
Universidade Federal do Paraná

Departamento de Informática

Jorge Tortato Júnior
Aldri L. dos Santos
Roberto A. Hexsel

PSAD - A Protocol for Synchronization of
Distributed Actions

Relatório Técnico
RT-DINF 001/2008

Curitiba, PR
2008

Resumo

Real-time systems are present in people’s life and are used in several applica-
tions like industrial automation and robot motion control. These applications in
distributed systems are challenging due to non-deterministic behavior of system
elements and communication channels. This paper proposes a protocol called
PSAD to deal with action synchronization through system elements. This proto-
col is based on services for clock synchronization, reliable group communication
and real-time task scheduling. An experimental evaluation using local networks
shows that it can be used for synchronized applications that need rates around 10
requests per second and jitter around few tens of milliseconds.

1 Introduction

Real time systems are present on people’s life due to extensive usage of em-
bedded microprocessors and microcontrollers. These devices can be found from
house appliances to complex systems composed by several distributed controllers
used on applications like robotics, remote control, remote surgery, industrial au-
tomation and so on. Non-distributed real time systems are well understood. How-
ever, real time distributed systems are still seem as a challenge because the per-
formance of system elements as well as of communication network cannot be
predicted in most of the applications [1]. This lack of predictability can make the
implementation of these systems unfeasible due to resulting unreliability.

Real time requirements lead to discussion of synchronous systems, on which
the time perception is a fundamental concept. Studies started on 80’s expanded
this concept with implementation of sophisticated synchronization protocols. These
protocols allow clock synchronization in range of milliseconds [2], depending on
distance among elements that are being synchronized and the reference clock. The
development of global positioning system, GPS, on early 90’s enabled new op-
portunities for research on synchronous systems. The synchronization restricted
to elements close to each other could be expanded to more distant areas.

Beyond the facts above, due to expansion of embedded computing on the latest
years, research for common development platforms has been intensified, specially
for real time platforms. Efforts on this approach include the development of Real
Time Java platform (RTSJ) [3] and the specification of Real Time Java Platform
for Distributed Systems (DRTSJ) [4] [5]. RSTJ provides solutions for real time
issues on a single machine, like task scheduling and priority control, meanwhile
DRTSJ promises answers for distributed systems like remote invocation (RPC)
with timing constraints and management of distributed memory.

One of the basic issues on real time distributed systems is action synchroniza-
tion, it means the ability to execute tasks coordinated in time on different pro-
cesses or machines. Some approaches seek for solutions independent of physical
and logical communication network layers, meanwhile others change these layers
to achieve timing guaranties. CASD [6] [7], for example, is a protocol that does
not depend on physical or logical layers. However, it shows inconsistence and
wrong behavior when used together with aggressive time constraints [8]. Other
studies tried to reach timing constraints by modifying communication layers [9]
[10], through statistical methods [11] [12] or by using resource reservation proto-
cols [10] [13]. However, these studies require non-standard solutions, resulting on
restrictions on their applicability, or do not provide guaranties for time deadlines
on all nodes.

This paper proposes a protocol for real time distributed systems, called PSAD,
that allows reliable synchronization of tasks on different places. In this way, tasks

1

on distant places can be synchronously executed on request of one of the elements
of the system. PSAD is based on mechanisms of clock synchronization, on group
communication and on real time task scheduling that allow the execution of a task
on a predictable time.

The performance and efficiency of PSAD are evaluated through tests on a
single machine executing several independent processes and on processes being
executed on several machines connected to each other through a local network.
Results show that on these scenarios it is possible to reach rates of 10 requests per
second, small number of cancelled tasks and jitter of a few tens of milliseconds,
which confirms the reliability of PSAD for real time applications.

The paper is structured as follows. Section 2 describes related work. Section
3 discusses basic services used to build PSAD. Section 4 details PSAD and its
behavior. Section 5 describes the experiments and the results. Section 6 presents
the conclusions and future directions.

