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Usually, in the deep learning community, it is claimed that generalized representations that yielding out- 

standing performance / effectiveness require a huge amount of data for learning, which directly affect 

biometric applications. However, recent works combining transfer learning from other domains have sur- 

mounted such data application constraints designing interesting and promising deep learning approaches 

in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- 

ocular region based on deep learning approach is designed and applied on two non-cooperative ocular 

databases. Impressive representation discrimination is achieved with transfer learning from the facial do- 

main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. 

With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 

3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Motivated by security reasons, surveillance equipment is rising

round the globe. Major cities have thousands or even millions of

ecurity cameras spread over the streets, which makes it impossi-

le to analyze all video content manually [1] . In this context, auto-

ated surveillance systems are mandatory to assist security agents

n locating events of interest in real time. 

Automated surveillance systems should be able to analyze a

cene, detect suspicious activity, and desirably identify the involved

ndividuals. Several tasks have to be integrated into the system

o accomplish that, such as person detection and tracking, per-

on re-identification, action recognition and finally person recog-

ition/identification. This work is especially interested in the last

tage of surveillance systems, i.e., the biometric stage. 

According to [1] , no automated surveillance system has yet

een able to perform reliable biometric recognition. However, we

elieve that this reality can change with the usage of deep learn-

ng on surveillance systems or at least diminish this room in the

urveillance scenario. Deep learning has achieved impressive re-

ults in face recognition task including on unconstrained databases

2–8] , a.k.a in the wild , considered as the closest to images ac-

uired by surveillance security systems. The volume of images

nd videos available on the Internet favours creation of large and
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epresentative databases [6,7,9–11] and these databases allowed

he advance of several feature extraction and learning representa-

ion techniques and lately those based on convolutional networks

CNN) that today represent the state-of-the-art for the face recog-

ition problem. 

Another factor that could add robustness to biometric tech-

iques and make them more reliable to surveillance systems is to

onsider multimodalities [12–16] . In addition to face recognition,

urveillance systems can benefit from other modalities present

ithin the face itself, such as the ocular region (See Fig. 1 ). The

ris, for example, is considered as the most reliable and accurate

iometric trait and it is stable along aging of individuals [17] . The

eriocular region, which includes the iris as well, has also been the

ubject of recent studies [18–23] (See Fig. 2 ). Both iris and periocu-

ar region can be used together with the face to aid subject recog-

ition. However, robust feature extraction/representation methods 

hould be considered for those modalities, such as found for face

odality. 

To the best of our knowledge, except for the face modality,

ew investigations have successfully used deep learning to repre-

ent other biometric modalities [25] . For the iris modality, there

re two works, DeepIris [26] , DeepIrisNet [27] , and both did their

nvestigation on controlled and on near infrared spectrum (NIR)

atabases. For the periocular modality, there is one approach based

n Semantics-Assisted Convolutional Neural Network [28] but this

articular work does not overcome the current state-of-the-art

29] . 
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 1. Scenarios where face recognition could fail. 

Fig. 2. Periocular region and its features. Source: [24] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. UBIRIS.v2 images database. 
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Ghosh claims that the lack of large databases could be one

major issue to the usage of deep learning on multimodal sys-

tems [25] , since deep learning demands a large volume of data for

training process [2,5] . It is known that deep network architectures

often present poor performance when trained in small/reduced

databases due to overfitting and techniques such as transfer learn-

ing and data augmentation [30] were proposed to help overcome

this problem. In this direction, studies in the last few years have

shown outstanding results using transfer learning and convolu-

tional networks in several computational vision tasks [31,32] on re-

duced database. The aim of this work is to investigate deep learn-

ing for the biometric task in a modality where databases are re-

stricted in size, such is the case of the periocular modality. 

In the present work, we consider UBIRIS.v2 and MobBio

databases since they are considered very challenging and acquired

in such a manner that resembles a surveillance system, i.e., it

is a non-cooperative database. The UBIRIS.v2 database, for exam-

ple, contains 11,102 images from 261 individuals and it is one of

the largest non-cooperative ocular databases available. The non-

cooperative term implies that the photo was taken without aware-

ness of the subject since images are captured under visible lighting

and people were walking from 8 m to 4 m away from the camera. 

Even knowing that the UBIRIS.v2 database is one of the largest

available in the literature focusing ocular on the visible spectrum,

it is still considered reduced in size for deep learning. MobBio

is even more restricted concerning the number of images. Thus,

our specific goal is to investigate and compare methods of transfer

learning and data augmentation to train a very deep architecture,

called VGG [5] , for NICE and MobBio databases. We choose to in-

vestigate only the periocular modality since iris recognition often

demands higher resolution [1] which hinders its use in surveillance

systems. 

Our experiments show that transfer learning [30,33] from a pre-

trained CNN models can bring the advancement achieved in the

face recognition problem to periocular recognition, which can fa-

vor the development of a multimodal system for images taken in-

the-wild. We also show that the use of transfer learning and CNN

outperforms state-of-the-art results on NICE and MobBio compe-

tition database, even considering only the periocular region. Fur-

thermore, we explore modifications in the architecture of the pre-
Please cite this article as: E. Luz et al., Deep periocular representatio
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rained model aiming to improve performance and reduce compu-

ational cost for enrolling and test phase. 

