The Complete Formal Description of the
SNMPv3 Entity Using Action Semantics

Elias P. Duarte Jr. Di6genes Cogo Furlan
Martin A. Musicante

Federal University of Parana Tuiuti University of Parané

Dept. Informatics FaCET
Curitiba PR Brazil Curitiba PR Brazil
{elias,mam}@inf.ufpr.br diogenes.furlan@utp.br

Technical Report # RT001/2002, Federal University of Parana, Dept.
Informatics, http://www.inf.ufpr.br/info/techrep/index.html

1 Actions

1.1 Entity

e Manager-daemon :: action

(1) Manager-daemon =
‘ subordinate a dispatcher then bind “dispatcher” to it
and
‘ subordinate an application then bind “CR” to it
and initiate user-applications
and initiate MPS
and initiate SS
hence

send a message[to the agent bound to “dispatcher’]

[containing closure abstraction of Dispatcher-daemon]

and
| send a message][to the agent bound to “CR"][containing closure abstraction of CR-daemon]
and activate user-applications
and activate MPS
and activate SS

(2

3)

(4)

(5

e Agent-daemon :: action

Agent-daemon =
‘ subordinate a dispatcher then bind “dispatcher” to it
and
‘ subordinate an application then bind “NR” to it
and initiate user-applications
and initiate MPS
and initiate SS
and initiate ACS
hence

send a message[to the agent bound to “dispatcher’]

[containing closure abstraction of Dispatcher-daemon]

and
| send a message[to the agent bound to “NR"][containing closure abstraction of NR-daemon]
and activate user-applications
and activate MPS
and activate SS
and activate ACS

e Dispatcher-daemon :: action

Dispatcher-daemon =
‘ initialize LCD-Dispatcher
hence unfolding
‘ procedure Dispatcher
trap complete
and then unfold

e user-application _ :: integer — action

user-application X:integer =
‘ initialize LCD-Generate
hence

procedure CommandGenerator

user-application X:integer =
| initialize LCD-Generate
hence

procedure NotificationOriginator

e CommandResponder-daemon :: action

(6)

™

(®)

9

CommandResponder-daemon =

‘ initialize MIBs

and

‘ initialize LCD-Process

and

‘ register CR

hence unfolding
‘ procedure CommandResponder
trap complete

and then unfold

e NotificationReceiver-daemon :: action

NotificationReceiver-daemon =

| initialize LCD-Process

and

‘ register NR

hence unfolding
| procedure NotificationReceiver
trap complete

and then unfold

e initialize LCD-Dispatcher :: action

initialize LCD-Dispatcher =
allocate a cell then bind “sender” to it

e initialize LCD-Generate :: action

initialize LCD-Generate =
| rebind
and allocate a cell then bind “transpDom” to it
and allocate a cell then bind “transpAdd” to it
and allocate a cell then bind “MPModel” to it
and allocate a cell then bind “secModel” to it
and allocate a cell then bind “secName” to it
and allocate a cell then bind “secLevel” to it
and allocate a cell then bind “pduVersion” to it
and allocate a cell then bind “contextEngID" to it
and allocate a cell then bind “contextName” to it

e initialize LCD-Process :: action

(10) initialize LCD-Process =
| rebind
and allocate a cell then bind “MPModel” to it
and allocate a cell then bind “secModel” to it
and allocate a cell then bind “secName” to it
and allocate a cell then bind “secLevel” to it
and allocate a cell then bind “pduVersion” to it
and allocate a cell then bind “contextEngID" to it
and allocate a cell then bind “contextName” to it
and allocate a cell then bind “request-id” to it
and allocate a cell then bind “non-repeaters” to it
and allocate a cell then bind “max-repetitions” to it
and allocate a cell then bind “variable-bindings” to it

e initialize MIBs :: action
(11) initialize MIBs = OO
e register CR :: action

(12) register CR =
| get(“snmpEnginelD")
then
| associate performing-agent with (it, Get)
and
| associate performing-agent with (it, GetNext)
and
| associate performing-agent with (it, GetBulk)
and
| associate performing-agent with (it, Set)

e register NR :: action

(13) register NR =
| get(“snmpEnginelD")
then
| associate performing-agent with (it, Inform)
and
| associate performing-agent with (it, Trap)

e associate with _ :: agent, tuple — action
(14) associate A:agent with (C:contextEngineld, O:pduType) = [

e initiate user-applications :: action

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

initiate user-applications = [
initiate MPS :: action

initiate MPS = [

initiate SS :: action

initiate SS = [

initiate ACS :: action

initiate ACS =[O

activate user-applications :: action
activate user-applications = [
activate MPS :: action
activate MPS = [

activate SS :: action

activate SS = [J

activate ACS :: action

activate ACS = [T

1.2 Dispatcher

(23)

procedure Dispatcher :: action

procedure Dispatcher =
| accept a message[from an agent][containing a SDU]
then

‘ procedure Disp send-request

or

‘ procedure Disp send-response

or

‘ procedure Disp receive

procedure Disp send-request :: action[receiving tuple]