2 Related work

One of the first works on task synchronization was the CASD [6] [7]. How-
ever, it presents wrong behavior when used with more agressive timing constraints
[8]. Some works based on physical and logical network layers [9] [10] require
non-standard solutions, thus resulting on restrictions on their applicability. Statis-
tical methods [11] [12] or resource reservation protocols [10] [13] do not provide
guaranties that time deadlines are achieved on all nodes.

Some work is found on media synchronization due to increasing demand on
multimedia network services. In [14], a survey shows needs for synchronization
protocols on media transmission. In [15], it is shown that synchronization mecha-
nisms can be applied to reconstruct presentation schedule. In [16], a performance
evaluation for multimedia presentation protocol highlights the importance of ti-
ming guaranties on network.

Additionally, some work is also found on robotics. In [17], it shows the need
for synchronization of robots modules and describes related work on synchroniza-
tion related to collaborative work.

3 Basic services

This section discusses the basic services that support the proposed protocol.
These services are clock synchronization services, group communication services
and real time task scheduling.

2

3.1 Clock synchronization

Several techniques for clock synchronization on distributed system have been
researched during 80’s [8]. The main issues are drift of clocks due to imprecision
of each individual clock and latency of communication networks that becomes
synchronization among nodes inaccurate.

Srikanth and Toueg [18] proposed a method based on the fact that the variation
rate of clocks is likely to be constant. From this premise, the method tries to com-
pensate the differences among them a-priori. Verissimo and Rodrigues [19] and
Clegg and Marzullo [20] proposed another method a-posteriori for clock synchro-
nization. This one performs periodically the delay calculation among clocks of the
system via messages among the different processes and makes the required adjust-
ments according to received values, assuming that average delays on network is
constant. Today, the most used protocols are capable of reach synchronism around
few tens of milliseconds or better [2] and are mainly based on Marzullo’s method.

Another method used from 90’s is the GPS system. Using GPS is possible
to achieve higher precision than ones reached with synchronization protocols:
around few milliseconds or better, except when atmospheric condition causes in-
terference on signal reception or disturbs it significantly [21]. Thus, with GPS, it
is possible to have good precision with relative low cost, although they are higher
than costs of methods based on message passing.

Synchronization protocols as well as GPS allow that several machines into
a system become synchronized and, so, that timestamps could be used for con-
trolling on real time distributed systems, scheduling tasks and synchronizing them.

3.2 Group communication services

Group communication is extremely useful on distributed systems. It allows
several processes to join or leave a group dynamically, to be monitored by failure
detectors, to share states and group visions and to exchange unicast and multicast
messages. Multicast communication protocols are classified as basic, reliable,
casual, FIFO or totally ordered [8].

When applied on task synchronization protocols, the most relevant are ones
classified as reliable and FIFO. Reliable protocols ensure that all processes be-
longing to a group receive messages even in presence of failures into commu-
nication. FIFO protocols ensure that messages sent by a process to be ordered
received, i.e., if a process p1 sends a message m1 to the group and then a second
message m2, all group members will receive m1 and then m2, independently of
communication network delays. Communication using a reliable and FIFO pro-
tocol is the most appropriated because ensures that all messages sent by a sender
process to be ordered delivered in time to the group.

3

3.3 Real time task scheduling

Scheduling of tasks or actions at defined and predictable time is an important
matter when talking about real time distributed systems. Two issues related to this
are the delays on communication network and delays on scheduling by operating
system. On the first case, the network characteristics can be controlled through
quality of service guaranties (QoS) and/or traffic priority. However, there is not
so much to do when complex networks are used, where quality guaranties cannot
be easily achieved.

On the other hand, operating system scheduling, that is strongly dependent
of processor load, can use process priorities and other real time features of the
own operating system. The major part of this features is dependent on a specific
architecture [22], x86 or PowerPC, for example, limiting applicability on hetero-
geneous systems. These heterogeneous systems are very common on distributed
systems, where each node can have a different operating system, processor or
memory capacity. So, using services that are independent of a specific platform,
like Java, seems to be the most feasible way to implement scheduling of tasks on
real time distributed systems context.

