

STIC AmSud Project

Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

Caroline Petitjean

A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD

October 22, 2014

First of all...

• A little presentation ③

• Electronics and Signal processing engineer (1999)

PhD thesis (2003) from GET/INT (Paris):

Non rigid registration using statistical variational approaches.

Application to the analysis and the modelling of the myocardial function in MRI

First of all...

- Assistant Professor (since 2005) at the University of Rouen (LITIS Lab)
 - Image analysis and pattern recognition
 Mostly for:

medical image segmentation (model-based, PDE-based...)

medical image classification

But also:

image retrieval

Close collaboration with medical doctors (nuclear medicine doctors, radiologists...)

Close collaboration with Laurent (the one here in this room) and other colleagues

STIC AmSud Project

Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

Caroline Petitjean

A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD

October 22, 2014

- Cardiovascular diseases:
 - A major cause of death in many countries
 - Magnetic Resonance Imaging (MRI) is a good tool to assess the cardiac contractile function

- Cardiovascular diseases:
 - A major cause of death in many countries [Roger et al, 2012]
 - MRI is a good tool to assess the cardiac contractile funtion

• Cardiac ventricle segmentation: a challenging task

Olitis

- In clinical routine:
- Manual segmentation:
 - Long and tedious task (20 minutes per patient)
 - Prone to intra and inter expert variabilities
- Many research efforts
 - Some software tools exist especially for the LV
 - Problems remain for the right ventricle (RV)

Related works cardiac image segmentation

- Pixel-based methods: dedicated method
 - Thresholding, active contours, mathematical morphology...

- Prior information will help/constrain the segmentation in noisy, fuzzy image, or image with occlusions
- **Utitis** Example : shape of the ventricle

Related works segmentation with shape prior

Without prior

Suppose I have a bunny model...

In 2D: a binary map litis

With prior

Several ways to do it (I'll present the 3 main ways)

- 1) Active Shape Models (Cootes 1995)
- Assumes that you have a dataset of representative contours of the shape

- 1) Active Shape Models (Cootes 1995)
- Assumes that you have a dataset of representative contours of the shape
 - o Align all shapes

- 1) Active Shape Models (Cootes 1995)
- From the set of aligned shapes, you can compute
 - o an average shape
 - o a PCA on the contour points

Thus you get the major variability axis of the shape set

(called a Point Distribution Model (PDM))

- 1) Active Shape Models (Cootes 1995) (ASM-AAM)
- Once you have the an average shape and the way shapes usually vary
 - → Use the PDM for segmentation with deformable models
 - The segmentation result is constrained to lie within the major variabilities axis

Example: (72 points)

14/40

Initialization

• 100 iterations

• 200 iterations

• 350 iterations

Problem: What if the shape to be segmented does noe lie within the dataset variability?

Other issue: point labelling can be very tedious

Olitis

2) Segmentation may be considered as a minimization problem (eg active contours, graph cut...):

P(S) = $\sum (S(p) - Prior(p))^2$ all pixels r

Vu, CVPR08

(a) original, 256×256

(b) initialization, $\sigma_n = 10$

(c) SP, 18 iter, 3.036 sec.

(d) no SP

2) Problem: How to register the shape model to the image?

A usual solution is to proceed iteratively:

Alternate between model position estimation & segmentation...

How to represent the shape model?

 Labelling the data with corresponding points is quite tedious

Implicit representation Signed Distance Function

[Leventon et al, 2000]

3) Registration-based segmentation (single atlas)

3) Registration-based segmentation (multiple atlases)

Olitis

- 3) Registration-based segmentation (multiple atlases)
- Another example of local label fusion:
- For each pixel x, compute the probability to have label I:

$$P(L(x) = l | L'_n(x), I(x), I'_n(x)) = \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{[I(x) - I'_n(x)]^2}{2\sigma_i^2}} \cdot \delta_{l, L'_n(x)}$$

 $L'_n(x)$ and $I'_n(x)$: label and intensity of atlas n

$$L(x) = \arg \max \sum_{\text{all atlases } n} P(L(x) = l | L'(x), I(x), I'_n(x))$$

We also want adjacent pixels to x to have an opinion of the label of x! $P(L(x) = l | L'_n(x + \Delta x), I(x), I'_n(x + \Delta x)) = \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{[I(x) - I'_n(x + \Delta x)]^2}{2\sigma_i^2}} \cdot \frac{1}{\sqrt{2\pi\sigma_d}} e^{-\frac{D(\Delta x)^2}{2\sigma_d^2}} \cdot \delta_{l, L'_n(x + \Delta x)}$

3) Registration-based segmentation (multiple atlases)

Issues: Segmentation results heavily relies on the registration quality

How to chose the optimal number of atlases?

