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Figure : Warps.

Peter Frank Perroni OpenCL



Introduction
OpenCL Code

Exercices

GPU Device
Memory Access
Thread Management

Global Memory Access

Global Memory is a set of aligned segments.

Out of sequence – 16 transactions

Misaligned – 16 transactions

……

……

……

Coalesces – 1 transaction

Figure : Memory access for CC 1.0/1.1.
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Global Memory Access

Global Memory is a set of aligned segments.

Figure : Memory access for CC 1.2/1.3.
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Local Memory Access

Local Memory is divided into banks.

Work-items can access local memory simultaneously.

Access to same memory bank cause serialization.

Except when doing Broadcast.

Some bank conflicts can be avoided by adding strides.
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Figure : Stride on Matrix Transpose.
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Figure : Bank Conflict on Local memory access.
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Local Memory

Warp1of32-elements

Warp2of32-elements

Half-warp

Half-warp

Half-warp

Half-warp

Figure : Local memory for a work-group of 2-warps size.

No bank conflicts for half-warp (16 banks).

Barriers are important to keep the synchronism.
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Memory Access

Global memory is visible to all work-items on device.

400 to 600 cycles of memory latency.

Local (shared) memory is visible among all work-items within
the same work-group.

Latency about 100x smaller than global memory.

Each Work-item (Thread) has its own Private memory.

Latency zero.
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Memory Access

Accessing Private memory (registers) has zero extra clock
cycle per instruction.

Register pressure and long data structures on private area
cause variables to be moved automatically by compiler to a
special Global memory section.
Read-after-write on registers has a dependency of about 24
cycles and therefore must be avoided, but multiple warps (> 6)
can hide totally this latency.
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Figure : Work-items and Work-groups.
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Work-item Grouping

Figure : Work-item mapping functions.
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clWaitForEvents(num events, event list): Host blocks
until all events in wait list are finished.

clFinish: Host waits for all enqueued event to finish.

clEnqueueWaitForEvents(queue, num events, event list):
Command queue waits for all events in wait list to finish.
Events do not need to be from same queue.

mem fence(CLK LOCAL MEM FENCE |
CLK GLOBAL MEM FENCE): Force work-item completion
of loads and stores before any new load/store can be executed.
The functions read mem fence() and write mem fence()
are the equivalent for only load and store, respectively.

barrier(mem fence flag): Work-item waits untill all
work-items in work-group reach the barrier. It also triggers a
memory fence.
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local: Creates a local (shared) variable, whose contents is
visible to all work-items in same work-group.

However, it must be statically allocated within the kernel
(numeric literal, constant, macro, etc).

To allocate local memory dynamically, set it as a parameter
when enqueueing the kernel.

On cl file:
kernel void theKernel(

local float *dynamicAllocation){...}
On kernel call:
clSetKernelArg(kernel, 0,

local dynamic size in bytes, NULL);
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Commands are submitted to OpenCL through command
queues.

A Queue is tied to a device.

Multiple queues can be active concurrently.

Only one command running per device at a time.

Commands are executed at the order they were submitted.

CL QUEUE OUT OF ORDER EXEC MODE ENABLE:
Queues created with this property will try to execute the
commands at a more optimized sequence.
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Download and compile the framework from Git repository.

$ wget --no-check-certificate https://gitlab.c3sl.ufpr.br/

pfperroni/oclframework/repository/archive.tar.gz?ref=master -O

oclFramework.tar.gz

$ tar -xzvf oclFramework.tar.gz

$ cd oclframework.git/src

$ ./make all.sh

Test a GPU call.

$ cd Examples/SimpleGPUCall

$ ./SimpleGPUCall
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Figure : Simple Matrix multiplication.
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float *A = new float[m*wA];

float *B = new float[hB*n];

float *C = new float[m*n]

for(int c, r=0; r < m; r++){
for(c=0; c < n; c++){

for(sum=0, i=0; i < wA; i++){
sum += A[r * wA + i] * B[i * n + c];

}
C[r * n + c] = sum;

}
}
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Implement the matrix multiplication and measure the run time
with function below.
- Use dimensions 1024x1024 for A, B and C.
- Initialize the matrices with value 1.

double timestamp(){
struct timeval tp;

gettimeofday(&tp, NULL);

return (double)(tp.tv sec +

tp.tv usec / 1000000.0);

}
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Startup OpenCL environment.

clFactory::setDeviceType(RUN ON GPU);

clFactory::startup();

Compile cl code.

vector<char*> kernelNames;

kernelNames.push back((char*)"simpleMatrixMul");

startupKernels((char*)"matrix mult.cl", kernelNames);