(24) procedure Disp send-request =

| give (the given tuple)[sendPdu-SDU]

then

‘ procedure Disp send-request A

then

send a message[to the MPModel associated with the given messageProcessingModel#3]
[containing (the given tuple)[prepareOutgoingMsgIn-SDU]]

and then
‘ accept contents of a message[from an MPModel][containing a tuple[prepareOutgoingMsgOut-!
then
‘ procedure Disp send-request B
then
send a message[to the Dispatcher associated with (the given transportDomain#1,
the given transportAddress#2)][containing the given Network-MSG#3]

e procedure Disp send-request A :: action[receiving sendPdu-SDU][giving prepareOutgoingMsgIn-
SDU]

(25) procedure Disp send-request A =

‘ check (the MPModel associated with the given messageProcessingModel#3 is an agent)

or

] check not (the MPModel associated with the given messageProcessingModel#3 is an agent)
and then

‘ send noMPModel back to sender

and then

| escape

and then

| regive and generate SendPduHandle

e procedure Disp send-request B :: action[receiving prepareOutgoingMsgOut-SDU]

(26) procedure Disp send-request B =

| check (the given statusinformation#1 is success)
and then

‘ send the generated sendPduHandle back to sender
or

] check not (the given statusInformation#1 is success)
and then

| send the given statusInformation#1 back to sender
and then

| escape

and then

| give (the given transportDomain#2, the given transportAddress#3, the given Network-MSG#4

e procedure Disp send-response :: action[receiving tuple]

(27) procedure Disp send-response =

| give (the given tuple)[returnResponsePdu-SDU]

then

send a message[to the MPModel associated with the given messageProcessingModel#1]
[containing (the given tuple)[prepareResponseMsgin-SDU|]

and then
‘ accept contents of a message[from an MPModel][containing a tuple[prepareResponseMsgOut-!
then
‘ procedure Disp send-response B
then
send a message[to the Dispatcher associated with (the given transportDomain#1,
the given transportAddress#2)][containing the given Network-MSG#3]

e procedure Disp send-response B :: action[receiving prepareResponseMsgOut-SDU]

(28) procedure Disp send-response B =

| check (the given Result#1 is success)

or

| check not (the given Result#1 is success)

and then

| send the given Result#1 back to sender

and then

| escape

and then

| give (the given transportDomain#2, the given transportAddress#3, the given Network-MSG#4)

e procedure Disp receive :: action[receiving tuple]

(29) procedure Disp receive =

| give (the given tuple)[Network-MSG]
then
| procedure Disp receive A

then
send a message[to the MPModel associated with the given messageProcessingModel#1]

[containing (the rest of the given tuple)[prepareDataElementsin-SDU]]

and then

‘ accept contents of a message[from an MPModel][containing a tuple[prepareDataElementsOut-
then

‘ procedure Disp receive-request B

then

send a message[to the given Application#1]
[containing (the rest of the given tuple)[processPdu-SDU]]

or
‘ procedure Disp receive-response B

then

send a message[to the given Application#1]
[containing (the rest of the given tuple)[processResponsePdu-SDU]]

e procedure Disp receive A :: action[receiving Network-MSG]|

(30) procedure Disp receive A =
| increment(“snmplnPkts")
and then

| give the messageProcessingModel extracted from the given Network-MSG
trap

| increment(“snmplnASNParseErrs”)

and then

| escape
then
‘ give (the MPModel associated with the given messageProcessingModel)
or
‘ check not (the MPModel associated with the given messageProcessingModel is an agent)
and then
| increment(“snmplnBadVersions")
and then
| escape
and then
give (the transportDomain extracted from the given Network-MSG,

the transportAddress extracted from the given Network-MSG)

and then
’ regive

e procedure Disp receive-request B :: action[receiving prepareDataElementsOut-SDU]

(31) procedure Disp receive-request B =

| check not (the given Result#1 is sucess)

and then escape

or

| check (the given Result#1 is sucess)

and then

| check (the given sendPduHandle#11 is none)

and then

‘ give the Application associated with (the given contextEnginelD#7, the given pduType#1(

trap

| increment(“snmpUnknownPDUHandlers")

and then

| regive and get(“snmpUnknownPDUHandlers”)

then

give (the given messageProcessingModel#2, securityModel#3, securityName#4,

securityLevel#5, pduVersion#6, contextEnginelD#7, contextName#8, PDU#9,
maxSizeResponseScopedPdu#12, stateReference#14,
par of(noApplication, the given ObjectValue#15))

then

‘ procedure Disp send-response

and then

| escape

and then

give (the given messageProcessingModel#2, securityModel#3, securityName#4, securityLevel#

pduVersion#6, contextEnginelD#7, contextName#8, PDU#9,

maxSizeResponseScopedPdu#12, stateReference#14)

