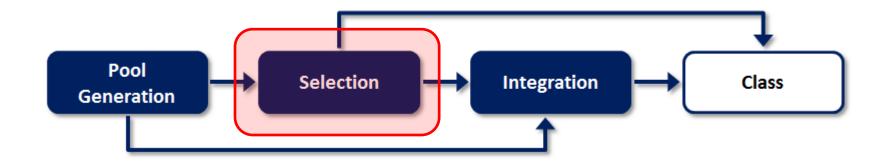
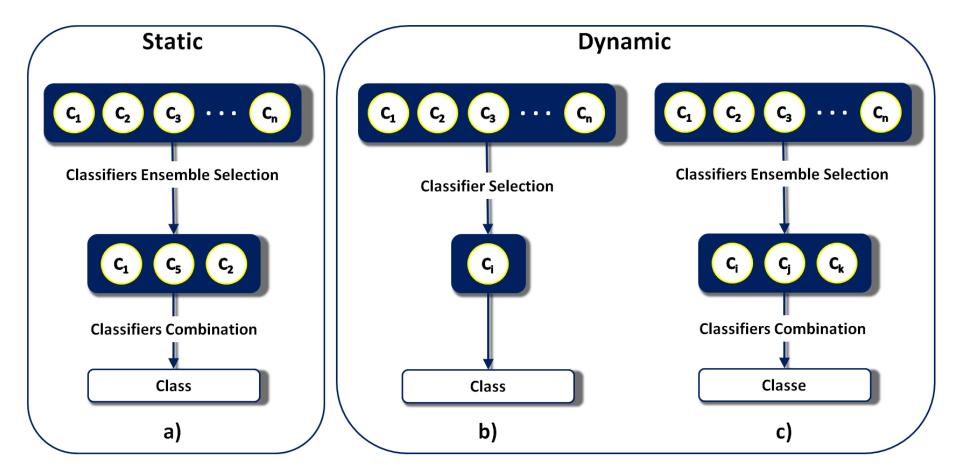
Dynamic Classifier Selection based on Complexity Analysis

André Luiz Brun Supervisor: Prof. Dr. Alceu S. Britto Jr. Co-Supervisor: Prof. Dr. Robert Sabourin

- Classification: most important task on pattern recognition
- Train a single classifier to be capable of learning the wide variability usually found in a pattern recognition is a challenging task (sometimes infeasible)

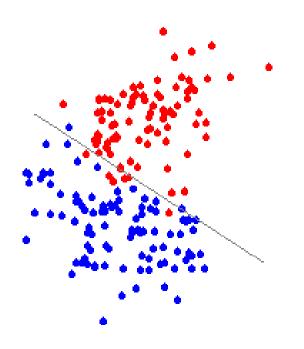
- An interesting alternative is the use of Multiple Classifier Systems (MCSs)
 - Need to commit different erros
 - Diversity among the members

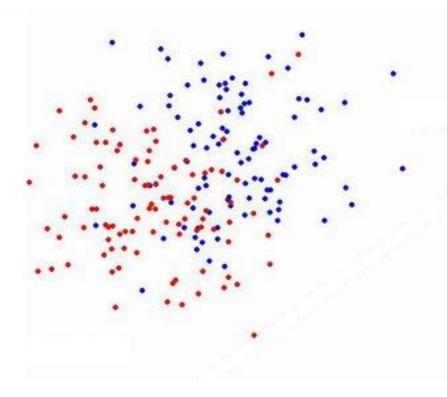




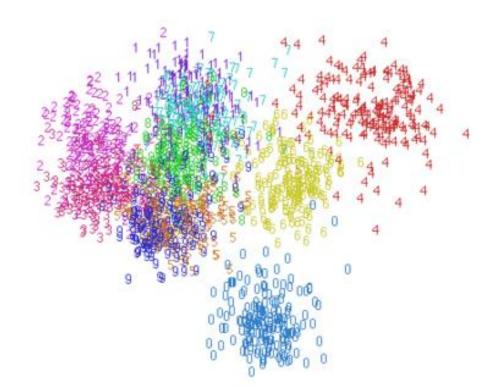
- Selection Criteria
 - Local Accuracy
 - Diversity
 - Behavioral
 - Ambiguity
 - Ranking
 - …
- Our hypothesis: use the problem complexity to evaluate the competence of each classifier in a pool

 Relationship between data characteristics and performance of classifiers



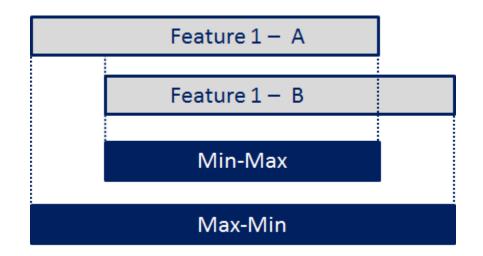


• Number of Classes, Instances, Features, etc...

