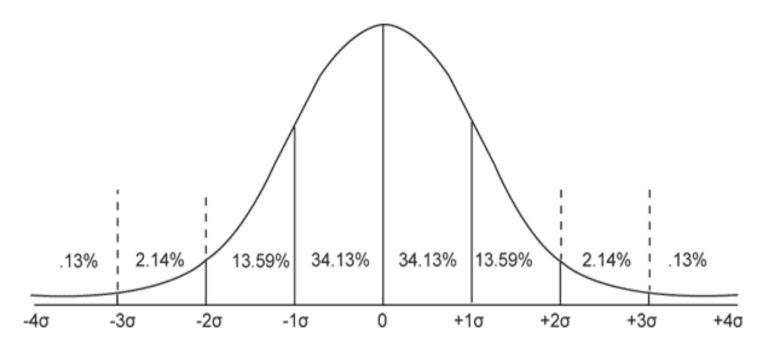
$$Clusters_K = \{(\mu_1, r_1), \cdots, (\mu_K, r_K)\}$$

Sketch Representation



$$KS_P^i = \{(p_1^i, \delta_1^i), \cdots (p_P^i, \delta_P^i)\}$$

Voting Process

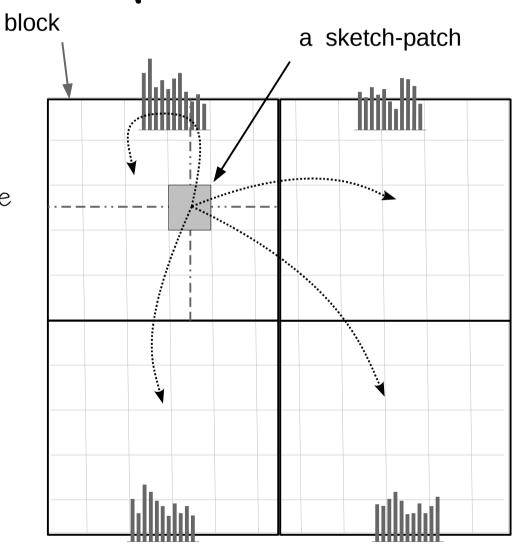


$$G(S_i, p_j^i) = \frac{1}{\sigma_{p_j^i} \sqrt{2\pi}} \exp\left(-0.5 \frac{{\delta_j^i}^2}{{\sigma_{p_j^i}}^2}\right)$$

$$vote_{j}^{i} = \frac{G(S_{i}, p_{j}^{i})}{\sum_{k=1}^{P} G(S_{i}, p_{k}^{i})}$$
$$h_{LKS}(p_{j}^{i}) + = vote_{j}^{i}$$

Spatial Division

Divide the image into BxB blocks and compute a ks—histogram for each block



bi-interpolation

- Using two different datasets

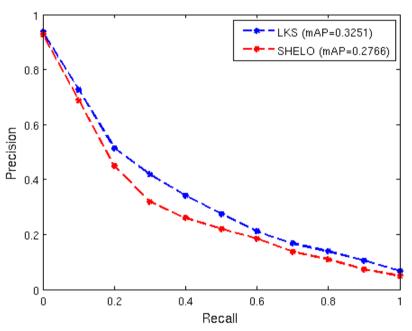
 Saavedra (1326 images, 53 queries)

 Flickr 15K (14660 images, 330 queries)
- Evaluation Metrics

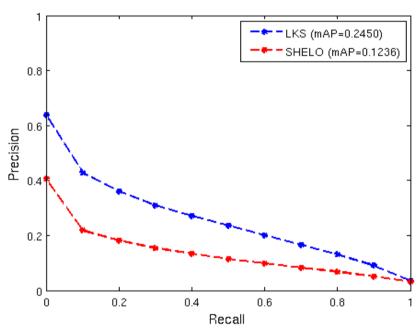
MAP: Mean Average Precision Recall—Precision Graphic