This work is organized as follows. In Section 2 , we present

he non-cooperative database considered for evaluating the pro-

osed method. A review of state-of-the-art methods aiming non-

ooperative ocular recognition are described in Sections 3 and

 presents the proposed methodology on transfer learning. In

ection 5 , we show our experimental setup and perform experi-

ents comparing our method with benchmark methods in the lit-

rature. Finally, conclusions are presented in Section 6 . 

. Periocular non-cooperative databases 

A survey on biometric recognition in surveillance scenarios

s presented in [1] and according to the authors, biometric sys-

ems must be robust and reliable in unconstrained and challeng-

ng scenarios to become useful for security systems. Thus, non-

ooperative and in the wild databases must be chosen for the anal-

sis of feature extraction and representation learning methods. In

his section, we describe the two non-cooperative databases con-

idered in the present work since they are acquired in such a man-

er that resembles a surveillance system. 

.1. NICE and UBIRIS.v2 

The Noisy Iris Challenge Evaluation (NICE) database came

rom version 2 of the University of Beira Interior Iris database

UBIRIS.v2) [34] and then they follow the same pattern of image

cquisition The UBIRIS.v2 database [34] has 11.102 images from 261

ubjects and images were acquired to mimic an uncontrolled sce-

ario, at different distances, angles, and lighting to simulate real

oise conditions. The images have 400 × 300 resolution, 72 dpi and

4-bit color. Examples of database images are shown in Fig. 3 .

he image resolution of the NICE.II images are higher than that of

BIRIS.v2. 

The NICE was the first competition created specifically to in-

estigate the impact of ocular images acquired in uncontrolled en-

ironments aiming subject recognition and it was attended by 67

articipants from 30 countries. The training set consists of 10 0 0

mages from 171 subjects poorly distributed, and another selection

f 10 0 0 images was reserved exclusively for the official evaluation.

evertheless, for the test set those 10 0 0 images came from 150

ubjects. 

The official competition metric was decidability ( d ), which mea-

ures how well intra-class (genuine) and inter-class (impostor) dis-

ribution scores are distant from each other [35] . The decidability

ndex can be defined as follows 

 = 

| μE − μI | √ 

1 
2 
(σ 2 

I 
+ σ 2 

E 
) 

(1)

here μI and μE are means and σ I and σ E stand for standard de-

iations of intra-class and inter-class distributions, respectively. 
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 4. Mobbio: Face and eye images. 
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.2. MobBio database 

The Multimodal Database Captured with a Portable Handheld

evice (MobBIO) [36] composed the first multimodal competition

2013) in which the database was fully built with a mobile device

ASUS tablet). The modalities are face, eye and voice. For each of

he 105 volunteers, 16 eye images (8 per eye) and 16 face images

ere captured in two different lightening conditions, varying eye

rientations and occlusion levels. In this work, only the iris images

ere used, which also include the periocular region, and were cap-

ured at a distance of approximately 10 cm. The iris images were

btained by cropping a single image containing both eyes. The res-

lution of each iris image is 300 × 200 pixels. Most of the subjects

hat belong to the database are of Portuguese origin, aged between

8 and 69 years, and 79% male. A selection of 406 images were

ade available for competition official evaluation, and 800 were

reviously made available for training. Examples of database im-

ges are shown in Fig. 4 . The official metric used to evaluate veri-

cation mode was Equal Error Rate (EER). The database is available

rom the Faculdade de Engenharia da Universidade do Porto . 1 

. Related works 

In this section, the works considered state-of-the-art in ocu-

ar recognition for non-cooperative databases are described, es-

ecially those taking into consideration NICE, UBIRIS and MobBio

atabases. 

Best result on NICE.II competition is achieved by the method

roposed in [37] , reaching a decidability of 2.57, in which authors

used ocular and iris biometrics. This method consists of four ap-

roaches for feature extraction, two on iris and two on perioc-

lar images. Feature extraction techniques for the iris are ordi-

al measures and color histograms. In order to extract features

rom the periocular region, dense Scale Invariant Feature Trans-

orms [38] (SIFT) is used along with K-means for texton represen-

ations. Also, semantic information is extracted from the eye. Dis-

imilatiry score used for classification is calculated with chi-square

istance metric. All the four approaches are combined with sum-

ule at matching score level. 

Wang et al. [39] proposed a method using only iris modality.

irst, the iris is normalized as proposed in [40] and partitioned into

everal segments. Robustness of the method comes from the parti-

ioning scheme, which is dependent on the quality of iris segmen-

ation. After partitioning, features are extracted with Gabor filters

nd later an adaptive boosting algorithm (Adaboost) is then used

o select the best features and calculate similarity. A decidability

f 1.82 was reported and with this result the method was awarded

econd place in the NICE.II competition. Note that this method is

he best performing in competition, considering only iris modality.

Santos & Hoyle [41] used several techniques for feature ex-

raction in both modalities (iris and periocular), such as SIFT, Lo-
1 https://web.fe.up.pt/ ∼mobbio2013/database.html . 

g  

t  

c  

Please cite this article as: E. Luz et al., Deep periocular representatio
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al Binary Patterns (LBP) and texture descriptors based on wavelet

ransform, generating sets of different feature vectors. One distance

etric is used for each feature set, such as Euclidean Distance met-

ic, Distance-Ratio Based Scheme, Dissimilarity Using Correlation

oefficient, Dissimilarity Using Correlation Coefficients and Spatial

nd Frequency Analysis. The set of feature vectors is then merged

y logistic regression model and the result in the NICE.II competi-

ion is a decidability of 1.78. 

