Convergence Stabilization Modeling operating in Online mode

Estimating Stop Conditions of Swarm Based Stochastic Metaheuristic Algorithms

> Peter Frank Perroni¹ Daniel Weingaertner¹ Myriam Regattieri Delgado²

¹Federal University of Paraná

²Federal University of Technology - Paraná

Inclusão Digital Integrada: Tecnologias para as Cidades Digitais

マロト イラト イラト

GECCO - Jul 18, 2017

Existent Approaches

When optimizing a problem:

I How many evaluations?

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode

- 4 同 2 4 日 2 4 日

э

Existent Approaches

When optimizing a problem:

- I How many evaluations?
 - Roughly $30 \times D$

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

Existent Approaches

When optimizing a problem:

- I How many evaluations?
 - Roughly $30 \times D$.. what if I change one parameter and worsen?
 - Roughly $50 \times D$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Existent Approaches

When optimizing a problem:

- I How many evaluations?
 - Roughly $30 \times D$.. what if I change one parameter and worsen?
 - Roughly $50 \times D...$ what if improved?
 - "Roughly" is not a good measure.

同 ト イ ヨ ト イ ヨ ト

When optimizing a problem:

- I How many evaluations?
 - Roughly $30 \times D$.. what if I change one parameter and worsen?
 - Roughly $50 \times D...$ what if improved?
 - "Roughly" is not a good measure.
- We can assume that:
 - Fitness evaluation frequently is more costly than take intermediate step to use it efficiently.
 - The solution representation should be derived as directly from the problem as possible.
 - Increasing the problem representation exponentially increase the optimization complexity.

- 同 ト - ヨ ト - - ヨ ト

Existent Approaches

Class of Problems Convergence Modeling

Common Methods:

 Mathematical: use asymptotic approximations to prove convergence and "roughly" the number of evaluations required.

/□ ▶ < 글 ▶ < 글

Existent Approaches

Common Methods:

- Mathematical: use asymptotic approximations to prove convergence and "roughly" the number of evaluations required.
- Model Convergence: focus on population instead of aiming the global best.

伺 ト イ ヨ ト イ ヨ

Existent Approaches

Common Methods:

- Mathematical: use asymptotic approximations to prove convergence and "roughly" the number of evaluations required.
- Oddel Convergence: focus on population instead of aiming the global best.
- Model-based optimization: simplify the problem through surrogate model or distribution.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Existent Approaches

Common Methods:

- Mathematical: use asymptotic approximations to prove convergence and "roughly" the number of evaluations required.
- Odel Convergence: focus on population instead of aiming the global best.
- Model-based optimization: simplify the problem through surrogate model or distribution.
- Computing Budget Allocation: assign larger budget for more promising solutions estimated through sampling.

・ロト ・同ト ・ヨト ・ヨト

Existent Approaches

Problems with these methods:

Mathematical: use asymptotic approximations to prove convergence.

 $\rightarrow\,$ Specific for the method and of restricted practical usage.

Model Convergence: focus on population instead of aiming the global best.

\rightarrow Slow convergence.

Model-based optimization: simplify the problem through surrogate model or distribution.

ightarrow Specific for the method and for the problem.

- Computing Budget Allocation: assign larger budget for more promising solutions estimated through sampling.
 - $\rightarrow\,$ Specific for the method and waste too many evaluations.

・ロト ・同ト ・ヨト ・ヨト

Existent Approaches

Wouldn't be interesting to have a method that tells us automatically a good moment to stop the optimization or to take some action to improve the convergence?

CSMOn Convergence Stabilization Modeling operating in Online mode

The Cost/Benefit Trade-off Problem

- <u>Benefit</u> is the saved computational effort (advantages)
- <u>Cost</u> is the performance loss (drawbacks)

Objectives:

- Find automatically the advantages/drawbacks balancing to save fitness evaluations
- Focus on Local optimum
- Avoid changes to the original search algorithm (use it as-is)

