
Introduction
CSMOn

Conclusions

Inclusão Digital Integrada:
Tecnologias para as Cidades Digitais

Convergence Stabilization Modeling operating in
Online mode

Estimating Stop Conditions of Swarm Based Stochastic Metaheuristic
Algorithms

Peter Frank Perroni1

Daniel Weingaertner1

Myriam Regattieri Delgado2

1Federal University of Paraná
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When optimizing a problem:

1 How many evaluations?

Roughly 30× D.. what if I change one parameter and worsen?
Roughly 50× D... what if improved?
“Roughly” is not a good measure.

2 We can assume that:

Fitness evaluation frequently is more costly than take
intermediate step to use it efficiently.
The solution representation should be derived as directly from
the problem as possible.
Increasing the problem representation exponentially increase
the optimization complexity.
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Class of Problems
Convergence Modeling

Common Methods:

1 Mathematical: use asymptotic approximations to prove
convergence and “roughly” the number of evaluations
required.

2 Model Convergence: focus on population instead of aiming
the global best.

3 Model-based optimization: simplify the problem through
surrogate model or distribution.

4 Computing Budget Allocation: assign larger budget for more
promising solutions estimated through sampling.
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Class of Problems
Convergence Modeling

Problems with these methods:

1 Mathematical: use asymptotic approximations to prove
convergence.

→ Specific for the method and of restricted practical usage.

2 Model Convergence: focus on population instead of aiming
the global best.

→ Slow convergence.

3 Model-based optimization: simplify the problem through
surrogate model or distribution.

→ Specific for the method and for the problem.

4 Computing Budget Allocation: assign larger budget for more
promising solutions estimated through sampling.

→ Specific for the method and waste too many evaluations.
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Wouldn’t be interesting to have a method that tells us
automatically a good moment to stop the optimization or to take

some action to improve the convergence?
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The Cost/Benefit Trade-off Problem

Benefit is the saved computational effort (advantages)

Cost is the performance loss (drawbacks)

Objectives:

Find automatically the advantages/drawbacks balancing to
save fitness evaluations

Focus on Local optimum

Avoid changes to the original search algorithm (use it as-is)
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CSMON
Convergence Stabilization Modeling operating in Online mode
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1

Convergence Decay
triggers CSMOn

lim
s→∞

|ys−L|
|ys−1−L| → 1

lim
s→∞

|ys−ys−1|
|ys−1−ys−2|

→ 1

Where:
ys is the current fitness
L is the last possible fitness

Online
Modeling

Decay is

{
Exp(x) = αe−βx if nEvals ≤ pT

Pow(x) = αx−β otherwise

x ∈ [p1, p2]
1 > p1 > p2 > M

M = max.evals. per run

Limit sensibility is controlled by relaxation

R ∈]0, 1[
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CSMON
Convergence Stabilization Modeling operating in Online mode

We assume that the search algorithm:

1 Is swarm-based.

2 Presents some initial convergence.

3 Has a memory mechanism (strictly monotone global fitness
improvement).
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CSMOn

1: Input: {M,R}
2: pT ← −1, pS ← −1
3: r ← 0.99
4: append(gb,GetBest(1,M))
5: repeat

6: r ← max(r2,R) Relaxation

7: if pS = −1 then
8: pT ← AdjustExp(gb,M, r)

9: if pT > 0 then
10: pS ← AdjustLog(gb,M, r , pT )

11: until nepS >= M or (r = R and pS > 0)
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AdjustExp

1: Input: {gb,M, r}
2: sprev ← s
3: append(gb,GetBest(2,M))
4: if s − sprev < 2 then return −1

5: pb ← −1
6: while nes < M do
7: if De(gb) < r and Dl(gb) < r then
8: if pb = −1 then
9: pb ← s − 2

