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Abstract
A distributed system-level diagnosis algorithm allows the fault-free nodes of a system to
diagnose the state of all nodes in the system. In this paper we present a new hierarchical
adaptive distributed system-level diagnosis algorithm, Hi-ADSD with Detours. A previ-
ously published algorithm [6] has latency at most logs N, but requires O(N?) tests in one
round in the worst case. While the latency of the proposed algorithm is the same, the
number of tests executed is reduced. Nodes running the new algorithm are grouped in
clusters. If a tested node is faulty, instead of executing more tests, the tester will try
to obtain information about the rest of the cluster from nodes tested fault-free outside
the cluster, such that the diagnosis of the system is not delayed. Each such alternative
path to a cluster is called a detour. An extra test is executed on a given cluster only
when no detour is available. The worst case of the algorithm’s latency is formally proved.

Simulation results are presented.

Index Terms: System-Level Diagnosis, Distributed Diagnosis, Adaptive Diagnosis,

Network Fault Monitoring.

1 Introduction

Consider a system composed of N nodes, which can be either faulty or fault-free. Assume

that the system is fully connected, i.e. there is a link between any pair of nodes, and links
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do not become faulty. A distributed system-level diagnosis algorithm allows the fault-free
nodes in that system to determine the state of all nodes [4]. Nodes of a diagnosable system
are capable of executing tests on other nodes. A fault-free tester is assumed to be able
to determine correctly whether a tested node is faulty or fault-free [1, 2, 3]. In order to
implement this assumption, the specification of the testing procedure often depends on
the particular system technology. Distributed system-level diagnosis provides an efficient
way to build fault-tolerant network monitoring systems [5].

In [6] Duarte and Nanya introduced the Hierarchical Adaptive Distributed System-
Level Diagnosis (Hi-ADSD) algorithm. Hi-ADSD was implemented integrated to a net-
work management system based on the Internet standard management framework, SNMP
(Simple Network Management Protocol). The algorithm presents a diagnosis latency of
at most log? N testing rounds for a system of N nodes. All logarithms used in this work
are base 2. Nodes are grouped in progressively larger logical clusters. Tests are executed
in a hierarchical fashion, starting at the cluster with two nodes, going on to the cluster
with four nodes, and so on, until the cluster with N/2 nodes is tested. In order to get
information about a given cluster, a node executes tests until a fault-free node is found
in the tested cluster, or all the cluster’s nodes are tested faulty. Considering all testers,
the largest number of tests executed in one round is N?/4 tests in the worst case. This
happens when N/2 nodes are faulty, these nodes are all in the same cluster, and the
remaining N/2 nodes test that cluster in the same testing round.

In this work we present a new algorithm, Hi-ADSD with Detours, that requires less
tests per testing rounds, while keeping the latency at log? N rounds. The new algorithm
takes advantage of the fact that a tester can obtain information about the nodes in one
given cluster from nodes outside that cluster, without increasing the diagnostic latency.
Each such alternative path to the cluster is called a detour.

Whenever a node tests a fault-free node in a given cluster, it gets diagnostic informa-
tion about that whole cluster from the tested fault-free node. However, if the first node
tested in a cluster is faulty, before executing more tests, the tester will try to get infor-
mation about the rest of the cluster from nodes tested fault-free outside the cluster. The
tester will look for detours to that cluster in the next logN testing rounds, from clusters
smaller than the current cluster, as shown in figure 1. In the next round this cluster is

tested, if the tester has not found detours to nodes in the tested cluster, then it executes



tests sequentially on the cluster’s nodes until a fault-free node is found or all nodes are

tested faulty.
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Figure 1: A node only employs detours to a given cluster from smaller clusters.

Other approaches to system-level diagnosis are described in [7, 8, 9]; other hierarchical
approaches include [10, 11, 12, 13].

The rest of the paper is organized as follows. Section 2 contains preliminary definitions.
In section 3 the new algorithm is specified and section 4 describes example executions. In
section 5 the algorithm’s latency is formally proved. Section 6 shows experimental results

of diagnosis obtained through simulation. This is followed by conclusions in section 7.

2 Preliminary Definitions

Consider a system S consisting of a set of N nodes, ng, ni,...,ny_1. We alternatively
refer to node n; as node i. The system is assumed to be fully connected, i.e. there is a
communication link between any two nodes. Each node n; is assumed to be in one of two
states, faulty or fault-free. An event is defined as a change in the state of a node, either
from faulty to fault-free or from fault-free to faulty. The collection of states of all nodes
is the system’s fault situation. Nodes perform tests on other nodes in a testing interval,
and fault-free nodes report test results reliably.