	HOG	GF-HOG[15]	SHELO[25]	LKS	gain
Saavedra's	0.2355	unreported	0.2766	0.3251	17.5%
Flickr15K	0.0771	0.1222	0.1236	0.2450	98.2%

mAP: Mean Average Precision



On Saavedra's dataset



On Flickr dataset

	K=50	K=100	K=150	K=200	K=300
B=3, P=10	0.2802	0.2901	0.2911	0.2908	0.2949
B=4, P=10	0.2925	0.3186	0.3251	0.3248	0.3180
B=3, P=15	0.2773	0.2888	0.2900	0.2911	0.2916
B=4, P=15	0.2828	0.3076	0.3210	0.3241	0.3250
B=3, P=20	0.2783	0.2863	0.2886	0.2878	0.2893
B=4, P=20	0.2789	0.3019	0.3144	0.3191	0.3220

mAP for a sample of different parameters in the Saavedra's dataset.

	K=50	K=100	K=150	K=200	K=300
B=3, P=10	0.2246	0.2407	0.2450	0.2431	0.2381
B=4, P=10	0.2208	0.2370	0.2351	0.2272	0.2104
B=3, P=15	0.2124	0.2348	0.2437	0.2452	0.2472
B=4, P=15	0.2056	0.2330	0.2390	0.2375	0.2300
B=3, P=15	0.2058	0.2276	0.2387	0.2446	0.2497
B=4, P=15	0.1964	0.2255	0.2361	0.2402	0.2387

mAP for a sample of different parameters in the Flick15k dataset.

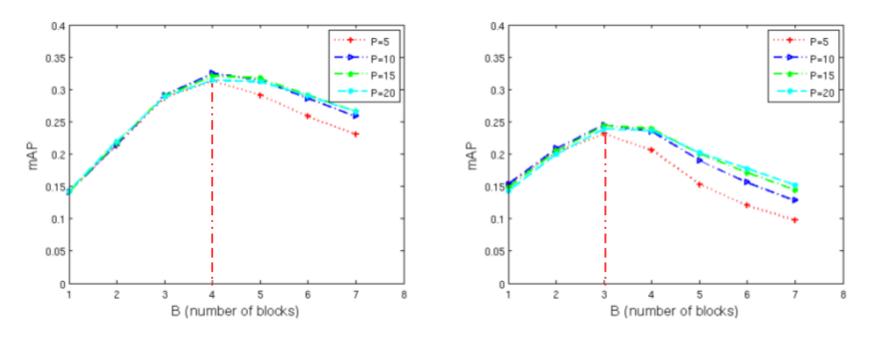


Figure 6: Performance of LKS varying the number of blocks for spatial division and the number of P for voting when K = 150. On the left, we see the performance on the Saavedra's dataset. On the right, we show the performance on the Flick15k dataset

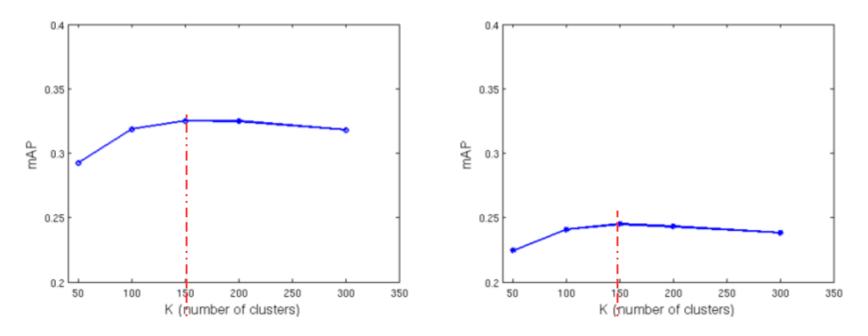


Figure 7: Performance of LKS varying the number of clusters on the Saavedra's dataset (on the left), and Flickr15k (on the right).

More efficiency?