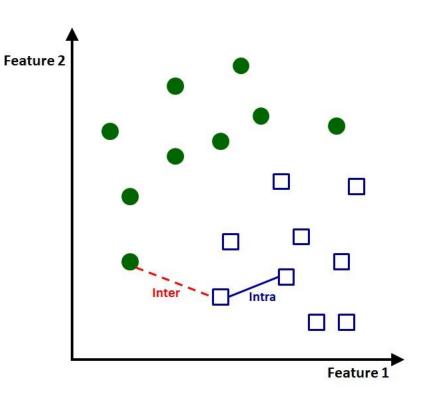


Class Overlap

 F1, F2, F3, F4

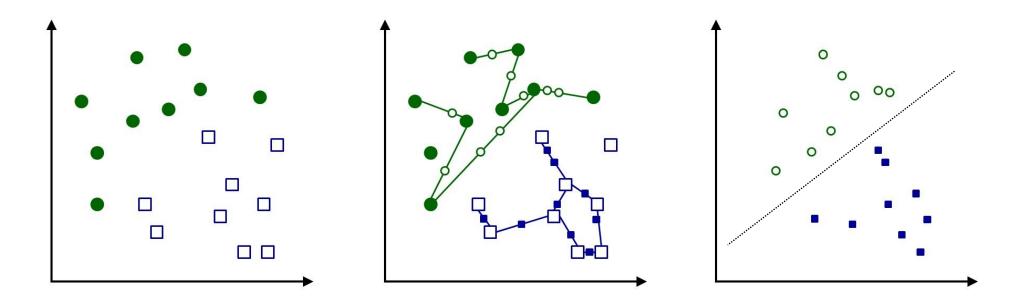


- Separability of classes
 - L1, L2, N1, N2, N3

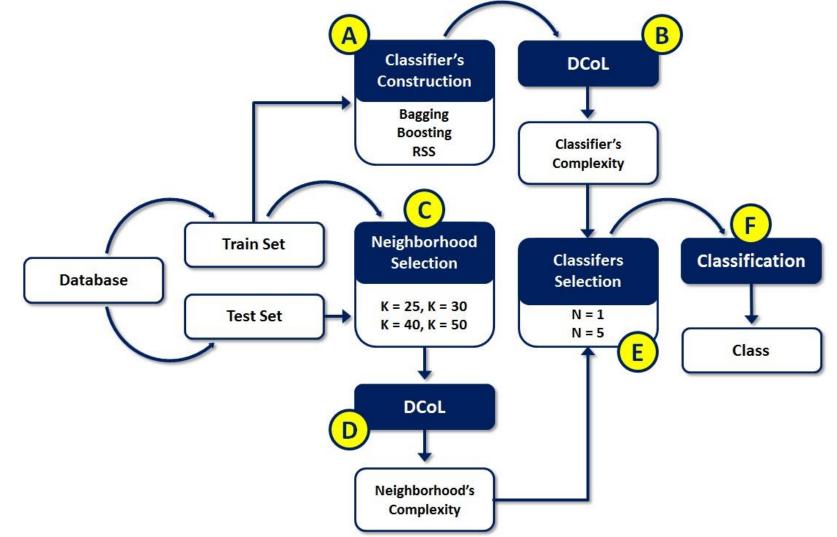


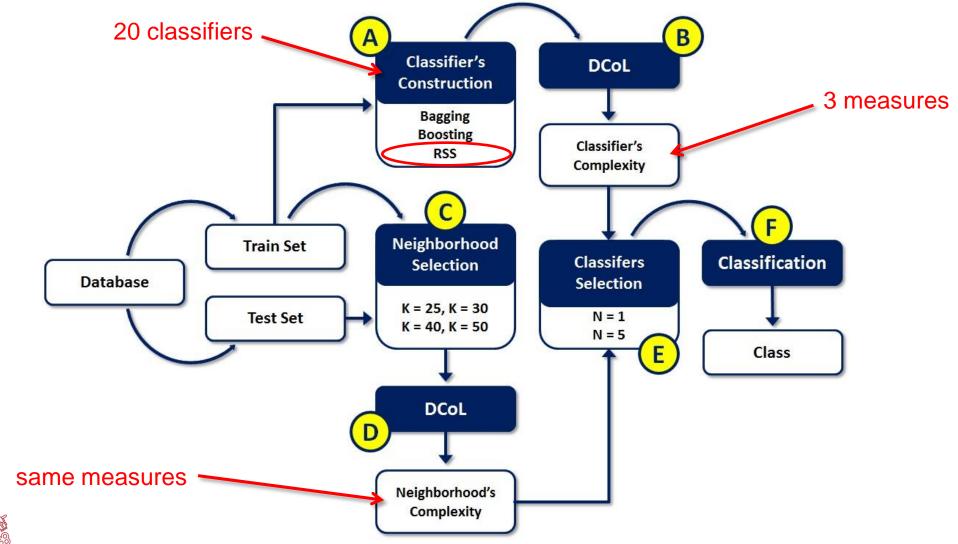
Medidas de Complexidade

Geometry, Topology and Density Measures
 – L3, N4, T1, T2, C1, D1, D2, D3



• Idea: dynamically select the classifier(s) trained on data with similar complexity than that observed in the local region where the test pattern is located.



