
Introduction
OpenCL Code

Exercices

OpenCL
Tópicos em Arquiteturas Paralelas

Peter Frank Perroni

November 25, 2015

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

The Device

Local Memory

Private Private

Thread MThread1

Streaming Processor 0

Streaming Multiprocessor

Private Private

Thread MThread1

Streaming Processor N

...

. . .

Figure : OpenCL hierarchy.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

SM

Scalar
Processors

Multiprocessor

 Local
Memory

Double

Stream
Multiprocessor

Stream
Processor

Figure : Stream Multiprocessors.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

OpenCL Hardware

Work-item/thread

Scalar
Processor

Work-group
Multiprocessor

...

Grid Device

Work-items are executed by
Scalar Processors

Work-groups are executed on
Multiprocessors

A kernel is executed on Device
as a Grid of work-groups

Figure : Software vs. Hardware layers.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Warps

© NVIDIA Corporation 2009

Work-group

32 Threads

32 Threads

32 Threads

...

Warps

=
warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

warp 3 instruction 96

time

Warp
- Work-group's 32-threads subset
- Basic scheduling unit (SIMT)
- Hide memory latency

SM Warp Scheduler

 - If many warps are running
- #Work-items = multiple of 32

Figure : Warps.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Global Memory Access

Global Memory is a set of aligned segments.

Out of sequence – 16 transactions

Misaligned – 16 transactions

……

……

……

Coalesces – 1 transaction

Figure : Memory access for CC 1.0/1.1.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Global Memory Access

Global Memory is a set of aligned segments.

Figure : Memory access for CC 1.2/1.3.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Local Memory Access

Local Memory is divided into banks.

Work-items can access local memory simultaneously.

Access to same memory bank cause serialization.

Except when doing Broadcast.

Some bank conflicts can be avoided by adding strides.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Local Memory Access
Bank Conflict

Work
 item

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

CONFLICT !!

NO CONFLICT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Figure : Stride on Matrix Transpose.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Local Memory Access
Bank Conflict

CONFLICT !

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 15

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 15

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 15

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 15

NO CONFLICT

Access will be serialized

Figure : Bank Conflict on Local memory access.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Local Memory Access

Local Memory

Warp1of32-elements

Warp2of32-elements

Half-warp

Half-warp

Half-warp

Half-warp

Figure : Local memory for a work-group of 2-warps size.

No bank conflicts for half-warp (16 banks).

Barriers are important to keep the synchronism.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Memory Access

Global memory is visible to all work-items on device.

400 to 600 cycles of memory latency.

Local (shared) memory is visible among all work-items within
the same work-group.

Latency about 100x smaller than global memory.

Each Work-item (Thread) has its own Private memory.

Latency zero.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Memory Access

Accessing Private memory (registers) has zero extra clock
cycle per instruction.

Register pressure and long data structures on private area
cause variables to be moved automatically by compiler to a
special Global memory section.
Read-after-write on registers has a dependency of about 24
cycles and therefore must be avoided, but multiple warps (> 6)
can hide totally this latency.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Work-item Grouping

NDRange Size Gx

N
D

R
ange Size G

y

Work-item

Work-group

Work Group Sx

W
ork G

roup Sy

Figure : Work-items and Work-groups.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Threads
Synchronization
Local Variable
Command Queues

Work-item Grouping

Figure : Work-item mapping functions.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Threads
Synchronization
Local Variable
Command Queues

clWaitForEvents(num events, event list): Host blocks
until all events in wait list are finished.

clFinish: Host waits for all enqueued event to finish.

clEnqueueWaitForEvents(queue, num events, event list):
Command queue waits for all events in wait list to finish.
Events do not need to be from same queue.

mem fence(CLK LOCAL MEM FENCE |
CLK GLOBAL MEM FENCE): Force work-item completion
of loads and stores before any new load/store can be executed.
The functions read mem fence() and write mem fence()
are the equivalent for only load and store, respectively.

barrier(mem fence flag): Work-item waits untill all
work-items in work-group reach the barrier. It also triggers a
memory fence.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Threads
Synchronization
Local Variable
Command Queues

local: Creates a local (shared) variable, whose contents is
visible to all work-items in same work-group.