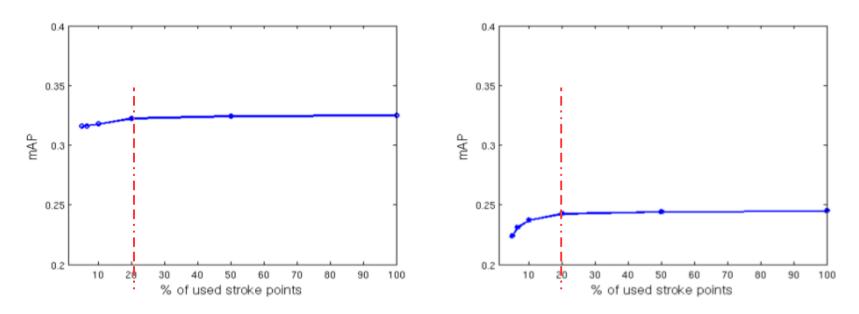
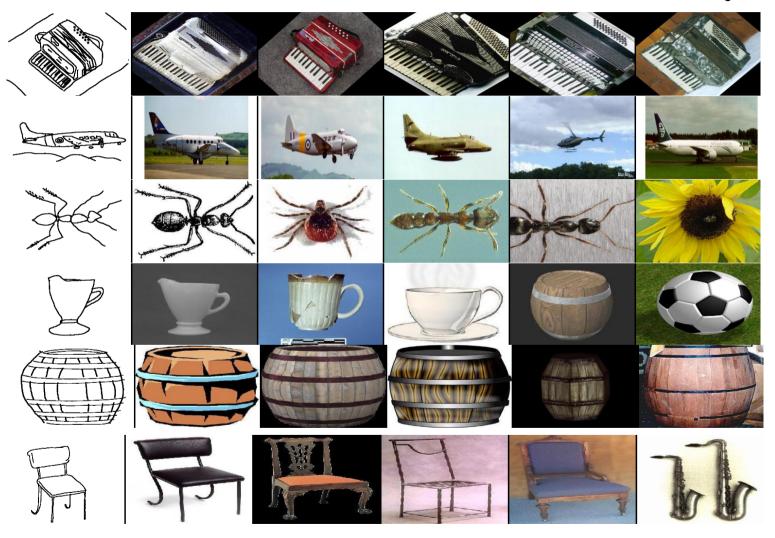
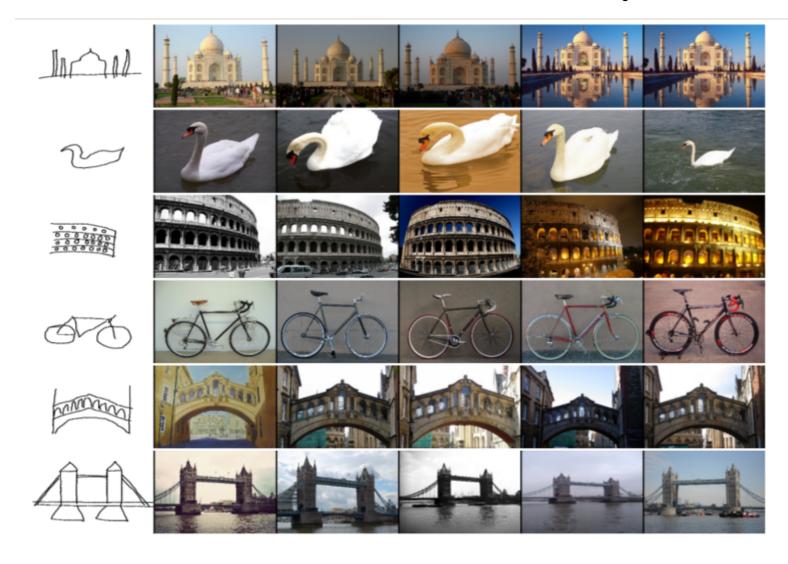


Figure 8: Impact of reducing the number of patches for computing the LKS histogram. On the left, the performance on the Saavedra's dataset. On the right, the performance on Flickr15k.

Results (own dataset)



Results (Flickr15K)



Thanks!!!