4 PSAD - A protocol for synchronization of distributed
actions

This section describes the PSAD protocol and its behavior. PSAD is a pro-
tocol designed to solve problems on synchronizing tasks on real time distributed
systems. It ensures that actions are started on all correct processes of the system
or on none of them. The protocol assumes that is possible to get a minimum level
of synchronization among the several processes on the distributed system. Below,
the system model and the proposed protocol are described.

4.1 System model

A real time distributed system is defined as a set S composed by n processes
{p1, p2, ... , pn} synchronized among them. Each process pi ∈ S has its own
clock ci ∈ C, where C = {c1, c2, ... , cn} is the set of all clocks in the system.
The synchronization uncertainty, ε, is defined as the higher difference among all
clocks ci ∈ C. Additionally, processes communicate through a network with the
following timing properties (PT):

PT1 .∆max : maximum delay of messages on the network.
PT2. ∆med : average delay of messages on the network.

4

PT3. ∆opmax: maximum time taken by an operation to complete through the
network.

, whose message passing occurs through two communication primitives (PC):
PC1. R FO UNICAST : unicast message, reliable and FIFO ordered.
PC2. R FO MULTICAST: multicast message, reliable and FIFO ordered.
, where messages are sent through PC1 and PC2 and are also FIFO ordered

between them.
Two types of failures are assumed: crash and network timing. On crash fail-

ures, a process does not respond to messages, meanwhile on network timing fail-
ures the messages have delays higher than expected.

4.2 Behavior

PSAD is based on wall clocks, it means, one or more processes own clocks
that are used to synchronize the other process clocks. After all process are syn-
chronized and organized into a closed group, the process that initiates an action
(coordinator) and remote processes (clients) use communication primitives PC1
and PC2 to synchronize their actions. There are no restrictions to the roles of each
process and each action can be coordinated by a different process.

Figure 1 shows typical protocol runs. On the first message exchange, the co-
ordinator initiates a synchronized action request sending a message for the clients
via PC2. This message has sending timestamp, sequence identifier of requests
sent by this coordinator, action type requested and the desired time for execution
(called target). Clients receive them, schedule the requested action and sent con-
firmation through PC1, which must be received by coordinator within a maximum
time period T <target - k*∆med, where k is adjusted according to the network.

Each client knows how much time is needed to execute a specific action. So,
a client can reject requests if there are conflicting pending actions or whose tar-
get time is too much close current time (less than k*∆med, for example), which
makes impossible to the coordinator to receive a confirmation before deciding
about cancellation.

On the second message passing, coordinator initiates a request as before. In
this case, however, a confirmation message is not received in time and it initiates
an action cancellation sending via PC2 a cancellation message. This message con-
tains an action identifier and the target time. Clients are responsible for canceling
the action scheduled before.

The protocol is described in three parts, on the following algorithms. These
algorithms describe the initialization and vision update of the groups, transmission
and reception of messages and the procedure to schedule real time actions.

5

Figura 1: Typical runs of PSAD protocol.

4.2.1 Initialization and group vision update

The initialization and update algorithm is responsible for initializing control
variables, for connecting a process to the communication group and keeping an
updated vision of processes belonging to the group. On Initialization() proce-
dure of algorithm 1, at lines 2 to 4 (for simplicity lines will be referred as l. through
text), the variables action number, ack number and member num are initialized
and they refer to the sequential action counter, received number of confirmations
and the number of group members, respectively. Then, at (l.5-6) the initial timing
parameters ∆med and ∆opmax are configured and the join to the communication
group is requested (l.7). On Vision Reception() procedure, at each modification
of group vision, the number of members is updated (l.10).

4.2.2 Transmission and reception

Transmission and reception algorithm handles all message exchanges with
other group members. On procedure Transmission() of algorithm 2, at each new
request the target time is calculated (l.2), the sequence number is incremented

6

Algoritmo 1 Initialization and Update of group vision
1: procedure Initialization()
2: action number ← 0; // control variables initialization
3: ack number ← 0; // initializes received response number
4: member num← 0; // initializes number of active members
5: ∆med ← default ∆med; // initializes average network delay
6: ∆opmax ← default ∆opmax; // initializes operation latency
7: join group(PSAD); // joins to communication group
8: end procedure

9: procedure V ision Reception()
10: member num← group size(PSAD); // upd. members num.
11: end procedure

(l.3) and the number of received confirmations is re-initialized (l.4). One message
containing a timestamp, packet type, sequence number, target time and the higher
level application message is concatenated and sent through multicast (PC2) (l.8).