< 日 > < 同 > < 三 > < 三 >

Proposed Approach Experimental Results

Proposed Approach Experimental Results

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

Proposed Approach Experimental Results

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode

Proposed Approach Experimental Results

Convergence

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▼ のへの

Proposed Approach Experimental Results

Convergence Phases

Proposed Approach Experimental Results

The Cost/Benefit Trade-off Problem

Evaluations are wasted when reaching convergence stabilization

Proposed Approach Experimental Results

Convergence Stabilization Modeling

・ロト ・団 ト ・目 ト ・目 ・ うへぐ

Proposed Approach Experimental Results

Convergence Stabilization Modeling

E

Proposed Approach Experimental Results

CSMON Convergence Stabilization Modeling operating in Online mode

Where:

 y_s is the current fitness *L* is the last possible fitness

- 4 同 ト 4 ヨ ト 4 ヨ

Proposed Approach Experimental Results

CSMON Convergence Stabilization Modeling operating in Online mode

$\lim_{s \to \infty}$	$ y_s - y_{s-1} $	ightarrow 1
	$ y_{s-1}-y_{s-2} $	

Where:

 y_s is the current fitness *L* is the last possible fitness

- 4 同 ト 4 ヨ ト 4 ヨ ト

Online Modeling Decay is $\begin{cases} \mathsf{Exp}(\mathsf{x}) = \alpha e^{-\beta \mathsf{x}} & \text{if } nEvals \leq p_T \\ \mathsf{Pow}(\mathsf{x}) = \alpha \mathsf{x}^{-\beta} & \text{otherwise} \end{cases}$ $x \in [p1, p2] \\ 1 > p1 > p2 > M \\ M = \text{max.evals. per run} \end{cases}$

Proposed Approach Experimental Results

CSMON Convergence Stabilization Modeling operating in Online mode

Proposed Approach Experimental Results

CSMON Convergence Stabilization Modeling operating in Online mode

We assume that the search algorithm:

- Is swarm-based.
- Presents some initial convergence.
- Has a memory mechanism (strictly monotone global fitness improvement).

- 4 同 ト 4 ヨ ト 4 ヨ ト

CSMOn

(□) (@) (E) (E) (E)

1: Input: $\{M, R\}$ 2: $p_T \leftarrow -1, p_S \leftarrow -1$ 3: *r* ← 0.99 4: append(gb, GetBest(1, M)) 5: repeat $r \leftarrow max(r^2, R)$ 6: if $p_S = -1$ then 7: 8: $p_T \leftarrow AdjustExp(\mathbf{gb}, M, r)$ if $p_T > 0$ then 9: $p_{S} \leftarrow AdjustLog(\mathbf{gb}, M, r, p_{T})$ 10: 11: until $ne_{p_S} >= M$ or $(r = R \text{ and } p_S > 0)$

1: Input: {*M*, *R*} 2: $p_T \leftarrow -1, p_S \leftarrow -1$ 3: *r* ← 0.99 4: append(gb, GetBest(1, M)) 5: repeat 6: $r \leftarrow max(r^2, R)$ if $p_S = -1$ then 7: $p_T \leftarrow AdjustExp(\mathbf{gb}, M, r)$ 8: 9: if $p_T > 0$ then 10: $p_{S} \leftarrow AdjustLog(\mathbf{gb}, M, r, p_{T})$ 11: until $ne_{p_S} >= M$ or $(r = R \text{ and } p_S > 0)$

AdjustExp

1: Input: {gb, M, r} 2: $s_{prev} \leftarrow s$ 3: append(gb, GetBest(2, M)) 4: if $s - s_{prev} < 2$ then return -15: $p_b \leftarrow -1$ 6: while $ne_s < M$ do 7: if $\mathcal{D}_{e}(\mathbf{gb}) < r$ and $\mathcal{D}_{l}(\mathbf{gb}) < r$ then 8: if $p_b = -1$ then $p_b \leftarrow s - 2$ 9: $\alpha_2 \leftarrow \alpha_e(\mathbf{gb}, p_b, s)$ 10: 11: else 12: $\alpha_1 \leftarrow \alpha_2$ 13: $\alpha_2 \leftarrow \alpha_e(\mathbf{gb}, p_b, s)$ if $\alpha_2 < \alpha_1$ then 14: 15: return s 16: else 17: $p_b \leftarrow -1$ 18: $append(\mathbf{gb}, GetBest(1, M))$ return -1

1:	Input: { \mathbf{gb}, M, r, p_T }
2:	$s_{prev} \leftarrow s$
3:	append(gb , GetBest(3, M))
4:	if $s - s_{prev} < 3$ then return -1
5:	$\alpha_1 \leftarrow \alpha_p(\mathbf{gb}, p_T, s-1)$
6:	$\alpha_2 \leftarrow \alpha_p(\mathbf{gb}, p_T, s)$
7:	while $\alpha_2 \ge \alpha_1$ and $ne_s < M$ do
8:	if $\mathcal{D}_{e}(\mathbf{gb}) \geq r$ or $\mathcal{D}_{l}(\mathbf{gb}) \geq r$ then
9:	return -1
10:	<pre>append(gb, GetBest(1, M))</pre>
11:	$\alpha_1 \leftarrow \alpha_2$
12:	$\alpha_2 \leftarrow \alpha_p(\mathbf{gb}, p_T, s)$
	return s