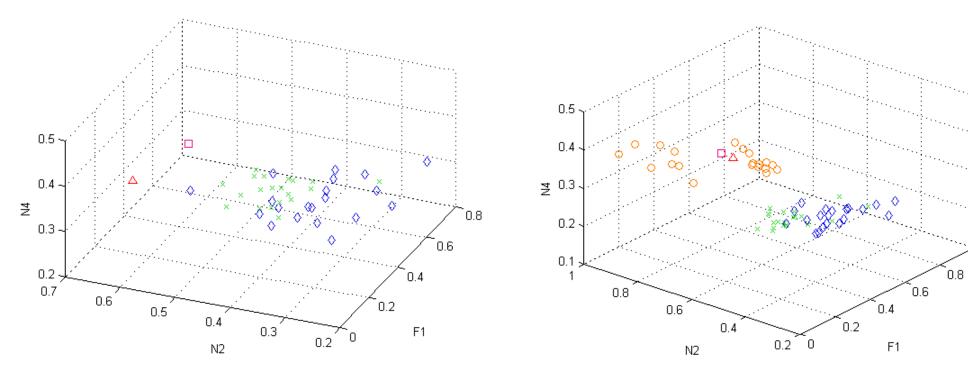


PUCPR

• Characterization of Databases

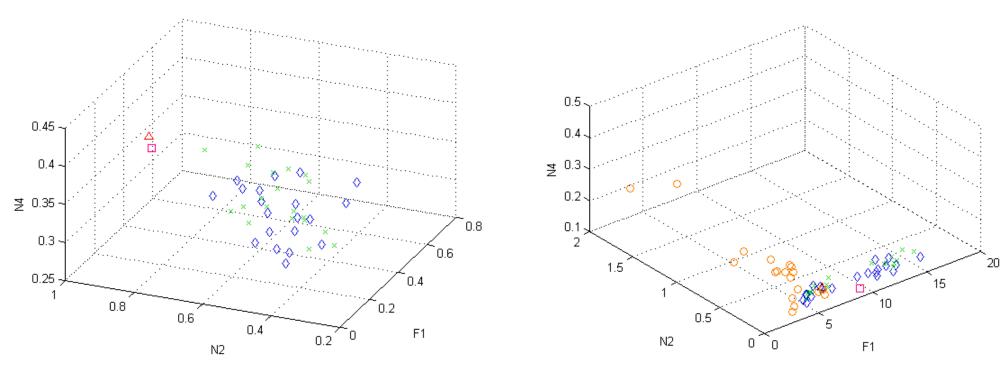
Base	Classes	Tr	Ts	Features	RS-Card.	Bagging (%)	Boosting (%)
Blood	2	374	374	4	-	66	66
Diabetes	2	383	383	8	4	66	66
Haberman	2	154	152	3	-	66	66
Image	7	231	2079	19	4	66	66
Iris	3	75	75	4	-	66	66
Letter	26	10007	9993	16	12	66	66
Liver	2	172	173	6	3	66	66
Sonar	2	105	103	60	12	66	66
Vehicle	4	424	422	18	6	66	66
WBC	2	284	285	30	5	66	66
Wine	3	88	88	13	6	66	66
Yeast	10	745	739	8	5	66	66
Ionosphere	2	176	175	34	8	66	66