The work presented in [42] , published after NICE.II competi-

ion, uses only normalized iris images for subject recognition. Two

echniques were used to extract the features, one based on Log-

abor, called global iris bits stabilization and another based on

ernike moments. Hamming distance metric is considered to score

omputation. An analysis is performed only on images reserved

or training phase of the competition NICE.II, that is 10 0 0 im-

ges from 171 subjects. Therefore images from the first 19 subjects

ere used for Log-Gabor parameter estimation and the remainder,

64 images associated with 151 individuals, were used for evalu-

tion. Although, in our opinion, the presented result (decidability

 2.57) can not be directly compared with the methods that re-

orted results in the official NICE competition test set, since they

sed slightly but different dataset, those authors claimed that their

esults are comparable to state-of-the-art methods to date. 

In 2012, Proença & Alexandre [29] have merged information

rom iris and periocular region on matching score level for two

atabases on the visible spectrum. Although they have not re-

orted results on the official NICE.II competition set of images,

hey used 2340 images from UBIRIS.v2 [34] which is a similar

atabase. For evaluation, 50 0 0 0 intra-class pairs and 250 0 0 0 inter-

lass pairs were chosen at random. The result, in our opinion, is

onsidered state-of-the-art for eye recognition in visible spectrum

ith an average decidability of 2.97. The techniques used to extract

ris features (called Strong Biometric Traits) favors a robust repre-

entation of texture by means of a convolution of the normalized

ris images against a Multi-Lobe Differential Filter (MLDF) bank. For

eriocular region (called Weak Biometric Trait), hand-crafted fea-

ures are proposed to represent sclera color and geometry, as well

s shape and texture of eyebrow. 

The work in [28] is the only in the literature using deep learn-

ng for recognition in the UBIRIS.v2 database. This work introduces

 methodology called semantics-assisted convolutional neural net-

orks (SCNNs), which aims to extract and explore discriminant in-

ormation from the periocular region, using a limited number of

raining samples. The outputs of second last layer of each CNN

ere concatenated in a vector and used as features. Besides, PCA

as applied to reduce the dimensionality of the vector. To predict

he similarity between a pair of feature vectors, the joint Bayesian

cheme was utilized. The authors did not use the decidability in-

ex but reported an equal error rate (EER) of 10.98% on a subset of

ICE.I data (161 subjects). 

In [43] , an algorithm based on retinotopic sampling grids

44] and Gabor analysis on the spectrum is proposed. Sequential 

orward floating selection (SFFS) technique is used to find best fea-

ures/regions for periocular region. Features are also extracted from

ris with 1D Log-Gabor. These authors concluded that for the Mob-

io database, regions closer to the skin and eyebrow have resulted

n a better region to extract features. Better results are achieved

ith the fusion of features from the iris and periocular region. An

xtension of this work is presented in [45] , in which results were

mproved with the usage of eye detection techniques. Four tech-

iques for feature extraction from iris modality are evaluated: 1D

og-Gabor filter, local intensity variations [46] , coefficients of the

iscrete-Cosine Transform (DCT) [47] and cumulative-sum-Based

ray change analysis proposed by Ko at al. [48] . Results show that

he periocular region is a better modality for uncontrolled/non-

ooperative databases in visible spectrum (EER = 12.32%) and
n aiming video surveillance, Pattern Recognition Letters (2017), 

https://web.fe.up.pt/~mobbio2013/database.html
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Fig. 5. Deep feature descriptor process for periocular modality. 
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T  
among the iris features, Log-Gabor obtained best results for Mob-

Bio (EER = 18.81%). Fusion of features from both modalities re-

sulted in a significant improvement (EER = 11.00%). 

The state-of-the-art on ocular recognition in MobBio database,

considered here, is the work presented in [49] . In that work, six

feature extraction techniques are evaluated. Three techniques for

iris: 1D log-Gabor filter, Discrete-Cosine Transform (DCT), SIFT and

three periocular region techniques: Symmetry Assessment by Fea-

ture Expansion (SAFE) descriptors [50] , log-Gabor [45] and SIFT. A

different distance metric is used for each feature set, such as Ham-

ming, Euclidean and also a customized metric based on SAFE de-

scriptors. The best result for the periocular region is achieved by

the SIFT descriptor (EER = 8.73%) and for iris modality by Log-

Gabor based feature descriptor (EER = 18.81%). Fusion of all three

periocular approaches and Log-Gabor for iris resulted on the best

result to date (EER = 6.75%). 

4. Method 

In this section, we present the proposed method aiming sub-

ject recognition with deep learning on the periocular region (See

Fig. 5 ). Firstly we present the pre-trained model and then the

approach to transfer learning. Finally a modification on the deep

architecture proposed in [5] , called VGG, yielding our Periocular

Region Recognition (PRR) architecture, aiming to improve perfor-

mance is proposed. 
Please cite this article as: E. Luz et al., Deep periocular representatio
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.1. VGG 

First of all, a trained CNN architecture must be chosen for anal-

sis, since our approach is based on transfer learning. Among best

rchitectures for face recognition published in the literature, the

tate-of-the-art model proposed in [5] (called VGG) is publicly

vailable and therefore it is considered by this work to favor re-

roducibility. 

