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Direted Hypergraph PlanarityA. L. P. Guedes1 and L. Markenzon21 Universidade Federal do Paran�a, PR, Brazilandre�inf.ufpr.br2 Instituto Militar de Engenharia, RJ, Brazillilian�ime.eb.brAbstrat. Direted hypergraphs are generalizations of digraphs andan be used to model binary relations among subsets of a given set.Planarity of hypergraphs was studied by Johnson and Pollak; planarityof direted hypergraphs was studied by M�akinen, being assumed a re-strited de�nition. In this paper we extend the planarity onept to di-reted hypergraphs. It is well known that the planarity of a digraph relieson the planarity of its underlying graph. However, for direted hyper-graphs, this property annot be applied and we propose a new approahwhih generalizes the usual onept. We also show that the reognitionof the planarity for direted hypergraphs is linear.1 IntrodutionDireted hypergraphs [1, 2℄ are a generalization of digraphs and an modelbinary relations among subsets of a given set. Suh relationships appearsin di�erent areas of Computer Siene suh as database systems [1℄, expertsystems [10℄, parallel programming [9℄ and sheduling [6, 3℄.Planarity of hypergraphs was studied by Johnson and Pollak [5℄ andtheir paper yields our theoretial approah. M�akinen [7℄ gives emphasisto the drawing of hypergraphs, where planarity plays an important role.He inludes some remarks about direted hypergraph drawing, being as-sumed a restrited de�nition.In this paper we extend the planarity onept to direted hypergraphs.It is well known that the planarity of a digraph relies on the planarity ofits underlying graph. We show that, for direted hypergraphs, the prop-erty annot be applied and we propose a whole new approah. In Setion 2some basi de�nitions about direted hypergraphs and hypergraph draw-ing are presented; in Setion 3 the onept of hypergraph planarity isreviewed, and, in Setion 4, the direted ase is presented, showing thatprevious results are partiular ases of a more general onept.



2 Basi NotionsThis setion introdues the hypergraph notation used throughout thepaper. Basi graph onepts are assumed to be known and an be foundin [8℄.A direted hypergraph [2, 4℄ an be de�ned as follows:De�nition 1. A direted hypergraph H = (V;A) is a pair, where V isa (�nite) set of verties and A is a set of hyperars. A hyperar a 2 A isan ordered pair (X;Y ) where X and Y are (disjoint not empty) subsetsof V . The set X is the the origin of a and the set Y is the destination ofa, respetively, Org(a) and Dest(a).A direted hypergraph H = (V;A) has size jHj = Pa=(X;Y )2A jXj +jY j:Figure 1 shows a direted hypergraph,H = (V;A), where V = f1; 2; 3; 4,5; 6; 7; 8; 9; 10g, and A = fa; b; ; d; e; f; g; hg. Two examples of hyperarsare a = (f1; 2g; f3; 4g), and  = (f4g; f5; 8g).
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Fig. 1. Direted Hypergraph H = (V;A)In the undireted version of hypergraphs eah hyperar is onsideredas a set instead of a pair of sets, and is named hyperedge.De�nition 2. Let H = (V;A) be a direted hypergraph. The underly-ing hypergraph of H is the hypergraph Hu = (V;Au) where for everyhyperar a = (X;Y ) 2 A there is a hyperedge e = X [Y 2 Au, and everyhyperedge of Hu has a orresponding hyperar in H.