- Spacial representation (F1 x N2 x N4)
 - Bagging 🚫
 - Boosting X
 - RSS 🔘
 - Test 🛛
 - Train Δ

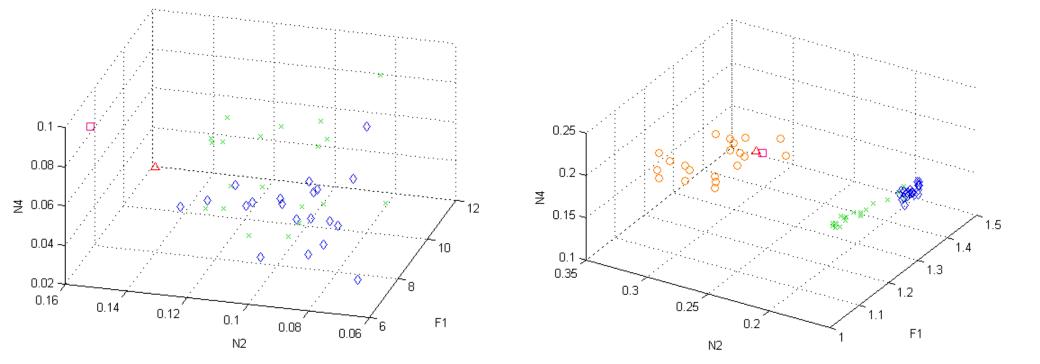


Blood

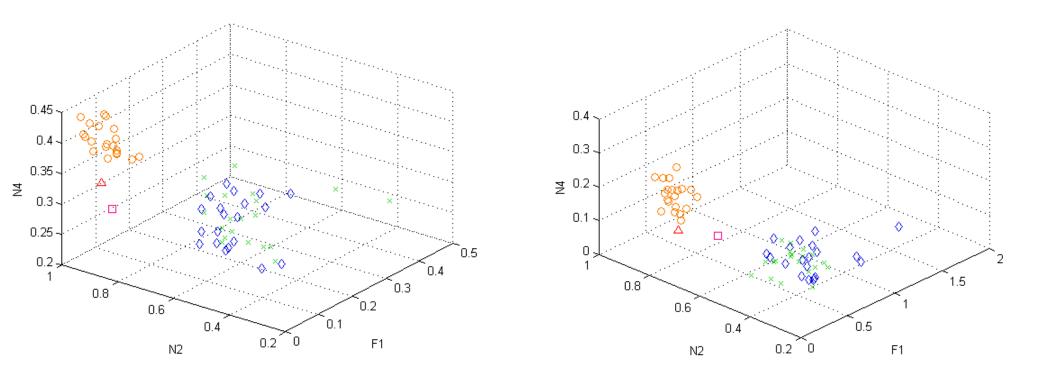
Diabetes



Haberman

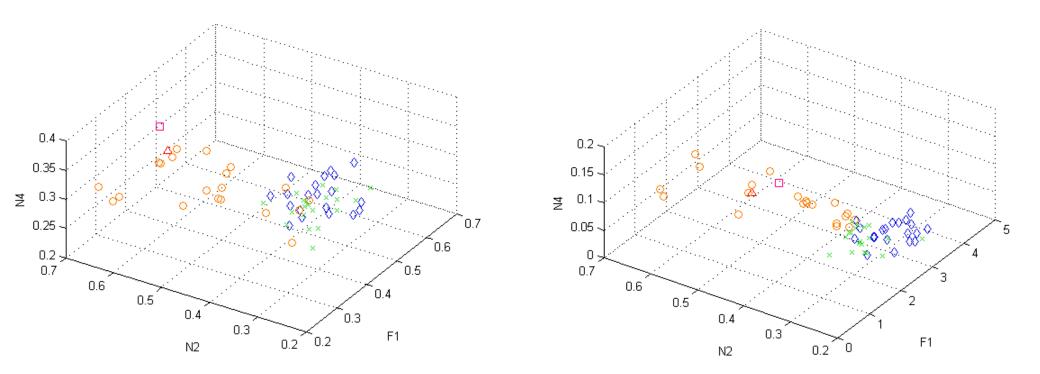


Iris



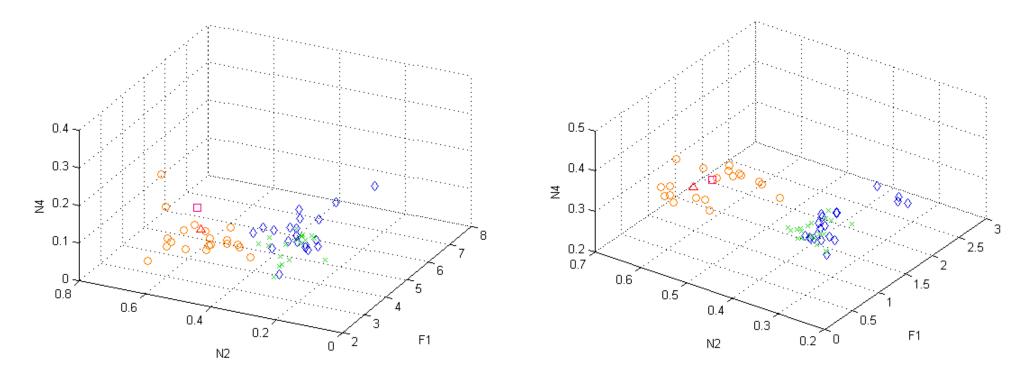
Liver

Sonar



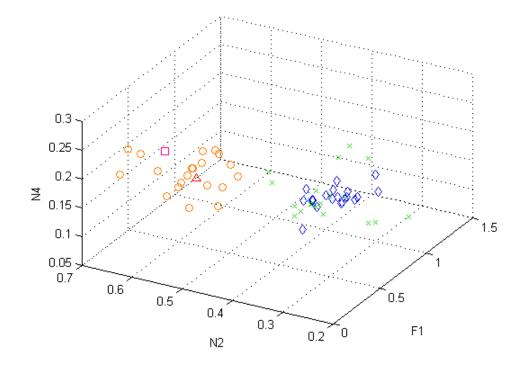
Vehicle

WBC



Wine

Yeast



- Analysis of average dispersion
 - relative to classifiers centroid
 - relative to test set

– From the 12 tested bases:

- Yeast, Image, Iris, Vehicle e Ionosphere shown best accuracy for the most disperse pools
- Blood, Haberman, Sonar e Wine presented best performance for the most compact pools

- From the 12 tested bases:

- To Haberman, Iris and Wine bases, the best pool was the farther to the test set
- WBC, Yeast, Blood, Vehicle, Ionosphere and Liver performed best for the closest sets of test

• Bagging

Base	\mathbf{SB}	CMB	KU	KE	OLA	LCA	APR	APO	ORA	Short1	Short5