10: α2 ← αe(gb, pb, s)
11: else
12: α1 ← α2

13: α2 ← αe(gb, pb, s)
14: if α2 < α1 then
15: return s
16: else
17: pb ← −1

18: append(gb,GetBest(1,M))
return −1

AdjustLog

1: Input: {gb,M, r , pT}
2: sprev ← s
3: append(gb,GetBest(3,M))
4: if s − sprev < 3 then return −1

5: α1 ← αp(gb, pT , s − 1)
6: α2 ← αp(gb, pT , s)
7: while α2 ≥ α1 and nes < M do
8: if De(gb) ≥ r or Dl(gb) ≥ r then
9: return −1

10: append(gb,GetBest(1,M))
11: α1 ← α2

12: α2 ← αp(gb, pT , s)
return s

http://web.inf.ufpr.br/vri/software/csmon

https://gitlab.c3sl.ufpr.br/pfperroni/CSMOn
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Experiments

CEC13 competition benchmark functions:

15 functions of 1000 dimensions.
Represent real-world problems.
Fully-separable Functions: F1, F2, F3.
Partially Additively Separable Functions: F4, F5, F6, F7, F8,
F9, F10, F11.
Overlapping Functions: F12, F13, F14.
Non-separable Function: F15.
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Cost / Benefit Trade-off Matrix for CEC13 Functions

15 functions averaged for CCPSO2-IP
M1 = 1e6, M2 = 3e6, M3 = 6e6, M4 = 1e7
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CSMOn Economy on fitness function evaluation
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Best Averaged Results

F3

58%

39%

19%

0%

R0.08, M1

R0.7, M1

R0.08, M2

R0.7, M2

R0.08, M3

R0.7, M3

R0.08, M4

R0.7, M4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N.Evals

Fitness

F5

92%

62%

31%

0%

R0.08, M1

R0.7, M1

R0.08, M2

R0.7, M2

R0.08, M3

R0.7, M3

R0.08, M4

R0.7, M4●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N.Evals

Fitness

F6

74%

50%

25%

0%

R0.08, M1

R0.7, M1

R0.08, M2

R0.7, M2

R0.08, M3

R0.7, M3

R0.08, M4

R0.7, M4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N.Evals

Fitness

F9

92%

63%

33%

4%

R0.08, M1

R0.7, M1

R0.08, M2

R0.7, M2

R0.08, M3

R0.7, M3

R0.08, M4

R0.7, M4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N.Evals

Fitness

F10

84%

56%

28%

0%

R0.08, M1

R0.7, M1

R0.08, M2

R0.7, M2

R0.08, M3

R0.7, M3

R0.08, M4

R0.7, M4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N.Evals

Fitness
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Evaluations × Reduction on Fitness due to
Quadratic Decreasing Relaxations

Best configurations are Fitness on borders
and N.Evals on center

CCPSO2-IP search method
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Paired comparison with and without CSMOn

Normalized Fitness

R0.7

●

●

CCPSO2-IP E

0.685     0.690     0.695     0.700    0.705

Normalized Fitness
0.40 0.42 0.44

●

●

ABC

R0.01

Normalized Fitness

R0.01

0.63 0.64 0.65 0.66 0.67

●

●

PSO

MSG Landscape Generator

Fitness evaluations economy:
CCPSO2-IP E: 6%
ABC: 6.7%
PSO: 27%

50 dimensions
M = 5e4 evaluations

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode
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Based on Results:

CSMOn is able to effectively adapt to each optimization in progress
(online)

Best results are obtained with more stable convergences

Fixed relaxation is prefered for erratic convergences

CSMOn can indicate multistart points

Most of configurations tested obtained saved evaluations

Difference between advantages and drawbacks reached 70% on best case

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode
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Future Work:

Consider long stagnation period of the search algorithm

Test CSMOn with non-swarm memory-based metaheuristics

Create new update mechanisms for the relaxation, like:

Consider the remaining budget in a multiple run scenario
React based on the distance to M

Peter Frank Perroni Daniel Weingaertner Myriam Regattieri Delgado Convergence Stabilization Modeling operating in Online mode
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