Our approach

•RV segmentation: image intensity alone is not enough, requires prior shape information

- Collaboration with Rouen University Hospital (Radiology Dept)
- → Cardiac radiologists have provided us with 48 MRI exams with segmented RV (around 750 images)

Construction of a shape model for the design of our RV segmentation method Organization of a segmentation competition in Oct'12 (MICCAI workshop)

Our approach

- Our aim is to:
 - Construct a shape model, based on the manual segmentations
 - Use this model in a minimization based segmentation framework
- We chose the graph cuts approach (GC) [Boykov et Jolly, 2001]
 - The global minimum of the energy function is guaranteed
 - The framework is versatile enough to incorporate
 - Complexity in 2D is very low

Consider the observation field y_i (the image)

. Each pixel is considered as a node

Consider binary segmentation.

We introduce 2 special nodes **S and T**, linked to the pixels → t-links

Olitis

Let's add a link between neighboring pixels: n-links

•

N-links are weighted by a regularization term $B_{i,j}$

•

Damien Grosgeorge - LITIS - RFIA 2012

To obtain a segmentation (= a labelling), the graph is cut

The nodes are divided into 2 groups, one contains the source and the other the sink.

Cost function associated to a cut:

$$E(L) = \sum_{i} R_i(L_i) + \lambda \sum_{i,j \in N} B_{i,j} \cdot \delta(L_i \neq L_j)$$

The **best** segmentation is obtained when E(L) is minimum

But how to get L such that E(L) is minimum?

→ Use optimization algorithm called mincut max-flow [Boykov & Kolmogorov, 2004]

We have just seen binary segmentation... The framework has been extended to multi-label segmentation 36

GC used as an interactive segmentation tool

Boycov, IJCV, 2006

A word on GrabCut...

 Variant of Graph Cut: Interactive Foreground Extraction using Iterated Graph Cuts

Back to our problem...

 We want to automatically segment the cardiac ventricles in MR image where borders are not well defined and ventricles shapes are highly variable

 We construct a shape model from manually labelled data
 No anatomical landmarks

→ We use the Signed Distance Function representation for our shape model

Back to our problem...

- We use the model within the GC framework:
- We design the graph cost function as:

$$E(L) = \sum_{i} R_{i}(L_{i}) + \sum_{i} P_{i}(L_{i}) + \lambda \sum_{i,j \in N} B_{i,j} \cdot \delta(L_{i} \neq L_{j})$$

Additional term linked

to the shape prior

Our GC based approach with shape prior

• Overview:

A few results

Comparaison without and with an a priori

litis

litis

Some quantitative results

- Comparison of manual contours and automated contours with the Dice metric:
 - Overlap measure $D(A, B) = \frac{2|A \cap B|}{|A| + |B|}$

	ED	ES
RV (red)	0.87 ± 0.06	0.73 ± 0.16
LV (cyan)	0.95 <u>+</u> 0.03	0.80 ± 0.26
Myocardium (blue)	0.81 ± 0.08	0.77 ± 0.19

ED (dilatation)

ES (contraction)

B

A

• One of the best results in our RVSC challenge ...

Perspectives

 Application to some other segmentation contexts (3D)

Associated publications

• Our prior-based segmentation approach applied to RV:

- Grosgeorge, D., Petitjean, C., et Ruan, S. (2014). Joint Segmentation of Right and Left Cardiac Ventricles Using Multi-Label Graph Cut. *IEEE ISBI*, Beijing, Chine.
- Grosgeorge, D., Petitjean, C., Dacher, J. N., et Ruan, S. (2013). Graph cut segmentation with a statistical shape model in cardiac MRI. *CVIU*, 117(9), 1027-1035.
- Grosgeorge, D., Petitjean, C., Ruan, S., Caudron, J., et Dacher, J. N. (2012). Right ventricle segmentation by graph cut with shape prior. *3D Cardiovascular Imaging : a MICCAI Segmentation Challenge*, Nice : France.

• The Right Ventricle Segmentation challenge at MICCAI'12:

- C. Petitjean, M.A. Zuluaga, et al, Right Ventricle Segmentation From Cardiac MRI: A Collation Study, *Medical Image Analysis*, in press, 2014
- C. Petitjean, S. Ruan, D. Grosgeorge, J. Caudron, and J.-N. Dacher Right Ventricle Segmentation in Cardiac MRI: a MICCAI'12 Challenge. Proceedings of "3D Cardiovascular Imaging: a MICCAI segmentation challenge", Nice France, 2012.

• A review of LV and RV segmentation methods:

C. Petitjean and J.-N. Dacher, A review of segmentation methods in short-axis cardiac images, *Medical Image Analysis*, vol. 15, pp. 169-184, 2011

Thank you!

- For listening...
- Any questions?