The VGG architecture consists of four operations: convolution,

ctivation (ReLu), pooling and fully connected layers and all these

perations are well described in the literature [33] . The network

rchitecture is very deep, inspired by [51] , and comprises a long

equence of convolutional operations. According to [51] , increas-

ng the depth of the architecture using very small filter kernels

3x3) significantly improve results on several tasks and in challeng-

ng datasets. During training, the input for the VGG is resized to

24 x 224 RGB image. Although in [5] all images are pre-processed

y subtracting mean value, in this work this step is disregarded

or the transfer learning. The convolutional stride is fixed to 1 and

adding is used to preserve image size after convolution. Five max-

ooling operations are employed over a 2 x 2 pixel window, with

tride 2. Three Fully-Connected (FC) layers are proposed in [5] : the

rst two have 4096 channels each, the third contains 2062 chan-

els (one for each class of the dataset proposed in [5] ). Rectifica-

ion (ReLU) are used after every convolutional layer and also after

C layers. 

To allow the training of such a deep network (VGG), a large

atabase with approximately 2.6 million images from 10.0 0 0 sub-

ects was created and well described in [5] . 

According to [5] , at first, a bootstrapping with a subset of the

roposed database (containing data from 2622 subjects) is per-

ormed to solve a simple classification problem (with the softmax-

og function as the last layer). After bootstrapping, the network

s improved for verification mode with triplet loss as loss func-

ion [2] . For the latter process, the entire database is employed

10 thousand classes and over 2.6 mi images). Our approach starts

rom this pre-trained model to carry out transfer learning. 

.2. Fine tunning & transfer learning 

Transfer learning process happens when a model trained for

ne domain or one task is used to accelerate or enhance learn-

ng in another domain/task [33] . As shown in [31] , initial layers of

 CNN can be used for extraction of generic features for an image

epresentation. In this manner, the network can be pre-trained in

ne dataset, and re-used in another dataset with a different tar-

et task. The number of classes and distributions of the images in

he source and target databases may be different, causing a prob-

em. An approach that can be used to solve this issue is to design

 network architecture that explicitly remaps class labels between

wo different datasets. Therefore, convolution and pooling layers

re maintained and last fully connected layers responsible for clas-

ification are changed or remodeled for the new task. 

According to [33] , the transfer of initial layers favors problems

hat share same low-level features on the input images (edge fil-

ers, lighting, even geometric type changes), as well as the trans-

er of final layers favors problems or tasks with similarities regard-

ng output semantics. Controlling which layer to transfer is done

y freezing the learning rate of specific layers (setting it to zero).

onsidering different domains and the same task, for example, the

ransfer of all layers, except the last fully connected, are a very ef-

cient strategy [52,53] . Therefore the transfer of any layer favors

he learning of new models, especially when domains and tasks

re similar [30] . 

In the present work, we use the pre-trained VGG model (see

able 1 ) without freezing any layer and let the whole model adapt
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Table 1 

Periocular region recognition (PRR) architecture, extended from VGG network, where NF and NC stand for the number of features and number and classes. Note that for the 

feature vector, layers 37 and 38 are not used. 

layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

type input conv relu conv relu mpool conv relu conv relu mpool conv relu conv relu conv relu mpool conv 

name n/a conv 1 1 relu 1 1 conv 1 2 relu 1 2 pool1 conv 2 1 relu 2 1 conv 2 2 relu 2 2 pool2 conv 3 1 relu 3 1 conv 3 2 relu 3 2 conv 3 3 relu 3 3 pool3 conv 4 1 

support - 3 1 3 1 2 3 1 3 1 2 3 1 3 1 3 1 2 3 

filt dim - 3 - 64 - - 64 - 128 - - 128 - 256 - 256 - - 256 

num filts - 64 - 64 - - 128 - 128 - - 256 - 256 - 256 - - 512 

stride - 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 

pad - 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 

layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

type relu conv relu conv relu mpool conv relu conv relu conv relu mpool conv relu conv relu conv conv softmax 

name relu 4 1 conv 4 2 relu 4 2 conv 4 3 relu 4 3 pool4 conv 5 1 relu 5 1 conv 5 2 relu 5 2 conv 5 3 relu 5 3 pool5 fc6 relu6 fc7 relu7 fc8 fc9 prob 

support 1 3 1 3 1 2 3 1 3 1 3 1 2 7 1 1 1 1 1 1 

filt dim - 512 - 512 - - 512 - 512 - 512 - - 512 - 4096 - 4096 NF - 

num filts - 512 - 512 - - 512 - 512 - 512 - - 4096 - 4096 - NF NC - 

stride 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 

pad 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 
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2 http://www.decom.ufop.br/csilab . 
3 http://www.vlfeat.org/matconvnet/pretrained/ . 
o the new problem. Thus, the transfer learning process also re-

embles a bootstrapping process although we have maintained

ransfer learning characteristics, such as low learning rates. For

ransfer learning, the last two layers of VGG are removed and three

ew layers are included: one fully connected layer for controlling

he size of output feature vector, one layer to adjust the network

or the new amount of training classes NC (each subject is a class),

epending on the new domain database, and a softmax loss layer

t the end, then generating our proposed Periocular Region Recog-

ition (PRR architecture) as can be seen in Table 1 . 

Once the transfer is finished, i.e. the network is adapted to the

ew domain, the last two layers (37 and 38) are again removed

nd the new network output provides a feature vector of size NF ,

s represented by layer 36 of the architecture presented in Table 1 .

n this manner, the network can be seen as a feature extractor

ethod and the network output as a feature, signature or repre-

entation vector. 

Fig. 5 illustrates the steps for one single modality, i.e. the peri-

cular region. 

Evaluation of the proposed method follows the protocol

dopted by the competitions NICE and MobBIO, i.e., biometric ver-

fication. In biometric verification mode, the system is considered

n open gallery problem and the CNN is used to create representa-

ion vector for each image in the gallery. Finally, a distance metric

s used to achieve the similarity scores among representation vec-

ors. With similarity scores, the EER is determined from the Detec-

ion Error Tradeoff (DET) curve by the variation of a threshold with

 resolution of 0 . 2 x 10 −3 . 

. Experiments 

In this section, we detail the transfer learning for PRR con-

truction and also experiments performed in the NICE and MobBio

atabases ( Section 5.1 ). Biometric verification is performed in order

o evaluate features extracted from PRR following established pro-

ocols of NICE.II and MobBio competitions. Thus, results achieved

ere can be direct compared to state-of-the-art methods in the

iterature. We perform a special analysis in the proposed PRR ar-

hitecture ( Section 5.2 ). We also evaluate techniques for data aug-

entation to train PRR from scratch ( Section 5.3 ) and a robustness

nalysis of the proposed method is performed ( Section 5.4 ). Finally,

ain results of this sections are briefly discussed ( Section 5.5 ). 

The computational resources used here include an Intel (R)

ore i7-5820K CPU @ 3.30GHz 12 core, 64GB of DDR4 RAM and

 GeForce GTX TITAN X GPU. Implementation is based on the Mat-
Please cite this article as: E. Luz et al., Deep periocular representatio
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onvNet toolbox [54] linked with NVIDIA CuDNN. The source code

ill be publicly available to allow easy reproducibility. 2 

.1. Transfer learning 

A fully trained VGG model was provided by authors 3 and we

tarted the transfer learning from this point. 

For transfer learning, the same approach proposed in [52,53] is

sed. Initially, no extra layer for control size of the feature vector is

ncluded in the PRR architecture. The rationale for this experiment

s to evaluate the original VGG architecture on transfer learning.

herefore, the last layers of the VGG were removed and two new

ayers added. The new final layer is a softmax-loss layer, for simple

lassification, and the layer before that is a fully-connected layer

hich the whose number of neurons is equal to the number of

lass of new database (261 for UBIRIS.v2). 

Two learning rates ( LR ) were used for 15 epochs, LR =
 0 . 0 01 , 0 . 0 0 05 } . We stopped the training after 5 epochs without

mprovement on validation error. The remainder parameters are

nherited from VGG and were kept. Error curve and decay of cost

unction, for training on UBIRIS.v2 database, can be seen in Fig. 6 . 

We stress that we do not freeze the learning rate of any layer

uring fine-tuning, since our task is the same from original VGG

subject recognition). Our hypothesis is that both face and eye im-

ges share same low-level features (first layers of the network). 

.1.1. NICE database 

As the UBIRIS.v2 database is balanced regarded number of im-

ges per subject it is more suitable for the training phase. 

The results reported here are constructed with the official test

et of the NICE.II competition for comparison purposes. The num-

er of intra-class (genuine) pairs is 4.634 and inter-class pairs (im-

osters) is 494.866. 

To evaluate the impact of the number of images during training,

e performed three experiments by gradually adding images from

he UBIRIS.v2 database in training step. By observing the curves in

ig. 7 , one can conclude that adding more images results in better

ne tuned model. The best results are achieved when all UBIRIS.v2

mages are used for transfer learning. We stress that no segmenta-

ion or preprocessing is applied on the periocular image. 

We also investigate the impact of distance metric for DET curve

onstruction (see in top-right corner of Fig. 7 ). There is a sig-

ificant difference between results on different distance metrics,
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 6. Fine tuning training on periocular UBIRIS.v2 data for 14 epochs. 

Fig. 7. DET curve for different training sizes and for different distance metrics on 

NICE evaluation set. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Intra-class and Inter-class histogram distribution on NICE evaluation set. 
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which is specially explored in Section 5.2.2 . Histogram distribution

for PRR after fine-tune on the cosine distance metric is presented

in Fig. 8 . From this histogram, the decidability can be calculated. 

5.1.2. Mobbio database 

For this database, we follow the same protocol proposed in

the MobBio multimodal recognition competition (2013), where 800

images are made available for training and 406 are reserved for of-

ficial evaluation. Fine tuning is accomplished with all 800 images

dedicated to training. During the evaluation, each one of the im-

ages from the test set is used as a probe against all the others

in order to generate the intra-class and inter-class distributions,

which resulted in 1365 intra-class (genuine) pairs and 76,845 inter-

class (impostors) pairs. No segmentation is performed. 
Please cite this article as: E. Luz et al., Deep periocular representatio
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.2. PRR analysis 

In this subsection, we analyze aspects of our proposed PRR

odel. Initially, we evaluate the impact of adding an extra layer to

he architecture, allowing feature size control. Subsequently, we in-

estigate three distance metrics, following the protocols of NICE.II

nd MobBio competitions, and further analysis the computational

ost in both time and space. 

.2.1. PRR Feature vector size 

The impact of adding an extra layer to control feature vector

ize is also investigated. The new layer (layer 36) is initialized with

ero mean and standard deviation of 10 −2 , included in the archi-

ecture and then the model is re-trained/fine-tunned. A grid search

s performed by varying the number of neurons in the last fully

onnected layer. 
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Table 2 

Grid search on different number of neurons in the new layer for NICE.II. ( ∗ same 

as VGG architecture (without layer 36)). 