Get a reference to the compiled kernel.

cl command queue command queue = queue->getCommandQueue();

cl device id device = queue->getDevice();

kernel t* kernel =

getKernelInstanceByDevice((char*)"simpleMatrixMul", device);
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Create host variables.

int wA = 1024, m = 1024, hB = 1024, n=1024;

WORD *A = new WORD[m*wA];

WORD *B = new WORD[hB*n];

WORD *C = new WORD[m*n];

Create device variables.

cl context context = queue->getContext();

CREATE BUFFER(context, CL MEM WRITE ONLY | CL MEM COPY HOST PTR,

(m*wA) * sizeof(float), A, cl A);

CREATE BUFFER(context, CL MEM WRITE ONLY | CL MEM COPY HOST PTR,

(hB*n) * sizeof(float), B, cl B);

CREATE BUFFER(context, CL MEM READ WRITE,

(m*n) * sizeof(float), NULL, cl C);
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Enqueue the kernel.

// M x N Threads, 1 per each element of matrix C.

CALL KERNEL2D(command queue, kernel, m, n, blkSz, blkSz, 5,

sizeof(cl mem), (void*)&cl A,

sizeof(cl mem), (void*)&cl B,

sizeof(cl mem), (void*)&cl C,

sizeof(cl int), (void*)&wA,

sizeof(cl int), (void*)&n

);

Wait for the kernel to finish.

SYNC QUEUE(command queue);
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Copy the results back to host.

clMemcpyDeviceToHost(command queue, C, cl C,

(m*n) * sizeof(float));

Release the device and host variables.

clReleaseMemObject(cl A);

clReleaseMemObject(cl B);

clReleaseMemObject(cl C);

delete A;

delete B;

delete C;

Shutdown OpenCL.

clFactory::shutdown();
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Receiving parameters.

kernel void simpleMatrixMul(

global WORD* A, // matrix A

global WORD* B, // Matrix B

global WORD* C, // Resulting matrix C

int wA, int N // A and B width, respectively.

)

Obtain work-item positioning on global thread mapping.

// Global index

int gx = get global id(0); // C matrix column.

int gy = get global id(1); // C matrix row.
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// Create a private variable (register)

// to accumulate the sum.

float sum = 0;

// Sum matrices A and B.

for(int i=0; i < N; i++){
sum += A[gy * wA + i] *

B[i * N + gx];

}

// Send the sum back

// to Global memory.

C[gy * N + gx] = sum;
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Using SimpleGPUCall as template, implement a matrix
multiplication.

Set the code to run on CPUs (instead of GPU), then compare the
performance.

Now, re-run the versions with larger matrices sizes (2048x2048)
and compare GPU vs CPU versions.
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Figure : Matrix block multiplication.
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kernel void optimizedMatrixMul( global WORD* A,

global WORD* B, global WORD* C,

int wA, int N, int blkSize,

// Declaration of local memory arrays, used to store the

// sub-matrices of A and B.

local WORD *As, local WORD *Bs){

// Block index

int bx = get group id(0);

int by = get group id(1);

// Thread index

int tx = get local id(0);

int ty = get local id(1);
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// Index of the first sub-matrix of A to be processed

// by the block

int aBegin = wA * blkSize * by;

// Index of the last sub-matrix of A to be processed

// by the block

int aEnd = aBegin + wA - 1;

// Step size used to iterate through the

// sub-matrices of A

int aStep = blkSize;
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// Index of the first sub-matrix of B to be processed

// by the block

int bBegin = blkSize * bx;

// Step size used to iterate through the

// sub-matrices of B

int bStep = blkSize * N;

// Register to accumulate the sum.

float sum = 0;
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OpenCL code

// Main loop.

for(int a=aBegin, b=bBegin; a <= aEnd; a+=aStep, b+=bStep){
// Bring block to local memory.

As[ty * blkSize + tx] = A[a + wA * ty + tx];

Bs[ty * blkSize + tx] = B[b + N * ty + tx];

barrier(CLK LOCAL MEM FENCE);

for(int k=0; k < blkSize; ++k){
sum += As[ty * blkSize + k] * Bs[k * blkSize + tx];

}

barrier(CLK LOCAL MEM FENCE);

}

// Write the block sub-matrix to device memory.

// Each thread writes exactly one element.

C[get global id(1) * N + get global id(0)] = sum;
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Implement the optimized matrix multiplication and run it with
matrix sizes of:
- 1024x1024
- 2048x2048

Set the code to run on CPUs (instead of GPU), then compare the
performance with all other versions.
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