Nodes are grouped in clusters for the purpose of testing. Clusters are sets of nodes.
The size of a cluster is the number of nodes in the cluster. Initially, NV is assumed to be
a power of 2, and the system itself is a cluster of NV nodes. A general cluster of p nodes

Njy..,Nj1p-1 Where j MOD p = 0, and p is a power of two, is recursively defined as either



a node, when p = 1, or the union of two clusters, one containing nodes n;,...,n;,,/2—1 and
the other containing nodes n;j y/2,..., Mjin_1.

At each testing interval, fault-free nodes test nodes of one cluster. The lists of ordered
nodes in which a given node 7 tests the nodes of a given cluster of size 2°~! are denoted

by C;s. An expression that completely characterizes list C; ; is given below:

. s—1
Ci,s = ¢ XOR 2 ) Cz XOr 25-1 .51, Cz XOT 2571 5-2y + ¢ Cz XOr 2s-1)1

A testing round is defined as the period of time in which every fault-free node in the
system has tested at least one fault-free node or all nodes faulty in one cluster. The
algorithm’s latency is defined as the number of testing rounds that all nodes running the
algorithm require to complete diagnosis of an event. An event occurs after the previous
event has been fully diagnosed.

The Tested Fault-Free graph, T'(S), is a directed graph whose nodes are the nodes of
S. There is an edge directed from node i to node j if node 7 has tested node j as fault-free
in the most recent testing interval in which it tested the cluster to which node j belongs.
When all nodes in the system are fault-free, T'(S) is a hypercube.

Let the diagnostic distance from node 7 to node p, called d;,, be the number of edges
in the shortest path from node i to node p in 7'(S) when all nodes are fault-free, i.e. in
the hypercube. For instance, in figure 2 the diagnostic distance from node 0 to node 5 is
dos = 2. Furthermore, let set D;, be the set of every node p such that d;, <.

Let R;;, be the set of nodes that can be reached by node ¢ from node p with a
diagnostic distance less than or equal to s, furthermore node k£ € R, ;, only if d;; >

d;p + dpr. As an example, figure 2 shows Ry32. R; s, is given by the expression below:

Ri,s,p = {k e Dpas_di,p | dlyk = diyp + d 7k}

Let node 7 test node j in a given testing round such that node j belongs to a given
Cis. A detour from node i to node j is a path in 7'(S) from node i to node j that passes
through nodes not in the C; ; to which node j belongs. Furthermore, a detour has exactly
the same number of edges as the shortest path from node i to node j when all nodes are
fault-free. Figure 3 shows all detours employed by node 0 to get information about nodes
in the tested cluster with four faulty nodes. In this figure, node 0 employs detours to get

information about node 5, node 6 and node 7 from node 1, node 2 and node 3 respectively.
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Figure 2: An example R, ;,: Ro32.

Figure 3: Dashed lines show tests node 0 avoids by using detours.

When the tested node in a given cluster is faulty and the tester does not obtain
information about the cluster’s remaining nodes, those nodes are said to be blocked. Set

B, ; contains all blocked nodes in a given Cj ;.

3 Algorithm Specification

Nodes running Hi-ADSD with Detours execute tests on nodes of one cluster at each testing
interval. In the first testing interval, the cluster which contains only one node is tested, in
the second testing interval the cluster which contains 2 nodes is tested, and so on until the
largest cluster which contains N/2 nodes is tested. After that, in the next testing interval,
the cluster which contains one node is tested again and the whole process is repeated.
When a fault-free node is tested, the tester obtains diagnostic information about the
whole cluster to which the tested node belongs. However when a faulty node is tested,
the tester cannot obtain diagnostic information about the remaining nodes in the tested
cluster, which are said to be blocked. Instead of executing more tests on the blocked
nodes (like a node running Hi-ADSD would do) the tester will first try to find detours

to those nodes, from nodes that are tested fault-free in other clusters. If no detours are



found, then extra tests will be executed on the blocked nodes in the next testing interval
in which their cluster is tested. Note that, by definition, node ¢ can only employ detours
to nodes of a given C; s from nodes that belong to a C; ¢, such that s’ < s.

Two functions are employed by the testing strategy: function more-info and function
more-tests, defined below. The tester runs function more-info after a fault-free node
is tested, to decide if detours through the tested node to blocked nodes are necessary.
Function more-tests is executed after a faulty node is tested, to decide if more tests
must be executed in the same cluster, i.e. if no detours were found to the blocked nodes.
These functions are defined below.

Function more-info returns a list of nodes of other clusters about which the tester
needs to obtain information from the tested node. The function is given below, where
node ¢ is the tester, node p is the tested fault-free node in C; ¢, list R, 4, p» contains all
nodes about which node p can provide information to node ¢, and set B, contains the

blocked nodes in a given Cj ;.
more-info(i,p) = R;jogyp N Bis, s < s <logN,p € C; ¢

Function more-tests is given by the formula below, where node i is the tester, node
p is the tested faulty node, list ¢; s, contains all nodes about which node p can provide

information to node ¢, where s varies according to the ¢; ; to which node p belongs:
more-tests(i,s) = Bjs — R, s,Vp € C; s,1 < &' < s tested fault-free

The algorithm in pseudo-code is given below.



ALGORITHM Hi-ADSD with Detours {at node i}
FOR s := 1 TO logN DO Bi,s = {};
REPEAT
FOR s := 1 TO logN DO

p := first node in Ci,s;

test(p);

IF p is fault-free

THEN get cluster diagnostic information;

Bi,s := Bi,s - Ci,s;
get information about nodes returned by more_info(i,p);
Bi,s := Bi,s - more_info(i,p);

ELSE {tested node is faulty}

Bi,s := Bi,s U Ci,s - {p};

WHILE more-tests(i,s) <> {} DO
k := first node more_tests(i,s);
test(k);
Bi,s := Bi,s - {k};
IF k is fault_free
THEN get information about nodes in Bi,s;

Bi,s := Bi,s - Ci,s;
get information about nodes returned by more_info(i,k);
Bi,s := Bi,s - more_info(i,k);
END IF;
END WHILE;
END IF;
SLEEP(Testing Interval);
END FOR;
FOREVER

4 Example Executions

Consider the system in figure 3. When node 0 tests node 4 in Cy 3 as faulty, it updates
Bi,s with 5,6,7. Node 0 does not execute extra tests on this cluster, because it will try
to get information about the blocked nodes through detours. The next time node 0 tests
node 1 it gets information about blocked nodes 5,7, and the next time node node 0 tests
node 2 it gets information about blocked node 6. This execution is analogous for other

fault-free nodes in the system. Thus all fault-free avoid extra tests.

Figure 4: Node 0 executes an extra test on node 3, node 5, node 6 and node 7.

Consider the execution of Hi-ADSD with Detours at node 0 in the system shown in

figure 4. Initially node 1 is tested faulty, then in the next round node 2 is also tested
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faulty so node 0 runs more-tests(0,2) which returns node 3, that is then tested faulty.
After node 4 is tested faulty function more-tests(0,3) returns nodes 5, 6 and 7, which

are all sequentially tested as both node 5 and node 6 are faulty.

5 Latency

In this section we formally prove that the the latency of the algorithm is log? N testing
rounds in the worst case. We prove that the usage of detours does not affect the worst-case
latency, being the same as that of Hi-ADSD [6].

Theorem 1

All fault-free nodes running Hi-ADSD with Detours take at most log?> N testing rounds
to complete diagnosis.

Proof:

Consider a new event which occurs at node e. All nodes that have diagnostic distance
equal to 1 with respect to node e diagnose the new system fault situation in at most logN
testing rounds. This happens because those nodes test node e at least once every logN
testing rounds.

Next, assume that all fault-free nodes with diagnostic distance equal to k < i get
diagnostic information about node e’s new event in at most k * logN testing rounds.

Now consider a fault-free node a with distance ¢ to node e. In case there is a fault-free
node, say node b, with distance 1 to node a and distance (i — 1) to node e, node a can get
information about node e from node b, either directly or using node b as a detour, whitch
takes at most logN testing rounds. Thus it takes at most (i —1) *logN +logN = ixlogN
testing rounds for the node a to diagnose node e’s new event using node b.

If all nodes with distance (¢ — 1) to node e and distance 1 to node a are faulty, node a
must get information about node e from a fault-free node with diagnostic distance (i — j)
to node e and distance j to node a, say, node ¢, which takes at most j * logN rounds.
As for node c it takes (i — j) * logN rounds to diagnose node e’s new event, it will take
j*logN + (i — j) xlogN = i xlogN rounds for node a to diagnose the event.

As the largest distance is logN, it may take at most logN * logN = log?N testing

rounds for all fault-free nodes in the system to the complete diagnosis. O



Fault Situation Hi-ADSD | Hi-ADSD with Detours
Average # Tests (32 random faulty nodes) 383 285
Hi-ADSD’s Worst-Case 1184 191
Hi-ADSD with Detours’ Worst-Case 384 384

Table 1: Comparison of the number of tests required by Hi-ADSD and Hi-ADSD with

Detours.

6 Simulation Results

In this section, we present experimental results of Hi-ADSD with Detours obtained
through simulation. The simulation was conducted using the discrete-event simulation
language SMPL [14]. Nodes were modeled as SMPL facilities, and each node was iden-
tified by an SMPL token number. Three kinds of events were defined: test, fault, and
repair. We conducted several experiments with networks of different sizes. We present
results of two different experiments. In the first experiment, we compare the average
number of tests required by Hi-ADSD and Hi-ADSD with Detours in different fault sit-
uations. In the second experiment we progressively increase the number of faulty nodes
in a network of 64 nodes, and show that the number of tests needed by fault-free nodes

running Hi-ADSD with Detours decreases as the number of faulty nodes increases.

6.1 A Comparison of the Average Number of Tests Required

The purpose of this experiment is to compare the number of tests required by Hi-ADSD
and Hi-ADSD with Detours in different fault situations. We considered a system of 64
nodes. Both algorithms require the same number of tests when all nodes are fault-free.
When the number of faulty nodes grows, Hi-ADSD requires more tests, while Hi-ADSD
with Detours requires less tests.

The first row in table 1 shows the average number of tests required by Hi-ADSD and
Hi-ADSD with Detours when 32 nodes, chosen at random, are faulty. In this experiment
we can clearly see how the concept of detours has an impact on the average number of
tests required to complete diagnosis. We considered the number of tests required by fault-
free nodes in logN consecutive testing rounds. On average, Hi-ADSD required 383 tests,

while Hi-ADSD with Detours required 285 test, a 25% improvement.



# Faulty Nodes | # Tests to diagnose the system

0 384 (= NlogN)
1 378
2 374
4 369
6 (=logN) 367
12 (= 2logN) 350
32 (=N/2) 320

Table 2: Number of tests required for all fault-free nodes to diagnose a 64-node system.

The second row in table 1 shows the number of tests required by both algorithms
considering the worst case of Hi-ADSD, in which a cluster of N/2 nodes is faulty, and
all the nodes in the other cluster test the faulty cluster in the same testing round; the
total number of tests is N2/4. In this situation, Hi-ADSD requires 1184 tests each logN
rounds, while Hi-ADSD with Detours requires only 191 tests.

Finally, the third row in table 1 shows the number of tests required by both algorithms
considering the worst case of Hi-ADSD, in which all nodes are fault-free. In this case,
both algorithms need 384 (NlogN) tests per logN rounds.

From the results of this experiment we conclude that for every case Hi-ADSD with
Detours requires a number of tests less or equal to that required by Hi-ADSD. On average,

the number of tests required by Hi-ADSD with Detours is smaller than that of Hi-ADSD.

6.2 Number of Tests Required by Hi-ADSD with Detours

The purpose of this experiment is to show the number of tests required by the fault-free
nodes in different situations. To create those situations we progressively increase the
number of faulty nodes in a network of 64 nodes.

Table 2 shows the number of tests executed when the number of faulty nodes increases
in the system. Initially all nodes are fault-free, then the number of faulty nodes is increased
from 1 up to N — 1. Simulation results show that the maximum number of tests occurs
when all nodes are fault-free, and the total number of tests performed by the fault-free

nodes to diagnose the system decreases as the number of faulty nodes increases.
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7 Conclusions

In this work we introduced a new hierarchical adaptive distributed system-level diagnosis
algorithm, Hi-ADSD with Detours, that allows all fault-free nodes in a fully-connected
system to complete diagnosis in at most log?N testing rounds, employing less tests than a
previously published algorithm, Hi-ADSD. This algorithm also presents a latency of log? N
rounds, but nodes can employ up to O(N?) tests to get information about the whole
system. Proofs were given for the algorithm’s latency. Experimental results obtained
through simulation were presented.

Hi-ADSD with Detours is a practical algorithm that can be used to monitor real
local area networks. Considering the number of tests required, the impact on network
performance is lower than that of previous algorithms with the same latency. Future work

includes the evaluation of the algorithm under a dynamic fault situation.
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