After sending a message, the transmitter waits until period for confirmations
arrival expires (l.11) or that all confirmation messages have been received (l.12).
Period for waiting is function of target time of the request and of delays experi-
mented on network, being factor k a configurable safety parameter. If confirma-
tions are not received, a cancellation message specifying the action to be cancelled
is sent via multicast for all processes (l.17-20). Then, parameter ∆opmax is up-
dated according to the time spent to exchange messages (l.21) and the procedure
is finished with failure (l.22). On the other hand, if confirmations arrive in time,
the parameter ∆opmax is also updated and the procedure is finished with success
(l.14-15).

On procedure Reception() (l.25), the average message delay through network,
∆med, is updated using timestamp of received message. Then the message is pro-
cessed according to its type: new action request, cancellation or confirmation.
When it is a new request (l.27), feasibility of action scheduling is checked with
real time scheduler (l.28). If it is possible (l.30), a positive confirmation via uni-
cast is sent to the coordinator (l.31-34). Otherwise, it sends a negative confirma-
tion, or cancellation, to the group (l.36-39). If received message is a cancellation
of one action (l.42), the respective action is immediately cancelled via a request
to real time scheduler. When the message is a positive confirmation (l.45), the
number of received confirmations is incremented if it refers to the current action
being coordinated (l.49).

4.2.3 Real time task scheduling

Real time task scheduler algorithm is responsible for receiving requests or can-
cellations and for verifying if schedule of a task is feasible or not. On procedure
Reception() of algorithm 3, when a new action should be scheduled (l.2) and it

7

Algoritmo 2 Transmission and Reception
1: procedure Transmission(app msg)
2: target time← now + ∆opmax; // calc. of target time
3: action number ← action number + 1; // inc. of seq. counter
4: ack number ← 0; // initializes rec. confirmation number
5: pkt type← action type; // new message is an action
6: msg ← timestamp & ptk type &
7: action number & target time & app msg;
8: R FO MULTICAST (msg); // reliable multicast of msg
9: start time← now; // initializes timer

10: wait until
11: (now < target time − k ∗∆med) or // waits until timeout
12: (ack number = member num) // or until rec. all confirmations
13: if (ack number = member num) then // if rec. confirmations
14: ∆opmax ← update ∆opmax(start time); // upd. latency
15: return sucess; // returns success
16: else // if it was a timeout
17: pkt type← cancel type; // assembles a cancellation msg
18: msg ← timestamp & ptk type &
19: action number & target time;
20: R FO MULTICAST (msg); // performs reliable multicast
21: ∆opmax ← update ∆opmax(start time); // upd. latency
22: return failure; // returns failure
23: end if
24: end procedure

25: procedure Reception(msg rcv)
26: ∆med ← update ∆med(msg rcv.timestamp); // upd delay
27: if (msg rcv.pkt type = action type) then // if a new action
28: send msg RT (msg rcv); // scheduling msg to RT algorithm
29: wait until rcv msg RT (msg RT); // waits RT algorithm
30: if (msg RT = success) then // if it is a success
31: pkt type← ack type; // assembles confirmation msg
32: msg ← timestamp & ptk type &
33: action number & target time & msg rcv;
34: R FO UNICAST (msg); // sends to the coordinator
35: else // if refused
36: pkt type← nack type; // assembles rejection msg
37: msg ← timestamp & ptk type &
38: msg rcv.action number & msg rcv.target time;
39: R FO MULTICAST (msg); // sends to the group
40: end if
41: else
42: if (msg rcv.pkt type = cancel type or nack type) then // if it’s a cancelation
43: send msg RT (msg rcv); // requests a cancellation
44: else
45: if (msg rcv.pkt type = ack type) then // if a conf.
46: if (msg rcv.action = action number) and
47: (msg rcv.target time = target time) then
48: // increments confirmation number
49: ack number ← ack number + 1;
50: end if
51: end if
52: end if
53: end if
54: end procedure

8

is feasible to be (l.3), the action is scheduled and confirmed to communication
algorithm 2. Otherwise (l.7), it is discarded and not confirmed. If a cancellation
is requested and the respective action was not executed yet, it is cancelled (l.10-
12). Otherwise, a severe failure is forwarded to application level (l.14), which is
responsible for system recovering.