However, it must be statically allocated within the kernel
(numeric literal, constant, macro, etc).

To allocate local memory dynamically, set it as a parameter
when enqueueing the kernel.

On cl file:
kernel void theKernel(

local float *dynamicAllocation){...}
On kernel call:
clSetKernelArg(kernel, 0,

local dynamic size in bytes, NULL);

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Threads
Synchronization
Local Variable
Command Queues

Commands are submitted to OpenCL through command
queues.

A Queue is tied to a device.

Multiple queues can be active concurrently.

Only one command running per device at a time.

Commands are executed at the order they were submitted.

CL QUEUE OUT OF ORDER EXEC MODE ENABLE:
Queues created with this property will try to execute the
commands at a more optimized sequence.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

OpenCL Framework

Download and compile the framework from Git repository.

$ wget --no-check-certificate https://gitlab.c3sl.ufpr.br/

pfperroni/oclframework/repository/archive.tar.gz?ref=master -O

oclFramework.tar.gz

$ tar -xzvf oclFramework.tar.gz

$ cd oclframework.git/src

$./make all.sh

Test a GPU call.

$ cd Examples/SimpleGPUCall

$./SimpleGPUCall

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication

Figure : Simple Matrix multiplication.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
Host code

float *A = new float[m*wA];

float *B = new float[hB*n];

float *C = new float[m*n]

for(int c, r=0; r < m; r++){
for(c=0; c < n; c++){

for(sum=0, i=0; i < wA; i++){
sum += A[r * wA + i] * B[i * n + c];

}
C[r * n + c] = sum;

}
}

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
Host code

Implement the matrix multiplication and measure the run time
with function below.
- Use dimensions 1024x1024 for A, B and C.
- Initialize the matrices with value 1.

double timestamp(){
struct timeval tp;

gettimeofday(&tp, NULL);

return (double)(tp.tv sec +

tp.tv usec / 1000000.0);

}

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Startup OpenCL environment.

clFactory::setDeviceType(RUN ON GPU);

clFactory::startup();

Compile cl code.

vector<char*> kernelNames;

kernelNames.push back((char*)"simpleMatrixMul");

startupKernels((char*)"matrix mult.cl", kernelNames);

Get a reference to the compiled kernel.

cl command queue command queue = queue->getCommandQueue();

cl device id device = queue->getDevice();

kernel t* kernel =

getKernelInstanceByDevice((char*)"simpleMatrixMul", device);

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Create host variables.

int wA = 1024, m = 1024, hB = 1024, n=1024;

WORD *A = new WORD[m*wA];

WORD *B = new WORD[hB*n];

WORD *C = new WORD[m*n];

Create device variables.

cl context context = queue->getContext();

CREATE BUFFER(context, CL MEM WRITE ONLY | CL MEM COPY HOST PTR,

(m*wA) * sizeof(float), A, cl A);

CREATE BUFFER(context, CL MEM WRITE ONLY | CL MEM COPY HOST PTR,

(hB*n) * sizeof(float), B, cl B);

CREATE BUFFER(context, CL MEM READ WRITE,

(m*n) * sizeof(float), NULL, cl C);

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Enqueue the kernel.

// M x N Threads, 1 per each element of matrix C.

CALL KERNEL2D(command queue, kernel, m, n, blkSz, blkSz, 5,

sizeof(cl mem), (void*)&cl A,

sizeof(cl mem), (void*)&cl B,

sizeof(cl mem), (void*)&cl C,

sizeof(cl int), (void*)&wA,

sizeof(cl int), (void*)&n

);

Wait for the kernel to finish.

SYNC QUEUE(command queue);

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Copy the results back to host.

clMemcpyDeviceToHost(command queue, C, cl C,

(m*n) * sizeof(float));

Release the device and host variables.

clReleaseMemObject(cl A);

clReleaseMemObject(cl B);

clReleaseMemObject(cl C);

delete A;

delete B;

delete C;

Shutdown OpenCL.

clFactory::shutdown();

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Receiving parameters.

kernel void simpleMatrixMul(

global WORD* A, // matrix A

global WORD* B, // Matrix B

global WORD* C, // Resulting matrix C

int wA, int N // A and B width, respectively.