Feature Vector Size Model Size (MB) Distance metric (decidability) 

Euclidean Cosine Spearman 

4096 ∗ 964 2.21 3.16 2.98 

512 977 2.88 3.00 3.43 

256 969 2.99 2.97 3.51 

128 965 2.95 2.88 3.41 

64 963 2.83 2.82 3.28 

Table 3 

Memory requirement to store a thousand periocular image representation and 

time cost for the NICE test phase. 

Feature Vector Size Memory Size (MB) Time (sec.) 

4096 ∗ 15.62 3.45 

512 1.95 0.42 

256 0.97 0.23 

128 0.48 0.14 

64 0.24 0.10 
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Regarding the model size, by observing the data in Table 2 , we

an conclude that the inclusion of one fully connected layer (layer

6 in Table 1 ) could lead to slightly more connections between

eurons and consequently a marginal increase in the final size of

he model. 

The first row of this table represents the original VGG, with

F = 4096 and the final layer for classification with NC neurons,

ielding NF × NC connections. Note that there is no extra layer con-

ected between the original feature layer (4096) and the classifi-

ation layer. The remainder rows represent models with the inclu-

ion of an extra layer (layer 36 in Table 1 ). In the worst case, with

he inclusion of one layer with NF = 512 , we have 4096 × NF plus

F × NC connections and the increase in the model size is 1.5% in

erms of MB. 

Contrasting to that, the addition of one layer with NF = 64 re-

uces the number of connections. 

In general, inclusion of an extra layer (layer 36 in Table 1 ) re-

ults in expressive gains. Besides significant performance improve-

ent on test for the Spearman distance metric with smaller NF

alues, it provides reduction in computational cost during verifica-

ion since the feature vector (output of layer 36 in Table 1 ) is also

maller (see Table 3 ). Notice that for the cosine distance metric,

igh dimensional vectors resulted in better performance. 

.2.2. Distance metric impact 

One can see in Table 2 that the distance metric used has a great

mpact on results, especially when the representation vector has

ifferent dimensions. The Euclidean distance metric is the most

opular to compute similarity although it has some limitations.

ince it is calculated as the sum of squares of the differences of

ach vectors dimension, the magnitude of a particular dimension

ay deeply affected this dissimilarity [55] . The Euclidean distance

etric is represented by 

 E (A, B ) = 

√ √ √ √ 

N ∑ 

j=1 

| A j − B j | 2 (2)

here A and B are features vectors. 

The cosine metric is the cosine of the angle between two Eu-

lidean vectors and it is a standard metric used in information re-

rieval due to scalar transformation invariance [56] . The cosine dis-

ance metric, a.k.a. angular metric, calculates the normalized inner

roduct and measures the angle between two vectors. The cosine
Please cite this article as: E. Luz et al., Deep periocular representatio
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istance metric is represented by 

 c (A, B ) = 1 −
∑ N 

j=1 A j B j √ ∑ N 
j=1 A 

2 
j 

√ ∑ N 
j=1 B 

2 
j 

(3)

here A and B stand for features vectors. 

The Spearman distance metric is based on Pearson coefficient

nd therefore is immune to linear transformations [56] . The Spear-

an distance metric can be defined as 

 S (A, B ) = 1 − 6 

∑ n 
i =1 (r A i − r B i ) 

2 

n (n 

2 − 1) 
(4)

here r A i , r B i are the rank of A i and B i , respectively. 

From the figures in Table 2 , we argue that: 1) As the cosine dis-

ance metric only measures the angle between two vectors and the

ector magnitudes don’t matter since it uses the normalized in-

er product between vectors, the cosine distance metric has shown

o be more robust for high dimensional vectors reporting bet-

er results than the Euclidean and Spearman distance metrics. 2)

or low dimensional vectors , the Spearman distance overcome

he Euclidean and cosine distances, and the results yielded by the

atter distances are similar to some extend. The Spearman dis-

ance metric is both not sensitive to linear and non-linear trans-

ormations and these properties could add robustness against ob-

ect scale, small differences in shape and noise, which could ex-

lain better results with the Spearman metric over Euclidean one

n low-dimensional data. 3) The best results where achieved by

he Spearman metric using a 256 feature vector. 

.2.3. Testing phase 

The addition of an extra layer to control the size of feature vec-

or provides significant improvement while keeping computational

ost low in terms of time and space during training (see Table 2 ).

s in this work, we follow the protocols of the competitions NICE

nd MobBIO, our system resembles an open set/gallery problem. In

his sense, each image is used as a probe and compared against all

thers. In an open gallery problem, classification is done by com-

aring a distance metric against a pre-defined threshold. Therefore,

he computational time is directly related to the size of the fea-

ure vector and number of comparisons, which is dependent on

he number of images in the gallery (10 0 0 images for the NICE

ompetition). The space on disk required to store data is also pro-

ortional to the size of the feature vector multiplied by the num-

er of images. Note that in a real application, the number of im-

ges tends to increase, as more individuals can be added to the

allery. Thus, the most relevant computational cost is related to

he evaluation phase. Furthermore, advantages provided by feature

ector reduction can leverage the usage of the proposed method

n embedded systems and mobile equipment due to less memory

equirement to store an image representation and less time during

he test as can be seen in Table 3 . 