Algoritmo 3 Real time task scheduling
1: procedure Reception(msg RT)
2: if (msg RT.pkt type = action type) then // if new action
3: if (isfeasible(msg RT.target time)) then // feasible ?
4: sched action(msg RT.action, target time);
5: send com(sucess); // sends success to rec/trans. alg.
6: else
7: send com(failure); // sends failure to rec/trans. alg.
8: end if
9: else

10: if (msg RT.pkt type = cancel type) then // canc. msg.?
11: if (notfired(msg RT.action)) then // if not yet fired
12: dis sched action(msg RT.action); // cancels it
13: else // if already fired
14: recover action(msg RT.action); // recovers
15: end if
16: end if
17: end if
18: end procedure

5 Experiments and results

Experiments were carried out using three different computers connected through
ethernet switches to a local 100Mbps ethernet network. The configurations of
computers are: (A) Intel dual core 1.66GHz, 2GB DDR2 PC4200 RAM memory,
FC6 (Fedora Core 6) operating system executed on a virtual machine running on
Windows XP; (B) Atlhon 1.2GHz, 512MB DDR 266 RAM memory, FC6 operat-
ing system and (C) Pentium 4 3.0GHz, 472MB of RAM memory, FC6 operating
system executed on a virtual machine running on Ubuntu 6.06.a.

The fact that two machines are being executed FC6 on virtual machines and
that they are all of different configurations of memory and processors builds an
heterogeneous environment when talking about processing capability and delays
of messages exchanged by processes. So, this environment allows the protocol
to be better evaluated because the behavior is closer to a real network than an
isolated and controlled network.

Clock synchronization was implemented using NTP (Network Time Protocol)
[23], version 3, although version 4 has been developed and are being standardized
by IETF. NTP uses Marzullo algorithm to keep synchronization within a few tens
of milliseconds or better [2]. NTP was chosen instead of GPS because tests were

9

done on a local network, where performance of NTP is enough. Group communi-
cation services were implemented from JGroups 2.4.1 SP3 [24] libraries. JGroups
were used on services to create multicast groups and to implement reliable unicast
and multicast communication, both FIFO ordered.

PSAD was implemented on Java version JDK1.4 and Java-RT (Java Real
Time) [3] version RI 1.1 Alpha 2 from TimeSys. All algorithms dependent on
JGroups libraries were coded and executed on JDK1.4 platform. Algorithms de-
pendent on real time functions (real time task scheduling) were coded and exe-
cuted on Java-RT platform. Communication between JDK1.4 and Java-RT parts
were implemented with a socket connection local to the machine. This approach
was required due to restrictions on Timesys Java virtual machine (tjvm). Although
this implementation is specific for Fedora Core 6, other commercial versions are
available for other operating systems. So, the option for Java was done due to
platform independence. Figure 2 shows code architecture.

Figura 2: Implementation of PSAD.

Two types of experiments have been done. On first one, a single FC6 virtual
machine on computer (A) executed 1, 2 or 3 processes, where only one of them
was generating requests to the group. Once all processes were executed on a single
virtual machine, a perfectly synchronized environment is simulated. On second
experiment, one (B), two (B+C) or three (A+B+C) different machines were used,
with one process running on each, where only processes on computer (B) was
generating requests to the group.

Metrics were collected for all experiments to evaluate scalability, performance,
efficiency, tolerance to delays and jitter. For scalability, were collected the rate of
scheduled actions per second, for 20.000 attempts, as a function of number of
processes or computers. Performance were evaluated through rate of scheduled

10

actions as function of time and efficiency was demonstrated via number of can-
cellations, both calculated over 2.000 attempts, from a total of 20.000 attempts.
Tolerance to delays were evaluated changing ∆opmax parameter and verifying the
rate of cancelled actions, using samples with 8.000 requests for each value of
∆opmax. Finally, the amount of jitter were measured, always compared to local
clock, showing the difference between target time and real time of execution of a
given action. Data for all metrics were collected through source code instrumen-
tation.

5.1 Experiment 1 - perfectly synchronized system

As described before, this experiment used machine (A) to simulate a perfectly
synchronized environment. Except to delay tolerance tests, the value of ∆opmax

were kept constant and equal to 2s. Figure 3 shows results obtained for (a) scala-
bility and (b) performance. On (a) the average request rate decreases with number
of processes. This happens because the processing capacity is limited and, thus,
more concurrent processes reduces maximum request rate. (b) shows variation
of request rate, which is almost constant as function of time, between 8 and 12
requests per second, depending on number of processes.

 0
 2
 4
 6
 8

 10
 12
 14

 3 2 1

R
eq

s.
/s

Number of processes

Req. rate. x Processes (a)

 0

 5

 10

 15

 20

 10 9 8 7 6 5 4 3 2 1

R
eq

s/
s

Samples − 2.000 reqs.

Reqs. rate x Time (b)

1 proc.
2 procs.
3 procs.

Figura 3: Scalability and performance for perfectly synchronized system.

Figure 4 shows results of (a) efficiency and (b) delay tolerance. On (a), as the
number of concurrent processes increases the efficiency decreases, with a consid-
erable increase of the number of cancellations. Considering the biggest number
of cancellations (8) and total number of requests (2000), the percentage of can-
cellations is always less or equal to 0.4%. However, for all cases, requests have
been cancelled correctly, showing atomic behavior of protocol. On (b), changing
target time by modifying ∆opmax parameter, the number of cancelled requests ap-
proaches to 100% when this parameter is closer to the time spent to sent a request
and receive confirmations. Again, the number of processes contributes for increas-

11

ing delay of messages and, so, for increasing percentage of cancelled requests for
a given value of ∆opmax.

 0

 2

 4

 6

 8

 10

 12

 10 8 6 4 2

C
an

ce
lla

tio
ns

Samples − 2.000 reqs.

Cancellations x Processes (a)

1 proc.
2 procs.
3 procs.

 0

 20

 40

 60

 80

 100

 120

 140

 2000 1000 500 250 75

%
 o

f c
an

ce
lla

tio
ns

Latency (ms)

Cancellations x Latency (b)

1 proc.
2 procs.
3 procs.

Figura 4: Efficiency and delay tolerance for perfectly synchronized system.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)

Time(ms)

Jitter x Time (a)

1 proc.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)

Time(ms)

Jitter x Time (b)

2 procs.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)

Time(ms)

Jitter x Time (c)

3 procs.

Figura 5: Jitter for perfectly synchronized system.

Figure 5 shows results of jitter. Jitter were less than 15ms for almost all sam-
ples with one process (a). However, as concurrent processing increases with more
than one real time scheduler running, average value of jitter increases as well as
its variation, as show on (b) and (c).

12

5.2 Experiment 2 - system synchronized via NTP

On second experiment, machines (A), (B) and (C) were used, with one process
being executed on each one and all of them synchronized through NTP. Figure 6
shows results for (a) scalability and (b) performance. On (a) the request rate de-
creases slower as the number of process increase if compared to results shown in
Figure 3. This happens because on experiment 1 all processes were running on
same machine (A), where processing capability became the limiting factor. The
smaller reduction indicates that communication network is not saturated and the
request rate is only limited by processing capability, around 12 requests per sec-
ond, thus ensuring system scalability. (b) shows request rate as function of time,
which is almost constant.

 0
 2
 4
 6
 8

 10
 12
 14

 3 2 1

R
eq

s.
/s

Number of computers

Req. rate x Computers (a)

 0

 5

 10

 15

 20

 10 9 8 7 6 5 4 3 2 1

R
eq

s.
/s

Samples − 2.000 reqs.

Req. rate x Computers (b)

1 comp.
2 comps.
3 comps.

Figura 6: Scalability and performance for system synchronized via NTP.

