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First of all… 

• A little presentation  

 

• Electronics and Signal processing engineer (1999) 

 

• PhD thesis (2003) from GET/INT (Paris): 

Non rigid registration using statistical variational approaches. 

Application to the analysis and the modelling of the 
myocardial function in MRI 



First of all… 

• Assistant Professor (since 2005) at the University 
of Rouen (LITIS Lab)  

o Image analysis and pattern recognition 

Mostly for: 

 medical image segmentation (model-based, PDE-based…) 

 medical image classification 

But also: 

 image retrieval 

 

Close collaboration with medical 

doctors (nuclear medicine 

doctors, radiologists…) 

Close collaboration with Laurent (the one 

here in this room) and other colleagues 
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• Cardiovascular diseases: 

• A major cause of death in many countries 

• Magnetic Resonance Imaging (MRI) is a good tool to                                                               
assess the cardiac contractile function 

 

Context 



• Cardiovascular diseases: 

• A major cause of death in many countries [Roger et al, 2012] 

• MRI is a good tool to assess the cardiac contractile funtion 

Context 
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The aim is to 

compute the 

ventricle volume, the 

wall thickness… 



Context 

• Cardiac ventricle segmentation: a challenging task 
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Context 

• In clinical routine: 

• Manual segmentation: 

• Long and tedious task (20 minutes per patient) 

• Prone to intra and inter expert variabilities 

 

• Many research efforts 

• Some software tools exist especially for the LV 

• Problems remain for the right ventricle (RV) 
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• Pixel-based methods: dedicated method 

• Thresholding, active contours, mathematical 
morphology… 

 

 

 

• Prior information will help/constrain the 
segmentation in noisy, fuzzy image, or image 
with occlusions 

• Example : shape of the ventricle 

Related works  
cardiac image segmentation 



Related works 
segmentation with shape prior 

Without prior 

With prior 

Suppose I have 
a bunny model… 
 
In 2D: a binary 
map 



Several ways to do it (I’ll present the 3 main ways) 

1) Active Shape Models (Cootes 1995) 

• Assumes that you have a dataset of 
representative contours of the shape 

Image segmentation with shape prior 
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1) Active Shape Models (Cootes 1995) 

• Assumes that you have a dataset of 
representative contours of the shape 

o Align all shapes 

Image segmentation with shape prior 
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1) Active Shape Models (Cootes 1995) 

• From the set of aligned shapes, you can compute  

o an average shape 

o a PCA on the contour points 

 

Image segmentation with shape prior 
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Thus you get 

the major 

variability axis 

of the shape set 

(called a Point 

Distribution 

Model (PDM)) 



1) Active Shape Models (Cootes 1995) (ASM–AAM) 

• Once you have the an average shape and the 
way shapes usually vary 

 Use the PDM for segmentation with deformable 
models 

 The segmentation result is constrained to lie within 
the major variabilities axis 

Image segmentation with shape prior 
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 Example: 

(72 points) 



ASM : segmentation  

• Initialization 

 



ASM : segmentation  

• 100 iterations 

 



ASM : segmentation  

• 200 iterations 

 



ASM : segmentation  

• 350 iterations 

 

Problem: What if the shape to be 

segmented does noe lie within the 

dataset variability? 

 

Other issue: point labelling can be 

very tedious 



Image segmentation with shape prior 

2) Segmentation may be considered as a minimization 
problem (eg active contours, graph cut…): 

 

S = arg max    D(S)       +          R(S) 

Data-driven term 
(eg, based on image 

gradient, on histogram of 
the object/background….) 

Regularization term 
(eg, smoothness and 

geometric properties on 
the contour….) 

S is the 
segmentation 
(binary map, 

contour points) Shape prior term 

Very simple example with Prior being a binary map: 

𝑃(𝑆) =  (𝑆 𝑝 − 𝑃𝑟𝑖𝑜𝑟(𝑝))²

𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝

 

+      P(S)  



Vu, CVPR08 



Image segmentation with shape prior 

2) Problem: How to register the shape model to the image? 