.3. Training VGG from scratch 

In [5] , the VGG was constructed for a classification problem of

622 classes with a softmax loss probabilistic layer, and for this,

t generates a feature vector of size 4096 for each instance. Before

raining, all images were resized to 224 × 224 pixels and face im-

ges were centered. 

According to [5] , the weight of filters was randomly initial-

zed with zero mean Gaussian distribution and standard deviation

f 10 −2 . For weights optimization stochastic gradient descent was

sed on mini-batches of size 64 and momentum coefficient of 0.9.

n [5] authors also used 50% dropout after two fully connected lay-

rs and weight decay with coefficients value of 5 × 10 −4 . Initial

earning rate was 10 −2 , decreasing by a factor of 10 when accuracy
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 9. Data augmentation examples for training VGG from scratch. a) Original im- 

age; b) Rotate −5 degree; c) Rotate + 10 degree; d) image from other eye with ran- 

dom noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Training VGG from scratch on periocular UBIRIS.v2 data - 64 new 

imgs/class generated with DCGAN. 
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stagnates on validation. In fact, there were three learning rates ac-

cording to the authors. For the triplet-loss, in [5] the learning rate

of entire network was frozen except for the last fully connected

layer. The triplet-loss process was carried out in 10 epochs at a

learning rate of 0.25. 

For comparison, the same VGG architecture is trained from

scratch, with randomly initialized weights (zero mean and stan-

dard deviation 10 −2 ). Biases were initialized to zero. Since all at-

tempts to train the full network fails, an approach similar to that

proposed in [5] are followed, in which the VGG are trained in

parts. First, a small network comprising the operations from layer

1 to layer 10 of Table 1 is used for a simple classification problem,

with an addition of one FC layer and learning rates of [0.01, 0.001]

by 30 epochs. Subsequently, the last FC layer was removed, and op-

erations related to layer 11 to layer 17 are appended to the archi-

tecture along with a new FC layer. The new network is trained with

learning rates of [0.0 01, 0.0 0 01] for 20 epochs. The same process

was done to include the layers from 18 to 24 and 25 to 38. There-

fore, the final VGG model is trained in four steps. This process is

necessary due to the instability of the gradient in deep networks

when the weights are randomly initialized [51] . The model is reg-

ularized using a dropout of 50% and a weight decay of 5 ∗ 10 −4 .

However, it was not possible to effectively train the network with-

out data augmentation. 

5.3.1. Data augmentation 

For the data augmentation process, new images are created

by translating ( [+10% , −10%] in pixels), rotating and cropping

( [+5 , −5 , +10 , −10] in degrees) images. Also, random noise is in-

serted as illustrated in Fig. 9 . Three data augmentation techniques

are applied randomly for each eye image. Although this process

improved the training process, another data augmentation tech-

nique is evaluated. 

5.3.2. Generative adversarial networks (GAN) based data 

augmentation 

The GAN based data augmentation process was of paramount

importance for successfully training the network from scratch (see

Fig. 10 ). The GANs comprises of two networks: a generator and a

discriminator [57] . The discriminator classifies whether a sample

is fake or real, while the generator produces samples to cheat the

discriminator. GANs have show potential to generate synthetic im-

ages on different domains [58–60] . To create synthetic eye images,

the Deep Convolutional Generative Adversarial Networks (DC-GAN)

are chosen due to more stability during training [58] . 

For the generator architecture, we follow the configuration pro-

posed in [59] , with 100 dimension vector as input transformed

to 4x4x16 tensor by a linear function. Five deconvolutional layers

with kernel size of 5x5 and stride 2 are applied to the input ten-

sor, followed by a deconvolution layer with size of 5x5 and stride

1. Rectifier operation and batch normalization are used after every

deconvolution operation. An image of size 128x128x3 is generated

as output. 

Generator outputs (fake images) and real images are then used

as input to discriminator network. The discriminator network com-

prises of 5 convolutional layers with a 5x5 filter size and stride 2.
Please cite this article as: E. Luz et al., Deep periocular representatio
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 fully-connected layer is used for binary classification (real im-

ge/fake image). 

Since a large number images from different classes are needed

n order to successfully train a GAN model, first we have trained

 generic DC-GAN on 18,052 images from 5 datasets (MICHE

61] , UBIRIS.v2, MobBio, CSIP [62] , CrossSpectrumDB [63] ) for 130

pochs (see Fig. 11 -a). Finally, the generic GAN are fine tuned dur-

ng 50 epochs for each subject on UBIRIS.V2 and MobBIO. Then,

he fine tunned GAN are used to create up to 128 new images for

ach subject of the databases (see Fig. 11 -b and c). Results on dif-

erent data augmentation techniques are presented in Table 4 . Due

o stochastic nature of the CNNs the experiments in Table 4 are

erformed 15 times and the values reported stand for the mean

alues of the metrics obtained. 

The data augmentation process with GANs has shown to be

romising, allowing a considerable reduction of error during train-

ng. According to Table 4 , it is not possible to determine with sta-

istical significance the amount of synthetic images that yields the

est result. However, even with the addition of new synthetic im-

ges for each individual (both datasets), the result with VGG from

cratch is still worse than the proposed transfer learning approach.

esides, training VGG from scratch, along with the GAN based data

ugmentation process has a high computational cost (training time

s about 30 h per model). Contrasting to that, the transfer learn-

ng approach is simple and straightforward, requires little com-

utational resources and few parameter adjustment, which favors

he reproducibility of the results as well as the extension of the

roposed approach to other biometric modalities (training time is

bout 4 hours per model). 