Subfamilies of direted hypergraphs, as de�ned in [2℄, an be asso-iated with some earlier de�nitions, as the one presented in [1℄. Suhsubfamilies an be de�ned as follows:De�nition 3. Let H = (V;A) be a direted hypergraph.1. If every hyperar a 2 A is suh that jDest(a)j = 1 than H is alled aB-graph;2. If every hyperar a 2 A is suh that jOrg(a)j = 1 than H is alled aF-graph;3. If every hyperar a 2 A is suh that jDest(a)j = 1 or jOrg(a)j = 1than H is alled a BF-graph;A digraph is a partiular ase of BF-graphs, being jOrg(a)j = 1 andjDest(a)j = 1 for all ars.The visual representation of a hypergraph is as important as the sameproblem for graphs and digraphs. M�akinen [7℄ presented some hypergraphdrawing ideas based on methods for desribing a hypergraph: the subsetstandard and the edge standard. The �rst one uses the fat that a hyper-graph is a olletion of subsets, whih an be viewed as a Venn diagram,and in the seond the verties of a hyperedge are onneted by urves.The subset standard is not suitable to draw a direted hypergraph, be-ause the verties of the hyperar are divided in two parts: origin and des-tination. The edge standard is the best hoie for direted hypergraphs,and we an draw the hyperars as two sets onneted by lines.In fat this pitorial representation has been used by almost all papersrelated to the subjet. The drawing shown in Fig. 1 is an example. In viewof that, we an apply the well known onept of planarity to this struture,trying to avoid rossing lines when drawing.3 Hypergraph PlanarityPlanarity of (undireted) hypergraphs was studied by Johnson and Pollak[5℄, on a paper that presents three approahes of planarity. Two of theseapproahes, both introdued by the authors, are based on Venn diagrams.As this kind of representation is related to the subset standard, we willnot develop these ideas. The third approah, based on Zykov planarity,is more onvenient for the edge standard.Zykov planarity assoiates hyperedges with faes (regions) of a pla-nar subdivision. Let H = (V;E) be a hypergraph. Eah vertex of Vis represented by a vertex and eah hyperedge is represented by a fae



of the planar map. It an be observed that not every fae represents ahyperedge and we are onsidering just one of many possible representa-tions. Figure 2 shows an example of this representation for the hypergraphH = (V;E), with V = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g and E = ff1; 2; 9; 10g,f2; 3; 10; 11g, f3; 4; 5; 11g, f5; 6; 7; 8g, f1; 7; 8; 9g, f5; 8; 11gg.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

1

6

7

8

9

10 2

3

11

4

5

Fig. 2. Planar subdivisionJohnson and Pollak [5℄ de�ne Zykov planarity using a bipartite graphassoiated with the hypergraph (see also [11℄).De�nition 4. A hypergraph H = (V;E) is Zykov-planar if and onlyif the bipartite graph HB = (U;F ) is planar, where U = V [ E andF = ffv; egje 2 E and v 2 eg.Figure 3 shows the graph HB of the hypergraph H above. The whiteverties a; b; ; d; e; f represent hyperedges.The planar representation of the bipartite graph HB an be seen as are�nement of the planar subdivision used on the original de�nition fromZykov, as the verties representing the hyperedges an lie just inside thefaes.The reognition of a hypergraph H = (V;E) as a Zykov-planar hyper-graph is equivalent to the reognition of the bipartite graph HB = (U;F )as a planar graph and it an be done in linear time. It is important toobserve that an ordinary graph is planar under De�nition 4 (when viewedas a hypergraph) if and only if it is planar in the ordinary sense. So, Zykovplanarity is a true generalization of the planarity onept to hypergraphs.
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Fig. 3. Graph HB4 Direted Hypergraph PlanarityAs it was mentioned earlier in this paper, testing the planarity of a digraphis the same as testing the planarity of the underlying graph. So, it wouldbe nie if the solution presented in Set. 3 ould also be extended todireted hypergraphs.Let us try to adapt De�nition 4. Eah hyperedge generates a newvertex for the bipartite graph HB. So, it an be established that thevertex whih represents the hyperar lies in a entral point, onnetedto the original verties by ars. However as we an see in Fig. 4(a), thedrawing of the hyperar a = (f1; 2; 3g; f4; 5g) mix the verties of theorigin with the verties ofthe destination of the hyperar. So it is not enough to add diretionwhen generating the graph, it is neessary to group the verties of eahset just like it is shown in Fig. 4(b).A solution that fores suh grouping to happen is to use two new ver-ties, instead of just one, to represent the hyperar. One of these vertiesis used to group the origin and the other to group the destination of thehyperar. Figure 4() shows the result for this example. With this trans-formation the verties of the origin and destination will not be mixed ina planar representation and the drawing of the hyperar obeys the edgestandard presented on Set. 2.The direted hypergraph planarity an now be de�ned. First, we needto de�ne a new transformation of the direted hypergraph.
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Fig. 4. Transformation of a hyperarDe�nition 5. Let H = (V;A) be a direted hypergraph. The struturegraph assoiated with H is the digraph HS = (V [ U;B), where U =A � f1; 2g, and the elements of U are denoted by ai, with a 2 A andi = 1; 2; and B = BO [ BD [ f(a1; a2)ja 2 Ag, where BO and BD arede�ned asBO = f(v; a1)ja 2 A and v 2 Org(a)g; andBD = f(a2; v)ja 2 A and v 2 Dest(a)g:De�nition 6 (Planarity). A direted hypergraph H is planar if andonly if its struture graph HS is planar.The relation between this onept of planarity and the Zykov planarityan now be establish.Given a graph G = (V;E), the ontration of an edge is de�ned as theoperation of removing e = (x; y) 2 E fromG and identifying x and y (witha single new vertex xy) so that every edge (other than (x; y)) originallyinident with either x or y beomes inident with xy. By the Contration



Form of Kuratowski Theorem [8℄, we know that this operation preservesplanarity, that is, if G is planar than the resulting ontrated graph isalso planar.Lemma 1. Let H = (V;A) be a direted hypergraph. If H is planar thenthe underlying hypergraph of H is Zykov-planar.Proof. If H is planar then the struture graph assoiated with H, HS, isplanar and obviously, also its underlying graph, HuS , is planar.Let HB be the bipartite graph of De�nition 4 applied to Hu, theunderlying hypergraph of H.Let a be a hyperar of H; (a1; a2) is an edge of HuS . The ontration ofeah one of these edges generates a new graph, isomorphi to HB. Sinethe ontration preserves planarity, if HuS is planar, so is HB. Finally, asHB is planar, by De�nition 4, the underlying hypergraph of H is Zykov-planar. utThe onverse of Lemma 1 is not true; Fig. 5(a) shows a direted hy-pergraph H that is a ounter-example. Fig. 5(b) presents the bipartiteplanar graph, onstruted for the underlying hypergraph of H; Fig. 5()shows HuS , the the underlying graph of the struture graph HS assoiatedwith H, whih is learly not planar, sine it is homeomorphi to K3;3.The planarity onept for direted hypergraphs is more restritivewhen ompared with the same onept for hypergraphs. This restritionis abolished for some important partiular ases.Theorem 1. Let H be BF-graph. Then H is planar if and only if itsunderlying hypergraph is Zykov-planar.Proof. Every hyperar a of H has jOrg(a)j = 1 or jDest(a)j = 1. Letus suppose, without loss of generality, that the hyperar a has only onevertex at its destination.When onstruting HS (by De�nition 6), vertex a2 has degree 2 (asin Fig. 6(b)). We must reognize if HuS is planar. Vertex a2 plus its in-ident edges an be replaed by a single edge. A similar operation anbe performed on all the verties with degree 2 generated by the hyper-ars of H. In other words, we onstrut a homeomorphi graph with asmaller number of verties. After suh operations, the resulting graph isisomorphi to HB. So, HuS is homeomorphi to HB. As homeomorphismdoes not interfere with planarity, HS is planar if and only if HB is pla-nar. Consequently, H is planar if and only if its underlying hypergraphis Zykov-planar. ut
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Fig. 5. Hu is Zykov-planar but H is not planarCorollary 1. If G is a digraph then G is planar if and only if its under-lying graph is Zykov-planar.Proof. G is a BF-graph. utIt is interesting to highlight the omplexity of the reognition of pla-narity for direted hypergraphs.Let H = (V;A) be a direted hypergraph. The number of vertiesof HS , nS, is equal to jV j + 2jAj. As jV j � jHj and 2jAj � jHj, thennS � 2jHj.As the onstrution of the struture graph HS an be done in lineartime in the size of the hypergraph (jHj), and testing the planarity of adigraph an be done in linear time in its number of verties (nS), the testwhether a direted hypergraph is planar an be done in linear time in itssize (O(jHj)).
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