 

A usual solution is to proceed iteratively: 

Alternate between model position estimation & 
segmentation… 



How to represent the shape model? 
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Explicit representation 
PDM [Cootes et al, 1995] 

Implicit representation 
Signed Distance Function 

[Leventon et al, 2000] 

PCA PCA 

 

• The average distance is not a 

distance anymore [Pohl et al, 

2007] 

• Easier implementation 

 
• Labelling the data with corresponding 

points is quite tedious  
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Unsegmented image 

3) Registration-based segmentation (single atlas) 

  

Image segmentation with shape prior 

Apply transformation to the 

labelled atlas 



Lotjonen 2010 

24 

Image segmentation with shape prior 

3) Registration-based segmentation (multiple atlases) 
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Image segmentation with shape prior 

3) Registration-based segmentation (multiple atlases) 

 Another example of local label fusion: 

For each pixel x, compute the probability to have label l: 

 

 

𝐿(𝑥) = arg𝑚𝑎𝑥  𝑃(𝐿 𝑥 = 𝑙|𝐿′ 𝑥 , 𝐼 𝑥 , 𝐼′𝑛 𝑥 )

𝑎𝑙𝑙 𝑎𝑡𝑙𝑎𝑠𝑒𝑠 𝑛

 

L’n(x) and I’n(x) : label and intensity of atlas n 

We also want adjacent pixels to x 

to have an opinion of the label of x! 
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Image segmentation with shape prior 

3) Registration-based segmentation (multiple 
atlases) 

 

Issues: Segmentation results heavily relies on the 
registration quality  

 

How to chose the optimal number of atlases? 



Our approach 

•RV segmentation: image intensity alone is not enough,  
requires prior shape information 

 

•  Collaboration with Rouen University Hospital 
(Radiology Dept) 

•  Cardiac radiologists have provided us with 48 MRI 
exams with segmented RV (around 750 images) 
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Construction of a 

shape model for the 

design of our RV 

segmentation method 

Organization of a 

segmentation competition 

in Oct’12 (MICCAI 

workshop) 



Our approach 

• Our aim is to: 

• Construct a shape model, based on the manual 
segmentations  

• Use this model in a minimization based segmentation 
framework 

 

• We chose the graph cuts approach (GC) [Boykov et Jolly, 
2001] 

• The global minimum of the energy function is guaranteed 

• The framework is versatile enough to incorporate 

• Complexity in 2D is very low 
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Consider the observation field 𝑦𝑖 (the image) 

Graph cut: basic principle 
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• Each pixel is considered as a node 

Graph cut: basic principle 
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Graph cut: basic principle 

Consider binary segmentation.  
S (label 𝜔 = 0) 

T (label 𝜔 = 1) 

We introduce 2 

special nodes 

S and T, linked 

to the pixels  

 t-links 
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• Links are weighted with a region-based term 𝑅𝑖 𝜔     
(data-driven) S (label 𝜔 = 0) 

T (la𝑏𝑒𝑙 𝜔 = 1) 

𝑹(𝟎) 

𝑹(𝟏) 

Graph cut: basic principle 

 

        𝑅𝑖 𝑆 = − lnPr 𝑦𝑖 𝑇  

        𝑅𝑖 𝑇 = − ln Pr(𝑦𝑖|𝑆) 
 

I
)|Pr( sI p

)|Pr( tI p

pI

object / background histograms 

How to design Ri ? 