AdjustLog

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

1: Input: {*M*, *R*} 2: $p_T \leftarrow -1, p_S \leftarrow -1$ 3: *r* ← 0.99 4: append(gb, GetBest(1, M)) 5: repeat 6: $r \leftarrow max(r^2, R)$ if $p_S = -1$ then 7: $p_T \leftarrow AdjustExp(\mathbf{gb}, M, r)$ 8: 9: if $p_T > 0$ then 10: $p_{S} \leftarrow AdjustLog(\mathbf{gb}, M, r, p_{T})$ 11: until $ne_{p_S} >= M$ or $(r = R \text{ and } p_S > 0)$

AdjustExp

1: Input: {**gb**, *M*, *r*} 2: $s_{prev} \leftarrow s$ 3: append(gb, GetBest(2, M)) 4: if $s - s_{prev} < 2$ then return -15: $p_b \leftarrow -1$ 6: while $ne_s < M$ do 7: if $\mathcal{D}_{e}(\mathbf{gb}) < r$ and $\mathcal{D}_{l}(\mathbf{gb}) < r$ then if $p_b = -1$ then 8: $p_b \leftarrow s - 2$ 9: $\alpha_2 \leftarrow \alpha_e(\mathbf{gb}, p_b, s)$ 10: 11: else 12: $\alpha_1 \leftarrow \alpha_2$ 13: $\alpha_2 \leftarrow \alpha_e(\mathbf{gb}, p_b, s)$ if $\alpha_2 < \alpha_1$ then 14: 15: return s 16: else 17: $p_b \leftarrow -1$ 18: $append(\mathbf{gb}, GetBest(1, M))$ return -1

	Adjusteog	
1:	Input: { \mathbf{gb}, M, r, p_T }	
2:	$s_{prev} \leftarrow s$	
3:	<pre>append(gb, GetBest(3, M))</pre>	
4:	if $s - s_{prev} < 3$ then return -1	
5:	$\alpha_1 \leftarrow \alpha_p(\mathbf{gb}, p_T, s-1)$	
6:	$\alpha_2 \leftarrow \alpha_p(\mathbf{gb}, p_T, s)$	
7:	while $\alpha_2 \ge \alpha_1$ and $ne_s < M$ do	
8:	$ \text{ if } \mathcal{D}_e(\mathbf{gb}) \geq r \text{ or } \mathcal{D}_l(\mathbf{gb}) \geq r \text{ then }$	
9:	return -1	
10:	<pre>append(gb, GetBest(1, M))</pre>	
11:	$\alpha_1 \leftarrow \alpha_2$	
12:	$\alpha_2 \leftarrow \alpha_p(\mathbf{gb}, p_T, s)$	
	return s	
http://web.inf.ufpr.br/vri/software/csmon		
ht	https://gitlab.c3sl.ufpr.br/pfperroni/CSMC	

≣⇒

ł

・ロト ・日子・ ・ヨト

Adjust Log

Proposed Approach Experimental Results

Experiments

- CEC13 competition benchmark functions:
 - 15 functions of 1000 dimensions.
 - Represent real-world problems.
 - Fully-separable Functions: F1, F2, F3.
 - Partially Additively Separable Functions: F4, F5, F6, F7, F8, F9, F10, F11.
 - Overlapping Functions: F12, F13, F14.
 - Non-separable Function: F15.

<日本

Proposed Approach Experimental Results

Cost / Benefit Trade-off Matrix for CEC13 Functions

15 functions averaged for CCPSO2-IP M1 = 1e6, M2 = 3e6, M3 = 6e6, M4 = 1e7

CSMOn Economy on fitness function evaluation

Proposed Approach Experimental Results

Best Averaged Results

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode

Paired comparison with and without CSMOn

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode

Conclusions

Based on Results:

- CSMOn is able to effectively adapt to each optimization in progress (online)
- Best results are obtained with more stable convergences
- Fixed relaxation is prefered for erratic convergences
- CSMOn can indicate multistart points
- Most of configurations tested obtained saved evaluations
- Difference between advantages and drawbacks reached 70% on best case

伺 ト イヨト イヨト

Conclusions

Future Work:

- Consider long stagnation period of the search algorithm
- Test CSMOn with non-swarm memory-based metaheuristics
- Create new update mechanisms for the relaxation, like:
 - Consider the remaining budget in a multiple run scenario
 - React based on the distance to M

・ 同 ト ・ ヨ ト ・ ヨ ト

QUESTIONS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで