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Abstract

The popularity of a memory word is the fraction of references to this word over
the total of memory references in the execution of a program. In this paper we for-
mally define the metric popularity of reference and explain the reference patterns of
the CommBench programs in terms of this metric. We investigate memory systems
that are suitable for embedded applications that often exhibit a bimodal distribution
of popularity: a few thousand words are very popular while the rest of the data are
referenced once or twice, thus polluting the cache. We introduce a new design for a
pollution control cache named Pollution Control Victim Cache (PCVC) that is sim-
pler and yields better performance than designs of comparable complexity. Detailed
simulations with SimpleScalar were executed with the CommBench benchmarks. We
compare performance×{area, energy} of four designs for the top level of a memory hi-
erarchy: direct mapped primary cache (L1); 2-way associative L1; direct mapped L1
with an Pollution Control Cache; and direct mapped L1 with a PCVC. The area and
energy models were simulated with CACTI. For capacities in the range 4-8 Kbytes the
PCVC yields the best overall performance×{area, energy} of the designs investigated.

1 Introduction

The design of embedded systems is constrained by several parameters that include power,

size, weight, reliability, time to market, performance, and cost. Cache memories provide

performance gains but do have an impact on IC size, cost (area and design/test effort)

and power. Ideally, one would like to use the smallest cache because of IC size, cost

and reduced power, but needs the performance that would be achieved with the largest

capacity.

In many embedded applications, a data stream is read from a device (a FIFO from

another processor, memory, camera or analog to digital converter), undergoes some pro-

cessing such as compression or filtering, and is written to another device (FIFO to another

processor, memory or digital to analog converter). Each word on the data stream is op-

erated upon a few times and never touched again. In these applications, keeping the live

words in the cache might be difficult because the data streams continuously flush the

cache contents. This behaviour is called cache pollution because data that is used only

once or twice displaces from the cache data that is reused several times. Clearly, pollution

degrades performance as data with little or no reuse displaces data that should be kept in

the cache because of being reused often.

We examine the behaviour of eleven applications in networking/multimedia from

CommBench [38], in terms of a new metric named popularity of reference. The popu-
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larity of a memory word w is the number of references to w, divided by the number of

references in the execution of the program. Popularity is a lower bound on temporal local-

ity, and is less expensive to compute than other measures of locality such as stack distance

[17], and is an exact measure computed over the entire lifetime of the program. Thus, the

popularity of memory words might be used to allocate them at the “correct places” in the

memory hierarchy to improve performance. The performance attained with the designs

for the top level of the memory hierarchy is explained in terms of popularity of reference

in Section 5.

Notice that the term “popularity of reference” as defined here has a different meaning

from its common usage in web caches [22, 35], where the “popularity of a web object” is

more closely related to a “beauty contest” among cached objects, rather than to an exact

reference count by one definite program.

The majority of the programs from CommBench exhibits a bimodal distribution of

popularity. The measurements reveal that for 6 out of 10 of those programs, under 5% of

the addresses account for over 70% of all data references. For jpeg, as few as 1.2% of the

addresses (about 15,000 words) account for 90% of all memory references.

Because the distribution of popularity is often severely skewed, or bimodal, we in-

vestigate the performance of data caches coupled to buffers that reduce cache pollution,

looking for combinations of design parameters that produce the best results at the smallest

capacities, area and energy. Through detailed simulations we assess the performance (hit

rate and IPC), area and energy of the Pollution Control Victim Cache (PCVC, [13]). Ini-

tially we compare the PCVC to the Pollution Control Cache (PCC, [36]) and to a baseline

direct mapped cache. The PCVC is a novel design based on the PCC, that is simpler

than, and outperforms, the PCC. The cache simulators are extensions to the SimpleScalar

suite [3] and we use detailed models for the memory hierarchy and cache-memory bus.

The PCVC is then compared with respect to performance, area and energy, to the PCC,

direct mapped and two-way set associative caches [32], making use of CACTI models [29].

Our simulations indicate that the PCVC yields higher performance than the other

designs. For the capacities and workload simulated, the PCVC has the best overall

cost/performance of the four designs studied – the global miss rates are always the lowest,

the product area×miss rate is better or compares favourably to the best, and the prod-

uct energy/reference×CPI is comparable (within 30%) to direct mapped and two-way set

associative caches.

The text is organised as follows. Section 2 introduces the popularity of reference

metric to relate the performance of the designs to the behaviour of the reference streams

of the benchmarks. Section 3 presents the design of the Pollution Control Victim Cache.

Section 4 describes the simulation environment, and Section 5 contains the simulation

results: in Section 5.1 miss rates and performance are assessed; and in Section 5.2 the

performance, area and energy comparisons are drawn. Section 6 contains a survey of

related work, and a summary is given in Section 7.

2 Popularity of Reference

The often quoted 90/10 rule states that “90% of the execution time is spent on 10% of

the code” [15]. As is the case with other “x/x rules”, which are to be found in several
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contexts, this one informally encodes an assertion concerning the distribution of a certain

random variable, namely, the value of the instruction pointer during the execution of a

program. As we discuss below, in the applications we consider here, we find that memory

references are highly concentrated on a relatively small set of addresses.

Consider the execution of a program on a given input data and let w be a particular

memory word in its address space. We define the popularity of w as the ratio between the

number of references to w and the total number memory references made by the program.

Consider the execution of a program on given input and let ai be the address of the i-th

memory reference by the program. We will call the sequence T = (a1, a2, . . . , aN ) the

(memory) trace of this program on the given input data, where N is the total number of

memory references made by the program.

Let W denote the set of distinct words in the trace T , that is W = {a1, a2, . . . , an},

and let n denote the number of words in W , that is, n = |W | is the number of distinct

words referenced by the program. The set W is usually referred to as the address space

of the program. For each word w ∈ W let r(w) be the number of times address w is

referenced by the program. In other words, r(w) is the number of occurrences of address

w in the trace T , viz r(w) = |{i: ai = w}| . For each w ∈ W we define the popularity of w

as the ratio

π(w) =
r(w)

N
. (1)

The set P of the most popular words in W is defined as the set of words in W with

popularity greater than 1/n, that is

P = {w ∈ W :π(w) ≥ 1/n} , (2)

where p denotes the number of words in P , p = |P | . In general, N ≫ n .

From an operational point of view, the set P is obtained by counting the references to

each word in the address trace T .

There are other definitions of P that are perfectly reasonable, and perhaps of a more

practical character. For instance, rather than using 1/n in Equation 2, the popularity

limit could be set by some design-specific parameter such as a performance or energy

target. We chose 1/n because it is at the average point of the distribution of popularity

curves – see Figure 1. For practical purposes, 1/n is the looser limit that makes sense –

we expand this idea in what follows.

It is worth noting that popularity and temporal locality [2, 16, 6] are distinct, though

related, metrics. More precisely, the popularity of a word sets a lower bound on the

temporal locality of this word. On the other hand, knowing the temporal locality of a

word is not enough to infer anything about its popularity. In this sense, popularity is a

stronger (more precise) measure than temporal locality. This is so because popularity is

a global or absolute measure which depends only on the application code and its input

data, while temporal locality is a local or relative measure which also depends on a time

frame – it is meaningless to say “this word has good/bad temporal locality” without at

least implicit reference to some time frame. It should be noted that, from a computational

point of view, measuring the temporal locality of a reference stream (stack distance) is

more costly than determining the popularity of each of its memory words.
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The values of n, N and p for the CommBench programs [38] are shown in Table 1.

The last two columns show, respectively, the ratio p/n and the sum of the popularities of

the most popular words
∑

w∈P π(w).

The benchmarks contain message-header processing programs that read and possibly

change the message headers, and message-body processing programs that read and pos-

sibly modify the message contents. The header processing programs are rtr (Radix-Tree

Routing), frag (IP packets fragmentation), and drr (Deficit Round Robin scheduling).

The body processing programs are cast (CAST-128 encryption), zip (Lempel-Ziv com-

pression), reed (Reed-Solomon encoding) and jpeg (image compressing). Some of these

applications perform an encoding and a decoding function, denoted by the suffixes enc

and dec, respectively.

Table 1: Popularity metrics for CommBench

program N [106] n p p/n
∑

π

rtr 30.90 1,292,378 29,565 2.3 89

drr 742.81 5,868 300 5.1 95

frag 93.80 5,591 114 2.1 98

cast enc 37.19 1,973 75 3.8 74

cast dec 37.85 1,974 93 4.7 76

zip enc 56.87 76,075 12,806 16.8 57

zip dec 8.48 19,510 1,535 7.9 67

reed enc 137.47 1,260 297 23.6 95

reed dec 218.15 1,451 404 27.9 94

jpeg enc 92.51 1,000,488 14,835 1.5 91

jpeg dec 87.54 1,002,221 15,364 1.5 91

p/n and
∑

π shown as percentages.

In order to provide a broader perspective, the plots in Figure 1 show the values of
∑

π (displayed as percentages) for some of the programs in Table 1. Note that these are

cumulative distribution plots: for each point (x, y) the value of y is given by
∑

w∈P (x) π(w),

where P (x) is the set of the x/n most popular words in W . Figure 1 shows the extremes of

popularity for these programs: the distribution of references for jpeg enc has the highest

concentration and cast enc and reed dec have the lowest. The vertical spikes represent

all pairs (p/n,
∑

π) in Table 1.

Notice that jpeg enc has the highest concentration of popularity (p/n = 1.5%) but

the values for n and p are both large. cast enc and reed dec show less concentration but

their n and p are small.

If all addresses were referenced exactly the same number of times, the cumulative

distribution plot would be a straight line from (0, 0) to (100, 100), each address contributing

exactly 1/n – shown as the faint diagonal line in Figure 1. Note also that, being a

cumulative distribution, the popularity curve of all programs is confined to the top-left

triangle of the diagram in Figure 1 and that addresses to the left of the popularity limit p

contribute more than 1/n to the distribution.

If the popularity limit were, somewhat arbitrarily, re-defined so that some energy or

performance level can be sustained by the system, for instance to 90% or 95% of all refer-
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Figure 1: Popularity for jpeg, cast and reed.

ences, the sets of popular words according to the new limits could be quickly computed.

Table 2 shows the sizes of the popularity sets needed to capture those references. The

fraction of all address space comprised by the popularity sets are also shown. Column p

from Table 1 is repeated for ease of comparison.

Table 2: Popularity for 90 and 95% of all references

references 90% 95%

program p p90 p90/n p95 p95/n

rtr 29,565 58,965 4.6 284,904 22.0

drr 300 135 2.3 315 5.4

frag 114 70 1.3 93 1.7

cast enc 75 783 39.7 1,018 51.6

cast dec 93 752 38.1 990 50.2

zip enc 12,806 30,304 39.8 43,168 56.7

zip dec 1,535 9,034 46.3 12,655 64.9

reed enc 297 239 19.0 293 23.3

reed dec 404 361 24.9 417 28.7

jpeg enc 14,835 10,520 1.1 420,935 42.1

jpeg dec 15,364 11,586 1.2 452,901 45.2

p90/n and p95/n shown as percentages.

Keeping popular addresses on fast memory improves the average memory access time

because these references are frequent. Increasing the capacity of the fast memory to

accommodate unpopular addresses may not be cost-effective because their contribution to

average access time is (very) small. The unpopular addresses are best left out of the cache,

or can be mapped into a region that is prefetched by a stream buffer or prefetch cache

[19, 1] or a DMA engine. The “somewhat popular” addresses are those just beyond the

popularity limit and might exhibit good temporal locality during certain program phases.

Maintaining these addresses in fast memory can improve overall performance as long as

they do not often evict the very popular addresses from the cache. In Section 3 we present

a design that minimises these evictions.
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2.1 Sensitivity to Input Data

In order to gauge the sensitivity of the popularity distribution to input data we run

simulations of jpeg and zip with additional data sets. Table 3 contains the same statistics

as in Table 1 for the new data sets – jungle and mist for jpeg; hard and easy for zip,

which are described below.

Table 3: Sensitivity to various inputs: n, N , p

program N [106] n p p/n
∑

π

jpeg enc

orig 92.51 1,000,488 14,835 1.5 91

jungle 59.78 601,059 12,743 2.1 92

mist 21.70 242,037 9,376 3.9 91

jpeg dec

orig 87.54 1,002,221 15,364 1.5 91

jungle 59.83 598,106 8,722 1.5 92

mist 25.52 240,358 6,672 2.8 93

zip enc

orig 56.87 76,075 12,806 16.8 74

hard 27.17 65,172 934 1.4 66

easy 15.05 54,103 8,480 15.7 64

zip dec

orig 8.48 19,510 1,535 7.9 67

hard 4.70 18,989 1,281 6.7 65

easy 4.51 9,938 270 2.9 26

p/n and
∑

π shown as percentages.

jpeg We used two JPEG files in addition to the one provided with CommBench. The

three are: orig 1280x1024 pixels, 167 Kbytes, distributed with CommBench; jungle

1024x763, 255 Kbytes; and mist 640x480, 161 Kbytes. JPEG files are the inputs to

jpeg dec and the corresponding BMP files are inputs to jpeg enc. The BMP files were

obtained from the JPEGs by processing them with display.

Figure 2 shows the popularity curves from the simulations with the three data files.

Notice that the horizontal scale extends to just 5%, and the vertical from 30% to 100%.

The concentration of reference is slightly less on the smaller files (mist) but the 3.4%

most popular word addresses capture 90% of the references, or 8,332 out of 242,037 words,

21.7× 106 references.

zip In addition to the HTML file (and its compressed version), we used two input files

that are, to some extent, pathological inputs to zip. The three input files are: orig,

HTML text, 1,022,976 bytes as distributed with CommBench, the compressed version has

547,522 bytes; easy, file with 1,022,976 ’a’s, the compressed file is 1040 bytes long; and

hard, gzipped version of the original HTML text, the compressed file is 715 bytes larger

than the input file.
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The popularity curves are shown in Figure 3. The bottommost curve is the decoding

of the file with 1 million ’a’s and it seems that the amount of processing per memory

word is very small for this file. Compressing it is slightly more involved and the popularity

curve is closer in shape to that of the other inputs. The best concentration is for the most

difficult input, which is an already compressed file, as shows the plot for hard enc.
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3 The Pollution Control Victim Cache

Cache pollution occurs when blocks that are referenced often get replaced by blocks that

are scarcely referenced – thus ‘popular’ blocks are evicted from the cache by ‘unpopular’

blocks, leaving the cache polluted. When referenced, the polluting blocks tend to cause

two misses, one to load the unpopular block and another to reload the evicted popular

block [36]. The individual components of the memory systems are described below.

In a lockup-free cache, a reference that misses in the cache is recorded in a Miss Status

Holding Register (MSHR) while the missing datum/block is fetched from memory [20]. In

a given memory system, the number of MSHRs determines how many outstanding misses

can be sustained by the cache. All our models employ four MSHRs.
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A victim cache (VC) is a small fully-associative buffer that holds blocks which were

evicted from the L1 [19]. On a miss, the missing block is loaded onto the L1 and the evicted

block is loaded onto the VC’s LRU block. The VC adds some associativity to a direct

mapped cache, thus eliminating costly conflict misses, without increasing significantly

its size or complexity. Figure 4 shows a block diagram of a VC attached to a direct

mapped cache. In the experiments we performed, as few as four blocks can eliminate a

large fraction of conflict misses [13].

qqq
qqq
qqq
qqq
qqq
qqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqq
qqq
qqq
q

ppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp

qqq
qqq
qqq
qqq
qqq
qqqqqqqqqqqqqqqqq qqq

qqq
qqq
qqq
qqq
qqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqqqqqqqqqqqqqqqq

qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqq

qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqq

data from
lower level

tags

data to proc.address from proc.

L1 direct mapped

VC

LRU

address to lower level

tags

Figure 4: Victim cache

The Pollution Control Cache (PCC) is a small fully associative cache that operates in

parallel with the L1 [36]. On a miss, the missing block is loaded on the PCC; if this block

is referenced a second time, then it is promoted to the L1, possibly avoiding the eviction

of a popular block. A hit on the PCC costs 2 cycles: one to detect the miss on the L1 and

the second to access the PCC. When a block is promoted, the latency incurred in writing

the evicted block onto the PCC can often be hidden as these events are not frequent. The

annex-cache [18] is similar to the PCC.
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Figure 5: Pollution Control Cache

The design as described in [36] connects a one-block VC, called a victim buffer, to the

L1 and another VC to the PCC, shown in darker and lighter colour, respectively, in the

diagram in Figure 5. The design in our simulations differs from the original in that there

is only one VC attached to the L1. In the simulated PCC model there is a 4 block VC

attached to the L1, so that blocks evicted from L1 are stored back in the VC. The three

buffers L1, VC and PCC are searched in parallel on a reference.
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It is possible to achieve better performance from the memory hierarchy with a simpler

design than the PCC. A Pollution Control Victim Cache (PCVC) is a fully associative

cache interposed between the L1 and memory that operates as a combined PCC and

VC [13]. Blocks referenced for the first time are loaded into the PCVC, and on the second

reference are promoted to the L1; the evicted block is exchanged with that from the PCVC.

A hit on the PCVC costs 2 cycles to deliver a word to the processor, plus 1 cycle (often

hidden) to perform the exchange of blocks. Figure 6 shows a block diagram of the PCVC.

In the PCVC model, the entire pollution control buffer acts as a victim cache for the L1

so that blocks evicted from L1 are stored back in that buffer.
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Figure 6: Pollution Control Victim Cache

4 Simulation Environment

Our focus is on small first-level data caches that might be suitable for embedded systems.

In order to constrain the search space, we investigate only the first level of the memory

hierarchy. The design parameters used in the simulations for the second level are repre-

sentative of an aggressive design for the main memory, or of a system with a second level

cache.

The simulations were run on modified versions of the sim-outorder simulator from

SimpleScalar [30, 3]. Sim-outorder is an execution driven, cycle-accurate, out-of-order

simulator. The simulators run the applications from the CommBench suite, as these are

representative of the workloads found in networking systems. Table 1 (Section 2) shows the

dynamic instruction count and the fraction of all instruction that are memory references.

The reader should refer to [38] for details concerning the benchmark programs.

We run a series of preliminary experiments to determine the processor model to em-

ploy in the simulations [14]. For these applications we found that the most cost-effective

organisation is a processor that issues two instructions per cycle – the stages fetch, decode,

issue, execute, and commit have a width of two, the Register Update Unit (RUU, [31])

has 16 slots, and the load-store queue (LSQ) has 8 elements. The RUU is similar to a

reorder buffer, and the load-store queue holds memory references that await completion

at memory.

The cache models were simulated with capacities of 1, 2, 4, 8, and 16 Kbytes, and

with block sizes of 32 bytes. Unless stated otherwise, the data cache is direct-mapped.

The CPU has two ports into the data cache to support up to one read and one write per

cycle. The bus from the data cache to memory is 8 byte wide (two words), and the DRAM
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access latency is 18 cycles for the first reference to a block, with subsequent pairs of words

being accessed every 2 cycles. In all simulations the instruction cache has a relatively large

capacity of 32 Kbytes so its performance does not interfere with that of the data cache.

Instructions and data are 32 bits wide.

To model the interface between the L1 caches and L2/memory, sim-outorder assumes

there is an unlimited number of miss status holding registers, and thus the cache interface

can handle an unlimited number of concurrent misses. This is a reasonable assumption

when considering the design of very aggressive superscalar processors, which was one of

the intended applications of SimpleScalar. For less ambitious processors, like most of those

in embedded applications, a somewhat more realistic model for the memory interface is

desirable.

We adapted the simulator to use a limited number of MSHRs and to keep a record

of all activities concerning outstanding misses. In our model, a second reference to a

block previously recorded in a MSHR is not counted as an additional miss. However, the

latency of that reference is computed as the time elapsed until the block is brought in

from memory to satisfy the primary miss to that block, as suggested by [9].

A series of experiments were run to assess the impact of limiting the number of out-

standing misses. We found that the best cost-performance point is four MSHRs [14], hence

all simulations described here were run with four MSHRs.

5 Simulation Results

5.1 Performance – Miss Rate and IPC

We now present the results of experiments that compare the performance, measured as

global miss rate and IPC, of three designs for the first level (L1) of the memory hierarchy.

The designs are: a baseline first level direct mapped (L1DM); a direct mapped L1 plus a

pollution control cache with 4, 8, 16, or 32 blocks – PCC(4) to PCC(32); a direct mapped

L1 and pollution control victim cache with 4, 8, 16, or 32 blocks – PCVC(4) to PCVC(32).

In the plots shown below the baseline is shown as DM L1.

5.1.1 PCC

On an L1 miss, the missing block β is loaded onto the PCC. On a second reference to

block β, it is moved to L1 and the block evicted from the L1 is moved to the VC. If the

PCC is small (1-4 blocks), either the miss rate increases or the gain is small, as shown

in Figure 7(a) for the 1 Kbytes cache. With the larger PCCs (8-32 blocks) there is a

reduction of roughly 50% in the miss rate. As for the overall performance, the poor miss

ratios of the small PCCs are reflected on IPC, as can be seen on Figure 7(b). For the larger

PCCs, the gains in IPC range from 13% to 15%, for PCC(8) and PCC(32), respectively.

5.1.2 PCVC

On a miss in L1, the block β is loaded onto the PCVC. On a second reference to block β,

it is swapped with the block evicted from the L1. The behaviour of the smaller PCVCs

is slightly better than that of the smaller PCCs, as shown in Figure 8. The gains in miss

rate of the larger PCVCs decrease slightly with each doubling in size: for the 8, 16, and
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Figure 7: PCC: miss rate and IPC

32 block PCVCs the gains are 64%, 88%, and 119%, respectively. Since the PCVC also

acts as a victim cache, its overall performance improves with size, as shown on the bottom

of Figure 8. For the smaller 1 Kbytes cache, the gains are 13% and 19% for PCVC(8) and

PCVC(32), respectively.

5.1.3 IPC Gains Over Baseline L1

Our simulations indicate that a L1+PCVC is a more effective design than a L1+PCC,

because it is simpler – comparisons on two sets of tags rather than three – and smaller

– only n blocks in the PCVC(n) rather than the n+m blocks in the PCC(n)+VC(m).
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Figure 8: PCVC: miss rate and IPC

Table 4 shows a comparison of the results in Figures 7 and 8. It shows the performance

gains achieved with the PCC and the PCVC when compared to a base model which is an

L1 cache with 4 MSHRs. The first row, labelled MSHR(4) shows the IPC for the base

model. The next four rows show the IPC ratio for two of the configurations that provide

gains, buffers with 4 and 32 blocks. As mentioned before, smallest caches benefit the

most from the buffers. The next two rows compare a given combination of cache+buffer

with a simple L1 twice as large: a L1DM,1KB+PCVC(32) is compared to a 2 KB L1,

a L1DM,2KB+PCVC(32) to a 4 KB L1, and so on. The last three rows compare an

L1DM,C KB+PCVC(32) to caches with capacity 4C, 8C and 16C.

For the smallest 1 Kbytes caches, the L1+PCVC with at least 4 blocks has a better

performance than a simple L1 twice as large, while for the PCC, 8 blocks are needed.

The results for the 32 block PCVC show a 10% improvement in IPC over the simple

2 Kbytes L1, and just a 4% decrease when compared to a simple L1 four times larger
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Table 4: IPC gains over a simple L1 cache

L1 capacity 1K 2K 4K 8K 16K

IPC base MSHR(4) 0.81 0.87 1.02 1.15 1.27

PCC(4,4)/base 1.06 1.02 0.99 0.96 0.95

PCVC(4)/base 1.04 1.01 0.97 0.94 0.95

PCC(32,4)/base 1.15 1.14 1.11 1.06 1.01

PCVC(32)/base 1.20 1.17 1.18 1.07 1.01

PCC(32,4)/base·2 — 0.96 0.86 0.86 0.85

PCVC(32)/base·2 — 1.10 1.00 1.05 0.97

PCVC(32)/base·4 — — 0.95 0.89 0.95

PCVC(32)/base·8 — — — 0.84 0.81

PCVC(32)/base·16 — — — — 0.78

(4 Kbytes) and with twice the capacity of the combined L1+PCVC. For the 8 block PCC

and PCVC, the gains in performance over a simple 2 Kbytes L1 are 4.6% and 4.8%, re-

spectively (not on the table). The last rows show that the PCVC(32) performs well indeed

when compared to much larger caches. The performance of a L1DM,1KB+PCVC(32) is

0.78 of that of a 16 KB L1.

5.1.4 Popularity of Reference in CommBench

We measured the popularity of data references for the CommBench programs. For 6 of

the 11 programs, less than 5% of the addresses satisfy more than 70% of the references.

In jpeg, for instance, less than 1.2% of all addresses (approx. 15,000 words) satisfy 90%

of all data references. A different behaviour is displayed by zip enc, for which the 13,000

most popular words (17% of the addresses) satisfy less than 60% of the references.

The plot for zip dec, in Figure 9, displays two inflexion points: the first at 67% of all

references, and the second at 93%. The plot for zip enc has no obvious inflexions; the

popularity limit is at 57% of all references. The addresses referenced by the two versions of

zip can be split into three ranges: popular, somewhat-popular, and unpopular. To achieve

the best performance from a given memory hierarchy, the popular addresses should be kept

in the L1, the somewhat-popular addresses at one of the buffers (PCC or PCVC), and the

unpopular would be better allocated to non-cacheable addresses – at least, not cacheable

at the L1.

For the majority of the CommBench programs, p < 512 words, and that is the total

capacity of the design PCVC(32)+L1DM,1K, viz 32 blocks at the PCVC and 32 blocks at

the L1DM, with 8 words per block.

jpeg Figure 12 shows the global hit rate at the top level of the hierarchy. The hit rates

for jpeg are (very) close to the average and that program’s good performance stems from

its tight concentration of popular words. Even with p ≈ 15.000, the specialised buffers

stop the unpopular words from polluting the L1DM, as can be seen from the plots for

the global hit rates in Figure 10, for jpeg enc. As discussed in Section 5.2.2, the active

working set of jpeg is held by a 4 Kbytes L1. For an L1 with capacity greater or equal

to 4 Kbytes, jpeg enc enjoys a hit rate close to the maximum for that program. If a
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Figure 9: Popularity of jpeg and zip.

PCVC(32) is added to a L1DM,1K, the CPI improves by 31%; if the PCVC(32) is added

to a L1DM,4K, the CPI improves by just 10% – these figures are similar to the averages in

Figure 11.

zip enc For zip enc, for all simulated L1 capacities, p≈13.000 > |L1DM| and the reuse

of words loaded into the cache is small, hence the global hit ratio does not saturate for

L1DM’s up to 32 Kbytes, as shown in Figure 10. The 32 block buffers improve markedly

the hit ratio, protecting the L1 from pollution by unpopular addresses. The performance

gain of a L1DM,1K+PCVC(32) w.r.t L1DM,1K is 25%, whereas in relation to a 4 Kbytes

L1DM, the gain is 10%. When added to the largest L1 (L1DM,32K), a PCVC(32) still

improves CPI by 16%.

5.1.5 Performance vs Capacity Revisited

In what follows the performance of the four designs is given in cycles per instruction (CPI)

because, in general, CPI is inversely proportional to cache capacity and this characteristic

is used in the analyses that follow. The values for CPI and miss rate are the average for

the 11 CommBench programs.

The performance of the four designs, given as CPI×L1 capacity is shown in Figure 11.

As would be expected, the simplest design (L1DM) displays the worst behaviour for all

cache sizes. The associative cache (L12w) performs better than the direct mapped and

worse than the other designs. The PCC(4) and PCC(32) perform similarly to the 4 blocks

PCVC(4). The PCVC(32) displays the best performance of all, and that is uniform for

all L1 capacities.

Figure 12 shows the hit rate at the memory port of the processor, served by the

L1+buffers, which is the effective hit rate as seen by the processor. For the programs and

data sets in CommBench, PCVC(32) has mostly compulsory misses because it holds the

data sets – a 32 Kbytes L1 is large enough to accommodate almost completely the working

sets of the programs, as the data for L1DM indicates.
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5.2 Area and Energy

We now compare the cost×performance of the two pollution control caches to that of

simpler designs, a direct mapped L1 and a two-way set associative L1. The four designs
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investigated are: first level direct mapped (L1DM); 2-way set associative L1 (L12w); di-

rect mapped L1 plus a pollution control cache with 4, 8, 16, or 32 blocks – PCC(4) to

PCC(32); direct mapped L1 and pollution control victim cache with 4, 8, 16, or 32 blocks

– PCVC(4) to PCVC(32). To extend the limits of comparison, in the experiments that

follow L1 capacity was simulated up to 32 Kbytes.

5.2.1 CACTI Models

To perform the area, energy and performance comparisons of the four designs, the caches

were modelled with CACTI-3.2 [37, 29]. CACTI-3.2 models 180nm processes, and this is

the newest version that can simulate caches as small as those studied here. Therefore, the

area and energy comparisons that follow ought to be taken as qualitative measures.

MSHR The design of a MSHRs makes use of more logic than state, hence these are

not modelled with CACTI. In all simulations there are 4 MSHRs with the same block size

attached to the processors and these structures may be considered as part of the CPU

rather than the memory hierarchy.

Level 1 Cache The primary data caches were modelled differently in the four de-

signs: 〈i〉 direct mapped (DM) with two pairs of read-write (RW) ports, one pair connected

to the processor/MSHRs, and the other connected to memory; 〈ii〉 two-way set associative

(2w) and two pairs of RW ports, connected as the DM model; 〈iii〉 the L1 attached to a

PCC is direct mapped and is connected to the VC, to the processor, and to memory – the

L1 has three pairs of RW ports, as shown in Fig. 5; 〈iv〉 the L1 attached to a PCVC is

direct mapped with two pairs of RW ports, one attached to the processor and the other

to the PCVC, as shown in Fig. 6.

Victim Cache The pollution control cache has a VC connected to the L1. The VC was

modelled, and simulated, with 4 blocks of the same size as L1 and fully associative. This

device has one RW port.
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Pollution Control Cache The PCC employs a fully associative memory with blocks

that have the same width as those in L1. The associative memory was modelled with two

pairs of RW ports, one attached to the L1 and the other to memory. The VC could be

connected to the L1 and PCC through a 3×3 crossbar, rather than to the third port of the

L1. As we do not have implementations for these two designs, we cannot compare their

areas and energy. Our conjecture is that for the small capacity L1s (up to 4 Kbytes), the

third L1 port occupies roughly the same area as the crossbar; for the larger L1s, the third

port is larger than the crossbar.

Recall that in our model for the PCC there is no VC attached to the associative buffer,

as described in [36]. In the original design, the associative buffer has three RW ports, being

therefore larger and more power hungry than our model.

Pollution Control Victim Cache The PCVC has the same configuration as the PCC:

fully associative memory with blocks as wide as those in the L1. The PCVC was modelled

with two pairs of RW ports, one connected to the L1 and the other to memory. The cache

controller for the PCVC is more complex than that of the PCC because the “victim cache”

functionality is embedded in the PCVC. This is not captured by the CACTI models.

Interconnect The design models, and the estimates obtained from them, do not ac-

count for the interconnections between the several components. The interconnect between

processor/MSHRs and memory are the same in all designs. The interconnects between L1

and the specialised buffers, in the designs with PCCs and PCVCs correspond to a fixed

amount, be it area or energy/reference.

5.2.2 Area

We compared the area of the complete designs for several capacities, L1 associativity of 1

and 2 ways, and buffer type (PCC and PCVC) and capacity. The total area of the PCC

is given by the sum of the areas of the 3-ported direct mapped L1, a four entry VC, and

an associative buffer with b entries (see Section 5.2.1 and Figure 5). The total area of the

PCVC is the sum of the area of a 2-ported direct mapped L1 and an associative buffer

with b entries – see Figure 6.

The center columns of Table 5 show the area for associative buffers in the PCCs and

PCVCs with 4, 8, 16 and 32 blocks. Table 6 shows the area for the complete designs;

the areas for PCC and PCVC are shown only for buffers with 4 and 32 blocks. Figure 13

contain plots for the areas of an direct mapped and 2-way L1, PCC and PCVC with 4

and 32 blocks. L1 capacity ranges from 1 Kbytes to 32 Kbytes.

Table 5: Area and energy vs capacity [blocks] for associative buffers

area [mm2] energy/ref [nJ]

blocks VC assoc. buffer VC assoc. buffer

4 0.22 0.70 0.21 0.45

8 – 0.76 – 0.47

16 – 0.89 – 0.50

32 – 1.12 – 0.58
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Table 6: Total area [mm2] vs L1 capacity [Kbytes]

PCC PCVC

capac L1DM L12w 4 32 4 32

1 0.80 1.18 2.99 3.42 1.45 1.86

2 1.07 1.38 3.93 4.36 1.77 2.19

4 1.58 1.86 4.92 5.35 2.28 2.69

8 2.67 2.87 7.66 8.09 3.37 3.78

16 5.02 5.02 13.81 14.23 5.72 6.13

32 8.93 9.26 25.02 25.44 9.63 10.04

PCC: 3-ported L1, VC(4), assoc. buffer with b blocks.

PCVC: 2-ported L1, assoc. buffer with b blocks.

If the direct mapped L1 (L1DM) is taken as the basis for comparison, the 2-way L1

(L12w,1K) is nearly 50% larger, but the difference is inversely proportional to capacity as

the L12w,32K is only 3% larger than the L1DM,32K. For a given combination of capacity,

block size and associativity, CACTI picks the best geometry for that set of parameters.

Thus, the area difference does not drop as the square of L1 capacity.
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Figure 13: Area vs L1 capacity (from Table 6)

In comparison to a L1DM, the PCC(4)1K (PCC(32)1K) is 3.8 (4.3) times larger than

L1DM,1K. The difference reduces to 2.8 (2.9) times for the largest L1. The contribution

of the VC to the total area of the PCC is proportionally smaller as the PCC’s capacity

increases. The most significant contribution is the third L1 port, needed to connect to the

PCC.

For all simulated capacities, the PCVC is larger than the L1DM, by a factor of 1.8 (2.3)

times for a PCVC(4) (PCVC(32)) w.r.t the 1 Kbytes L1DM, decreasing to 1.08 (1.12) times

for 32 Kbytes. For a given PCVC capacity c, this buffer increases the area of the design

〈PCVC(c)+L1〉 by a fixed amount, that is inversely proportional to L1 capacity.

Performance vs Area The area used up by of the top level of the memory hierarchy

grows with capacity at that level whereas the miss rate decreases. The smallest product

area×miss rate is an ‘optimal’ design for which the ‘derivative’ of the product, with respect
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to capacity, is zero. By ‘derivative’ we mean an approximation in which the tendency lines

behave as if capacity was a continuous variable. Figure 14 shows the area×miss rate plots

for the designs (smaller is better).
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Figure 14: Area × global miss rate

Figure 11, in Sec. 5.1.5, shows that for all designs except PCVC(32), the performance

gains are relatively small as L1 capacity grows beyond 4-8 Kbytes. This is also borne

out by the product area×miss rate, as shown in Figure 14. Except for the PCVC(32),

the best product is at 4 Kbytes, and w.r.t. area×miss rate the best designs are L1DM,4K,

L12w,4K and PCVC(4,4K). The PCVC(32) is always better than the others, for all L1DM

capacities, because the active subset of the data is always kept near the CPU, as mentioned

in Section 2.

5.2.3 Energy

We assessed the energy per reference spent in each of the four designs. The right hand

side of Table 5 (Sec. 5.2.2) shows the energy per reference for each of the buffers. Table 7

shows the power for the complete designs and Figure 15 displays the energy/reference

plots, in the same conditions as in Section 5.2.2.

Table 7: Energy/ref [nJ] vs L1 capacity [Kbytes]

PCC PCVC

capac L1DM L12w 4 32 4 32

1 0.61 0.95 1.69 1.82 1.05 1.19

2 0.64 0.98 1.78 1.91 1.09 1.22

4 0.72 1.04 2.01 2.14 1.17 1.30

8 0.88 1.20 2.44 2.57 1.32 1.45

16 1.09 1.42 3.03 3.09 1.54 1.67

32 1.48 1.80 4.17 4.23 1.92 2.05

PCC: 3-ported L1, VC(4), assoc. buffer with b blocks.

PCVC: 2-ported L1, assoc. buffer with b blocks.

The energy/reference for the L12w,1K is 1.56 times larger than that of a L1DM,1K,

and 1.22 times for the 32 Kbytes. For the Pollution Control Cache, for all simulated L1
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Figure 15: Energy/reference vs L1 capacity (Table 7)

capacities, a PCC(4) uses 2.77 to 2.83 times more energy than the L1DM. For a PCC(32),

the ratios are in the range of 2.89 to 2.99 times. For the PCVC, the ratios inversely

decrease with L1 capacity: a PCVC(4) consumes 1.7 (1.3) times more than the L1DM,1K

(32 K), whereas for the PCVC(32) the rates are 1.95 and 1.4 times for the L1DM,1K and

L1DM,32K, respectively.

Performance vs Energy The product miss rate × energy/reference is shown in Fig-

ure 16. The tendency curves display a marked inflexion as L1 capacity reaches 4 Kbytes.

These points are not the ‘minima’, yet clearly indicate a point of diminishing returns.

The products for the PCCs are worse than for the simpler designs. The products for the

L1DMs are closer to those of the PCVC(4) than to the L12w as the PCVC(4)’s circuits are

smaller, hence use less power than the L12w. For capacities larger than 4 Kbytes, there is

little difference between the L1DM, L12w, and PCVC(4). The PCVC(32) displays the best

results, by a wide margin.
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Figure 16: Energy/reference × global miss rate

Figure 17 shows the product CPI × energy/reference (smaller is better). With this

metric, the numbers for L12w, PCVC(4) and PCVC(32) are similar. The inherently higher

miss rate on the L1DM translates into a higher CPI – in spite of the reduced power this
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design yields the worse performance, as shown in Fig. 11 (Sec. 5.1.5). The PCCs display

better figures than the simpler designs yet the energy expenditure is such that the product

CPI×energy is roughly twice that of the other designs.
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Figure 17: Energy/reference × CPI.

5.2.4 Putting It All Together

When considering programs with reference patterns similar to that of zip, the addition

of a PCVC may be profitable because the performance gain (16%) is of the same order as

the increase in area (12%) for a combination L1DM,32K+PCVC(32). Regarding energy, the

trade-off is not straightforward: 16% gain in performance and 38% increase in energy, and

the decision might be constrained by other factors. For programs with a high popularity

concentration, 4 or 16 blocks PCVC may be advantageous since the increase in area and

energy are obviously less than for a 32 block PCVC, while performance does not decrease

at the same rate as the number of blocks. [13] present a detailed performance evaluation

of PCVCs, with systems from 1 to 32 blocks.

6 Related Work

Work related to ours falls into two categories: (i) models for locality of reference with their

applications; and (ii) specialised buffers or caches. These are discussed in what follows.

Several analytical models for locality have been proposed. [34] model the memory

reference pattern by a stack whose depth varies according to a pseudo-random sequence

of numbers, derived from the program trace. [2] derive a model of program behaviour by

measuring from a program trace the compulsory, capacity and conflict misses. [6] define

the average stack distance and indicate how it can be measured from a program trace

– the smaller the average stack distance, the better the program locality. These models

represent program behaviour as the average over the program execution. Popularity of

reference is based on the actual reference counts over the whole of the execution and thus

can expose idiosyncratic behaviours that might be hidden by the averaging. [8] present

reference distributions that are similar to the popularity reference distribution, only they

measure the references to cache blocks rather than to individual words. The width of the
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“reference unit” is a parameter of our popularity measurements, and we chose 4 bytes (one

word) because this width is more general than 8 or 16 words.

By measuring the popularity on a word boundary, this information can be used to

direct the compiler or linker to re-allocate that word onto an address that is ‘near’ other

popular words, thus improving the hit rate of popular cache blocks. Another use might

be to allocate the most popular words onto scratchpad memories, therefore improving

execution time and reducing power consumption [26, 4, 23, 17]. Those methods reduce

the allocation problem to an integer linear program, formulated as a knapsack problem,

whereas popularity provides an exact reference count.

[24] present a performance evaluation of first-level caches for embedded systems, em-

ploying the MiBench suite. The authors investigate the effects of organisation, asso-

ciativity, capacity and replacement policy on miss rate. Their results show that higher

associativity improves performance because of the reduction in conflict misses, as should

be expected from applications with streaming behaviour.

There are several techniques to improve the performance at the top level of the memory

hierarchy, by attempting to predict what addresses should be kept at the top of the

hierarchy, or which references will cause the worst loss of performance. The first set of

techniques includes non-critical loads [11, 33], non-vital loads [27], and slack [10]. These

techniques can indeed improve performance, but their implementations appear to be too

complex for application in embedded systems.

The second set of techniques include the pollution control cache [36], the annex cache

[18], and the usage filter [8]. As discussed earlier, these employ an associative buffer to

filter out the references with poor temporal locality, while maintaining in the main cache

the popular words. The temporality-based caches [28] maintain a used bit in the tag of

the associative buffer; a block that is referenced with the used bit on is promoted to the

main cache – a block has to be referenced twice before it is promoted, and the used bit

is updated on every reference to the block. If the block replaced in the associative buffer

is chosen by an LRU approximation or randomly, blocks referenced only once will not

necessarily evict a block that is still active.

[8] present a design that is similar to the PCVC. Rather than loading a missing blocks

onto the associative buffer, a Bernoulli trial is used to load the incoming block either di-

rectly on the L1 or onto the buffer. To decrease access time and power, a direct mapped tag

memory is used to map blocks onto the set that contains the data. The simulation results

employed the SPEC2000 benchmarks and 16 and 32 Kbytes caches, a 2 Kbytes associative

buffer (filter), and cache blocks of 64 bytes. The PCVC was conceived and designed for

embedded applications and was assessed for smaller capacities and with applications from

the embedded domain.

A dual- or multi-buffer design can be employed to capture references to different mem-

ory regions, as proposed by [21]: two separate caches are used to hold stack and global

data, and a third cache holds references to the other regions. The partitioning can be

defined along temporal and spatial locality, with a buffer allocated to each class of refer-

ence, and is designed with different block sizes [25]. These designs can be easily adapted

to embedded applications [5]. Because of the high predictability of the reference streams

in embedded applications [7], data can be statically allocated to a “temporal” cache or to

a “spacial” cache [12], thus reducing the power needed by the memory system.
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7 Summary

The designers of embedded systems have to design systems that yield the appropriate level

of performance, in systems that are constrained by several design parameters. To achieve

the design goals, a good model of the behaviour of the applications can simplify the design

task by limiting the search space.

The popularity of a memory word is the fraction of references to this word over the

total of memory references in the execution of a program. In this paper we define the

popularity of memory addresses and sketch a method for designing a memory hierarchy

based on the popularity metric. The method is illustrated by the measures of popularity

for applications from the CommBench suite, and by memory hierarchy simulations.

We investigate a new technique for improving the performance of the top level of mem-

ory hierarchies for embedded systems. We introduce the Pollution Control Victim Cache

(PCVC), that is simpler, smaller, uses less power and performs better than the Pollution

Control Cache (PCC). Four designs were compared with respect to area and energy: a di-

rect mapped L1 (L1DM); a two-way set associative L1; a combination of L1DM and PCC;

and a combination of L1DM and PCVC. Most of the working sets of the CommBench

programs display a high concentration of reference on popular addresses (good locality),

and the sizes of the most popular sets of words are of the order of 4-8 Kbytes. Caches

with those capacities yield performance gains that are near to the maximum that might

be achieved with a reasonable amount of resources. For these capacities (4-8 Kbytes), the

Pollution Control Victim Cache performs well, with increases in area and energy that are

roughly twice the gains in CPI, when compared to a simple L1DM. For larger caches, the

performance gains are of the same order as the increases in area and energy.

The experiments described here are simulations of programs that execute in isolation.

In real systems, the processor runs more than a single application and the cache is shared

by the application programs, a more or less sophisticated operating system, interrupt

handlers and device drivers. These last two execute briefly and reference a few data words

yet their references pollute the cache and thus decrease the performance of the applications.

We intend to assess the effectiveness of the PCVC in keeping those references out of the

main L1 cache.
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