 0

 2

 4

 6

 8

 10

 12

 10 9 8 7 6 5 4 3 2 1

C
an

ce
lla

tio
ns

Samples − 2.000 reqs.

Cancellations x Computers (a)

1 comp.
2 comps.
3 comps.

 0

 20

 40

 60

 80

 100

 120

 140

 2000 1000 500 250 75

%
 o

f c
an

ce
lla

tio
ns

Latency(ms)

Cancellations x Latency (b)

1 comp.
2 comps.
3 comps.

Figura 7: Efficiency and delay tolerance for system synchronized via NTP.

Figure 7 shows results for (a) efficiency and (b) delay tolerance. On (a), is
observed a small number of cancellations. Differently from previous experiment,
the increase of this value is smaller as number of processes increases. It is smaller
because in this case processing capability is not a limiting factor. On (b), changing

13

∆opmax also demonstrates that successful request rate decreases as this parameter
becomes closer to communication network delay. In this case, the cancellation
rate is bigger than previous experiment for the same value of ∆opmax. This hap-
pens because additionally to delays due to network protocol stack processing there
is also delays associated to network itself, i. e., propagation, switching and inter-
face delays. So, this result is coherent with previous result.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)

Time(ms)

Jitter x Time (a)

1 comp.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)
Time(ms)

Jitter x Time (b)

2 comps.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10000 20000 30000 40000 50000

Ji
tte

r(
m

s)

Time(ms)

Jitter x Time (c)

3 comps.

Figura 8: Jitter for system synchronized via NTP.

Analyzing the results for request rate and cancellations as function of ∆opmax,
notice that the protocol keeps the request rate constant, even though cancellations
are present. This behavior saturates even more the system, hence input buffers
keep congested. One possible enhancement would be the implementation of an
adaptative control of request rate based on cancellation number, as described on
[25].

Figure 8 shows results of jitter. Notice that on almost all samples the jitter
value is smaller than 20ms and that an increase on number of processes does not
affects this metric. In this case, however, to the jitter value should be added the
difference of synchronism among machines, ε. These results of jitter, together
with request rate, shows that this protocol can be used on applications like au-
tomation or robotics, for example, where variations of few tens of milliseconds on
execution of actions and rates around 10 requests per second are acceptable.

14

6 Conclusions

This work presented a reliable protocol called PSAD for action synchroniza-
tion on real time distributed systems. It allows synchronization of actions on
distributed elements of a system in an atomic way. The protocol is based on clock
synchronization service, on reliable group communication and on real time task
scheduling.

PSAD uses schemes such as NTP or GPS to synchronize all processes of the
distributed system. A group communication service supports a closed group and
exchanges reliable and FIFO ordered unicast and multicast messages among pro-
cesses. The messages exchanged allow any process to become a coordinator and
request an action to be atomically and synchronously executed on each node. Ac-
tions successfully accepted by all processes are scheduled by a real-time scheduler
module that ensures a minimum jitter between agreed and real execution time.

The protocol was implemented using NTP to provide synchronization service
and two other independent java codes, one using JGroup for group communication
services and other using Real Time Java (RTSJ) [3] for real time action schedul-
ing. The java platform allows the use of PSAD on systems composed by several
different processors and operating systems.

Evaluation was performed using some computers connected through a local
ethernet network. Experiments showed that this solution was able to achieve rates
of 10 requests per second, low cancellation rate and jitter around 20ms. These
results indicate that PSAD can be used on applications that require distributed
synchronization like industrial automation and collaborative motion control, and
others.

Future works include studies on mechanisms to control request rate based on
number of cancellations, on integration of group communication and real time
scheduler codes for execution into a single Java virtual machine to improve per-
formance and tests on bigger and sparser networks.

Referências

[1] Nick I. Kamenoff. One approach for generalization of real-time distributed systems
benchmarking. In Proceedings of the 4th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS ’96), 1996.

[2] D. L. Mills. Improved algorithms for synchronizing computer network clocks. In
IEEE/ACM Trans. Networks. 1995.