Blood	$74,\!87$	75,94	76,20	76,20	73,26	72, 19	$71,\!66$	$71,\!66$	95, 99	75,40	75,40
Diabetes	71,02	$67,\!10$	70,24	67, 36	$67,\!62$	$69,\!45$	$66,\!84$	$67,\!62$	93,21	68,93	71,80
Haberman	71,05	69,08	71,71	70,4	70,4	$68,\!41$	70,4	70,4	$97,\!37$	$75,\!66$	75,66
Image	83,55	85,28	84,37	84,8	83,41	78,79	83,41	83,46	$97,\!40$	80,57	83,36
Iris	96	$94,\!67$	$94,\!67$	$94,\!67$	96	93,33	92	92	$98,\!67$	$90,\!67$	93,33
Liver	$67,\!05$	$63,\!58$	67,63	63,01	64, 16	65,9	53,76	60, 69	99,42	55,49	64, 16
Sonar	76,7	76,7	76,7	72,82	76,7	$67,\!96$	$67,\!96$	$67,\!96$	$95,\!15$	66,02	73,79
Vehicle	61,61	59,01	60,66	60, 19	$57,\!82$	$54,\!27$	56,4	56,4	92,89	57,11	66,66
WBC	92,63	$91,\!93$	$91,\!58$	$91,\!579$	90,89	88,77	90,88	90,88	98,95	90,53	91,23
Wine	$75,\!56$	72,22	70	70	73,33	72,22	68, 89	68, 89	93,33	78,89	72,22
Yeast	$51,\!69$	52,23	52,77	$52,\!50$	49,12	48,17	49,12	49,12	85,93	51, 15	55,35
Ionosphere	85,71	81,14	84	83,43	83,43	91,43	$83,\!44$	83,43	92	$84,\!57$	84