.4. Robustness analisys 

Images are artificially corrupted to simulate an eye occlusion, to

ssess model robustness. Fig. 12 illustrates this process for an im-

ge from the NICE test set. For this scenario, the detection thresh-

ld is 0.625 which means that any score below this value indicates

 pair from the same person. In Fig. 12 , we observed that the in-

lusion of noise worsens the scores although not enough to alter

he classification result. 
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 11. Syntetic images generated with DC-GAN. 

Table 4 

VGG from scratch trained with data augmentation techniques. Mean values after 15 executions. 

Data Augmentation Results on NICE Results on MobBio 

Technique EER decidability EER decidability 

rotating, translating, random noise 36.24 ± 0.95 0.64 ± 0.08 23.27 ± 1.53 1.49 ± 0.12 

rotating, translating, random noise + 32 imgs/class generated with GAN 25.16 ± 2.23 1.36 ± 0.13 19.79 ± 0.89 1.64 ± 0.05 

rotating, translating, random noise + 64 imgs/class generated with GAN 23.07 ± 0.69 1.52 ± 0.07 19.83 ± 0.86 1.65 ± 0.05 

rotating, translating, random noise + 128 imgs/class generated with GAN 22.99 ± 1.47 1.52 ± 0.11 19.93 ± 0.60 1.64 ± 0.05 

Table 5 

Results summarization. FS = from scratch; ( ∗ evaluation on NICE.II training set on 161 subjects – # mean values 

after 15 executions). 

Methods Database Modalities Decidability EER 

Proença [64] UBIRIS.v2 iris + periocular 2.97 - 

Tan et al. [37] NICE iris + periocular 2.57 12 % 

Wang et al. [39] NICE iris 1.82 19 % 

Zhao and Kumar. [28] NICE ∗ periocular - 10.98% 

Alonso-Fernandez et al. [49] MobBio periocular - 8.73 % 

VGG # NICE periocular 0.64 36.24 % 

MobBio periocular 1.49 23.27 % 

VGG-FS # NICE periocular 1.52 23.07 % 

MobBio periocular 1.65 19.83 % 

PRR # NICE periocular 3.15 7.45 % 

MobBio periocular 3.02 7.48 % 

PRR (256) # NICE periocular 3.47 5.92 % 

MobBio periocular 3.53 5.42 % 

Fig. 12. Robustness analysis for NICE test set, using the PRR 256 network, the co- 

sine distance metric, and EER threshold of 0.625. Scores before noise/after noise. 
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.5. Main results and final discussion 

In Table 5 , the result of our method is compared against results

onsidered by this work as the state-of-the-art for NICE and Mob-

io. Our approach outperformed results obtained in [37] (NICE)

nd [49] (MobBio) by 35% and 38% respectively . Thus, transfer be-
Please cite this article as: E. Luz et al., Deep periocular representatio
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ween those domains resulted in state-of-the-art feature extractor

or both NICE and MobBio databases. We do believe that a new

tate-of-the-art result would be achieved for UBIRIS.v2 as well,

ince NICE database is extracted from it. 

We trained each different model (PRR, PRR (256), VGG with and

ithout GAN) using the same seed to control all stochastic pro-

esses. With the mean and standard deviation figures, we establish

tatistical significance analysis and the results indicated that the

odels learned from scratch with and without samples generated

y GANs are not competitive with the ones fined-tuned from VGG

etwork. 

The main advantage of the proposed method is robustness (see

ig. 13 ), since the image does not need any type of segmentation

r region of interest location, which is desirable for in-the-wild

mages and video surveillance environments. Another advantage is

hat the method does not need very large databases for training

eep CNN models, which could make it feasible to use in differ-

nt modalities beyond the ocular region, such as the ear shape.

t is important to emphasize that although the databases investi-

ated in this work are considered non-cooperative and in-the-wild

n the literature, their resolution is considered high for conven-

ional surveillance systems. 
n aiming video surveillance, Pattern Recognition Letters (2017), 
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Fig. 13. Very noisy images from the NICE test set. Evaluation is done with the PRR 

256 network, the cosine distance metric, and ERR threshold of 0.625. Top images 

are used as probe and the respective bottom one is the image recovery from the 

remaining data as the best match (scores in the middle row). Values lower than 

the established threshold (0.625) are considered as the same subject. a) Images of 

the same subject, correctly classified; b) Images of different subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

Biometrics plays an important role in surveillance systems.

However, surveillance systems commonly provide low resolution

images and conditions for acquisition are diverse, which means all

kinds of noise and artifacts. In practice, few methods can adapt to

this challenging scenarios. 

Multimodality today represents a promising direction for the

improvement of biometric systems, bringing robustness and per-

formance improvement. Hence, the face recognition problem is the

one that receives the most attention in the literature and one can

find large, diverse and in-the-wild face databases, which favors the

development of deep learning techniques for this domain. 

In this work, we answer a question raised in [25] regard-

ing the feasibility of using deep learning on biometric modality

with limited databases. We showed that outstanding results ob-

tained with face recognition and deep learning could be trans-

ferred to periocular modality and that periocular recognition can

be considered a valid option for surveillance systems. Our pro-

posal achieved new state-of-the-art results for two well-known

databases/competitions, i.e., NICE and MobBio. Also, we briefly

highlighted that with small modifications we can provide deeper

and smaller but still powerful representations for biometrics. 
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