)

Obtain work-item positioning on global thread mapping.

// Global index

int gx = get global id(0); // C matrix column.

int gy = get global id(1); // C matrix row.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

// Create a private variable (register)

// to accumulate the sum.

float sum = 0;

// Sum matrices A and B.

for(int i=0; i < N; i++){
sum += A[gy * wA + i] *

B[i * N + gx];

}

// Send the sum back

// to Global memory.

C[gy * N + gx] = sum;

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Using SimpleGPUCall as template, implement a matrix
multiplication.

Set the code to run on CPUs (instead of GPU), then compare the
performance.

Now, re-run the versions with larger matrices sizes (2048x2048)
and compare GPU vs CPU versions.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Using SimpleGPUCall as template, implement a matrix
multiplication.

Set the code to run on CPUs (instead of GPU), then compare the
performance.

Now, re-run the versions with larger matrices sizes (2048x2048)
and compare GPU vs CPU versions.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Matrix Multiplication
OpenCL code

Using SimpleGPUCall as template, implement a matrix
multiplication.

Set the code to run on CPUs (instead of GPU), then compare the
performance.

Now, re-run the versions with larger matrices sizes (2048x2048)
and compare GPU vs CPU versions.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication

Figure : Matrix block multiplication.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication
OpenCL code

kernel void optimizedMatrixMul(global WORD* A,

global WORD* B, global WORD* C,

int wA, int N, int blkSize,

// Declaration of local memory arrays, used to store the

// sub-matrices of A and B.

local WORD *As, local WORD *Bs){

// Block index

int bx = get group id(0);

int by = get group id(1);

// Thread index

int tx = get local id(0);

int ty = get local id(1);

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication
OpenCL code

// Index of the first sub-matrix of A to be processed

// by the block

int aBegin = wA * blkSize * by;

// Index of the last sub-matrix of A to be processed

// by the block

int aEnd = aBegin + wA - 1;

// Step size used to iterate through the

// sub-matrices of A

int aStep = blkSize;

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication
OpenCL code

// Index of the first sub-matrix of B to be processed

// by the block

int bBegin = blkSize * bx;

// Step size used to iterate through the

// sub-matrices of B

int bStep = blkSize * N;

// Register to accumulate the sum.

float sum = 0;

Peter Frank Perroni OpenCL

Optimized Matrix Multiplication
OpenCL code

// Main loop.

for(int a=aBegin, b=bBegin; a <= aEnd; a+=aStep, b+=bStep){
// Bring block to local memory.

As[ty * blkSize + tx] = A[a + wA * ty + tx];

Bs[ty * blkSize + tx] = B[b + N * ty + tx];

barrier(CLK LOCAL MEM FENCE);

for(int k=0; k < blkSize; ++k){
sum += As[ty * blkSize + k] * Bs[k * blkSize + tx];

}

barrier(CLK LOCAL MEM FENCE);

}

// Write the block sub-matrix to device memory.

// Each thread writes exactly one element.

C[get global id(1) * N + get global id(0)] = sum;

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication

Implement the optimized matrix multiplication and run it with
matrix sizes of:
- 1024x1024
- 2048x2048

Set the code to run on CPUs (instead of GPU), then compare the
performance with all other versions.

Peter Frank Perroni OpenCL

Introduction
OpenCL Code

Exercices

Optimized Matrix Multiplication

Implement the optimized matrix multiplication and run it with
matrix sizes of:
- 1024x1024
- 2048x2048

Set the code to run on CPUs (instead of GPU), then compare the
performance with all other versions.

Peter Frank Perroni OpenCL

	Introduction
	GPU Device
	Memory Access
	Thread Management

	OpenCL Code
	Threads
	Synchronization
	Local Variable
	Command Queues

	Exercices