The more similar the pixels 

are to S or T, the stronger 

the t-links 
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S (étiquette 𝜔 = 0) 

T (label 𝜔 = 1) 

𝑹𝒊(𝟎) 

𝑹𝒊(𝟏) 

Graph cut: basic principle 

• Links are weighted with a region-based term 𝑅𝑖 𝜔     
(data-driven) 
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• Let’s add a link between neighboring pixels: n-links 
S (étiquette 𝜔 = 0) 

T (étiquette 𝜔 = 1) 

𝑹𝒊(𝟎) 

𝑹𝒊(𝟏) 

Graph cut: basic principle 



35 

• N-links are weighted by a regularization term 𝐵𝑖,𝑗 

Damien Grosgeorge - LITIS - RFIA 2012 

S (étiquette 𝜔 = 0) 

T (étiquette 𝜔 = 1) 

𝑩𝒊,𝒋 

𝑹𝒊(𝟎) 

𝑹𝒊(𝟏) 

Graph cut: basic principle 

𝐵𝑖,𝑗 = exp −
(𝑦𝑖 − 𝑦𝑗)²

2𝜎²
 

How to design Bij ? 

The more similar the pixels 

(in terms of grey levels), the 

stronger the n-link 
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To obtain a segmentation (= a labelling), the graph is cut 
S (label 𝜔 = 0) 

T (label 𝜔 = 1) 

𝑩𝒊,𝒋 

𝑹𝒊(𝟎) 

𝑹𝒊(𝟏) 

H Graph cut: basic principle 

𝐸 𝐿 =   𝑅𝑖 𝐿𝑖
𝑖

+ λ  𝐵𝑖,𝑗
𝑖,𝑗∈𝑁

. 𝛿(𝐿𝑖 ≠ 𝐿𝑗) 

    The nodes are divided into 2 groups, one 

contains the source and the other the sink. 

 Use optimization algorithm called min-

cut max-flow  [Boykov & Kolmogorov, 2004] 

 

Cost function associated to a cut: 

 

 The best segmentation is obtained when E(L) is minimum 

 

But how to get L such that E(L) is minimum? 

We have just seen binary segmentation… 

The framework has been extended to multi-label segmentation 



GC used as an interactive segmentation tool 

 

Boycov, IJCV, 2006 



A word on GrabCut… 

• Variant of Graph Cut: Interactive Foreground 
Extraction using Iterated Graph Cuts 



Back to our problem… 

• We want to automatically segment the cardiac 
ventricles in MR image where borders are not 
well defined and ventricles shapes are highly 
variable 

 

 

• We construct a shape model from manually 
labelled data 

 We use the Signed Distance 

Function representation for our 

shape model 

No anatomical landmarks 



Back to our problem… 

• We use the model within the GC framework: 

• We design the graph cost function as: 

 
𝐸 𝐿 =   𝑅𝑖 𝐿𝑖

𝑖

+ 𝑃𝑖 𝐿𝑖
𝑖

+ λ  𝐵𝑖,𝑗
𝑖,𝑗∈𝑁

. 𝛿(𝐿𝑖 ≠ 𝐿𝑗) 

Additional term linked 

to the shape prior 



Our GC based approach with shape prior 

• Overview: 
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Atlas 

Registration and 

selection of N 

atlases 

Image to be 

segmented 

Final 

segmentation 

Labels 

Grey levels 

Apply 

transformations to 

labelled atlases 

Construction 

of the shape 

model by atlas 

merging 

GC with 

shape 

prior 

1/3 patients is used for model construction 

Remaining 2/3 is used for testing 



 Comparaison without and with an a priori 
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A few results 



 



Some quantitative results 

• Comparison of manual contours and automated 
contours with the Dice metric: 

o Overlap measure 

 

 

 

 

 

 

o One of the best results in our RVSC challenge … 

𝑫 𝑨,𝑩 =
𝟐 𝑨 𝑩

𝑨 + 𝑩
 

ED ES 

RV (red) 0.87 ± 0.06 0.73 ± 0.16 

LV (cyan) 0.95 ± 0.03 0.80 ± 0.26 

Myocardium (blue) 0.81 ± 0.08 0.77 ± 0.19 

ED (dilatation)         ES (contraction) 



Perspectives 

• Application to some other segmentation contexts     
(3D) 
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Thank you! 

• For listening… 

• Any questions? 
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