• Boosting

Base	SB	CMB	KU	KE	OLA	LCA	APR	APO	ORA	Short1	Short5
Blood	76,41	78,08	76,74	76,20	$76,\!48$	72,73	$71,\!64$	$75,\!67$	95,46	73	76,20
Diabetes	$68,\!67$	68,41	69, 19	$67,\!89$	$67,\!89$	69,71	$67,\!89$	$67,\!89$	$95,\!04$	67, 36	69,97
Haberman	75	70,4	75	73,68	69,74	73,68	69,08	70,4	$96,\!05$	$74,\!34$	74,34
Image	$82,\!64$	86,39	86	86,53	82,4	$76,\!67$	81,48	81,48	$96,\!54$	$81,\!53$	84,75
Iris	96	96	96	96	96	96	96	96	$98,\!67$	$90,\!67$	96
Liver	$61,\!27$	58,38	$63,\!01$	62,43	$61,\!27$	$67,\!05$	$59,\!54$	$59,\!54$	$99,\!42$	60,12	63,01
Sonar	$78,\!64$	$77,\!67$	80,58	$78,\!64$	75,73	72,82	$67,\!96$	$72,\!82$	98,06	74,76	$77,\!67$
Vehicle	$61,\!14$	$61,\!37$	62,79	63,03	59,01	54,03	$55,\!45$	$55,\!45$	$92,\!18$	60,9	61,85
WBC	92,98	89,47	90,88	90,88	90,88	87,02	90,88	90,88	98,6	$91,\!58$	90,88
Wine	77,78	$71,\!11$	$71,\!11$	$71,\!11$	$75,\!56$	70	$61,\!11$	$61,\!11$	97,78	73,33	75,56
Yeast	49,53	$52,\!64$	51,96	52,23	49,26	45,74	49,26	49,26	$87,\!15$	$51,\!56$	54, 13
Ionosphere	83,43	80	82,86	82,86	82,86	88,57	$82,\!86$	82,86	$89,\!14$	84	81,14

• RSS

Base	\mathbf{SB}	CMB	KU	KE	OLA	LCA	APR	APO	ORA	Short1	Short5
Diabetes	70,76	$71,\!54$	72,32	72,32	$61,\!88$	65,8	$67,\!89$	$61,\!88$	99,74	67,36	70,24
Image	87,78	82,68	82,49	$82,\!49$	$64,\!84$	49,26	$69,\!61$	$64,\!84$	98,9	74,99	81,29
Liver	$67,\!05$	$63,\!58$	67,63	67,63	67,63	68,21	$61,\!85$	67,63	100	$56,\!64$	60,69
Sonar	80,58	77,67	80,58	80,58	76,7	77,67	76,7	76,7	100	75,73	81,55
Vehicle	70,14	67,3	68,01	68,01	54,27	50,24	$61,\!85$	54,27	$98,\!58$	60,66	67,77
WBC	92,28	92,63	94,04	94,04	89,12	59,3	88,87	89,12	100	$85,\!61$	90,52
Wine	93,33	80	76,67	$76,\!67$	67,78	58,89	90	67,78	100	87,78	90
Yeast	48,04	55,21	53,32	53,32	43,03	36, 13	35,59	40,87	$94,\!86$	$45,\!60$	$51,\!56$
Ionosphere	88,57	89,14	89,72	$89,\!14$	$84,\!57$	85,71	$85,\!14$	$85,\!14$	98,29	84	89,71

Conclusions

- Proposed DSOC method has shown to be an interesting strategy for classifier/ensemble selection
- Experimental results were similar to that of related works available in the literature.
- Ensemble selection was superior to classifier selection
- Further work
 - Better understand the complexity analysis
 - Generate pools of classifiers based on complexity
 - To consider combining class accuracy and data complexity