[3] The real time specification for java. www.rtj.org, 2005.
[4] Jonathan S. Anderson and E. Douglas Jensen. The distributed real-time specification

for java. In RTSJE Group, editor, Status Report. JTRES 2006, 2006.
[5] Distributed real-time java. www.real-time.org, 2007.

15

[6] F. Cristian, H. Aghali, R. Strong, and D. Dolev. Atomic broadcast: From sim-
ple message diffusion to byzantine agreement. In Proc. 15th Int. Symp. on Fault-
Tolerant Computing (FTCS-15), pages 200–206, Ann Arbor, MI, USA, 1985. IEEE
Computer Society Press.

[7] Flaviu Cristian, Danny Dolev, H. Raymond Strong, and Houtan Aghili. Atomic
broadcast in a real-time environment. In Proceedings of the Asilomar Workshop on
Fault-Tolerant Distributed Computing, pages 51–71, London, UK, 1990. Springer-
Verlag.

[8] Kenneth P. Birman. Reliable Distributed Systems. Springer, 1st edition, 2005.
[9] Paulo Pedreiras. Ftt-ethernet: A flexible real-time communication protocol that sup-

ports dynamic qos management on ethernet-based systems. In IEEE Transactions
on Industrial Informatics. 2005.

[10] Ferdy Hanssen and Pierre G. Jansen. Real-time communication protocols: An
overview. 2003.

[11] Seok-Kyu Kweon, Kang G. Shin, and Qin Zheng. Statistical real-time communi-
cation over ethernet for manufacturing automation systems. In IEEE Real Time
Technology and Applications Symposium, pages 192–202, 1999.

[12] S. Kweon, K. Shin, and G. Workman. Ethernet-based real-time control networks
for manufacturing automation systems. 2000.

[13] Mehdi Amirijoo Gunnar Mathiason. Real-time communication through a dis-
tributed resource reservation approach. In Technical report HS-IKI-TR-04-004 Uni-
versity of Skovde. 2004.

[14] Gerold Blakowski and Ralf Steinmetz. A media synchronization survey: Reference
model, specification, and case studies. IEEE Journal on Selected Areas in Commu-
nications, 14(1):5–35, 1996.

[15] Marı́a José Pérez-Luque and Thomas D. C. Little. A temporal reference framework
for multimedia synchronization. pages 721–736, 2001.

[16] Jun Sato, Koji Hashimoto, Michiaki Katsumoto, and Yoshitaka Shibata. Perfor-
mance evaluation of media synchronization for multimedia presentation. In ICPP
Workshops, pages 608–613, 1999.

[17] Feili Hou and Wei-Min Shen. Hormone-inspired adaptive distributed synchroniza-
tion of reconfigurable robots. In The 9th Intl. Conf. Intelligent and Autonomous
Systems (IAS-9), Tokyo, Japan, March 2006.

[18] T. K. Srikanth and S. Toueg. Optimal clock synchronization. In Journal of the ACM
34:3. ACM, 1987.

[19] P. Verissimo and L. Rodrigues. A-posteriori agreement for fault-tolerant clock syn-
chronization on broadcast networks. In Proc. 22nd International Symposium on
Fault-Tolerante Computing. 1992.

[20] M. Clegg and K. Marzullo. Clock synchronization in hard real-time distributed
systems. In Technical Report CS96-478. University of California, San Diego, De-
partment of Computer Science and Engineering, February 1996.

[21] Júlio da Silva Dias, Ricardo Felipe Custódio, and Denise Bendo Demétrio. Sin-
cronizacão segura de relógios para documentos eletrônicos. In 21o Simpósio
Brasileiro de Redes de Computadores (SBRC’2003), 2003.

16

[22] S. Baskiyar and N. Meghanathan. A survey of contemporary real-time operating
systems. In Informatica, vol. 29, no. 2, pp 233-240, 2005.

[23] Network time protocol. www.ntp.org, 2007.
[24] Java groups. www.jgroups.org, 2007.
[25] John A. Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang Tao, Sang Son,

and Cenyan Lu. Feedback control scheduling in distributed real-time systems. In
RTSS ’01: Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01),
page 59, Washington, DC, USA, 2001. IEEE Computer Society.

17