10

e procedure Disp receive-response B :: action[receiving prepareDataElementsOut-SDU]

(32) procedure Disp receive-response B =
| check not (the given Result#1 is sucess)
and then
| escape
or
| check (the given Result#1 is sucess)
and then
| check not (the given sendPduHandle#11 is none)
and then
‘ give the Application associated with the given sendPduHandle#11
trap
| increment(“snmpUnknownPDUHandlers”)
and then
| escape
and then
give (the given messageProcessingModel#2, securityModel#3, securityName#4, securityLevel#
pduVersion#6, contextEnginelD#7, contextName#8, PDU#09, statusinformation#13,
sendPduHandle#11)

e generate sendPduHandle :: action[giving sendPduHandle]

(33) generate sendPduHandle = [J

1.3 Standard Applications

e procedure CommandGenerator :: action

(34) procedure CommandGenerator =
‘ procedure Aplic send-request
then
| send a message[to Dispatcher of entity][containing (the given tuple)[sendPdu-SDU]]
then
| accept contents of a message[from Dispatcher of entity][containing a datum]
then
| ifnot (it is a sendPduHandle) generate error it
and then
| cache it as “sendPduHandle”
and then
accept contents of a message[from Dispatcher of entity]
[containing a tuple[processResponsePdu-SDU]]

then
‘ procedure Aplic receive-response

11

e procedure CommandResponder :: action

(35) procedure CommandResponder =
| accept contents of a message[from Dispatcher of entity][containing a tuple[processPdu-SDU]]
then
‘ procedure Aplic receive-request
then
‘ give the cached ‘“variable-bindings” then map using abstraction of isAccessAllowed
and then
‘ operationResponse the given opTag#5
then
‘ procedure Aplic send-response
then
| send a message[to Dispatcher of entity][containing (the given tuple)[returnResponsePdu-SDU]]

e procedure NotificationOriginator :: action

36) procedure NotificationOriginator =
‘ give the given list#2
then
‘ map using abstraction of isAccessAllowed
and then
‘ procedure Aplic send-request
then
| send a message[to Dispatcher of entity][containing (the given tuple)[sendPdu-SDU]]
and then
| check (the given opTag#1 is Inform)
and then
accept contents of a message[from Dispatcher of entity]
[containing a tuple[processResponsePdu-SDU]]
then
give (the error-status of the given Pdu#s8, the error-index of the given Pdu#8,
the given variable-bindings of the given Pdu#38)

or
| check (the given opTag#1 is Trap)

e procedure NotificationReceiver :: action

(37) procedure NotificationReceiver =

12

| accept contents of a message[from Dispatcher of entity][containing a tuple[processPdu-SDU]]

then
‘ procedure Aplic receive-request

then

’ check (the given opTag#5 is Inform)
and then

| operationResponse Inform

then

‘ procedure Aplic send-response

then
| send a message[to Dispatcher of entity][containing (the given tuple)[returnResponsePdu-SL

or
| check (the given opTag#5 is Trap)
and then

] operationResponse Trap

e procedure Aplic send-request :: action[giving sendPdu-SDU]

(38) procedure Aplic send-request =
give (the cached “transpDom”, the cached “transpAdd”, the cached “MPModel”,

the cached “secModel”’, the cached “secName”, the cached “secLevel”,

the cached “pduVersion”, the cached “contEngID", the cached “contName”)
and

‘ check not (the given opTag#1 is GetBulk)

and then

] operationRequest the given opTag#1 with (0, 0, the given list#2)

or

| check (the given opTag#1 is GetBulk)

and then
operationRequest GetBulk with (the given non-repeaters#3, the given max-repetitions#4,

the given list#2)

and
| give not (the given opTag#1 is Trap)

e procedure Aplic receive-response :: action[receiving processResponsePdu-SDU]|

(39) procedure Aplic receive-response =

13

ifnot (the given messageProcessingModel#1 is the cached “MPModel”)
generate error discardByMPModel

and

ifnot (the given securityModel#2 is the cached “secModel”)
generate error discardBySecModel

and

ifnot (the given securityName#3 is the cached “secName”)
generate error discardBySecName

and

ifnot (the given pduVersion#5 is the cached “pduVersion”)
generate error discardByPduVersion

and

ifnot (the given contextEnginelD#6 is the cached “contEnglD")
generate error discardByContextEnglD

and

ifnot (the given contextName#7 is the cached “contName”)
generate error discardByContextName

and

ifnot (the request-id of the given Pdu#8 is the generated “request-id”)
generate error discardByRequestID

and then
give (error-status of the given Pdu#8, error-index of the given Pdu#S8,
variable-bindings of the given Pdu#8)

e procedure Aplic receive-request :: action[receiving processPdu-SDU][giving (request-id,error-
status,Index,list,opTag)]

(40) procedure Aplic receive-request =

14

ifnot (the performing-agent is associated with the operation of the given PDU#8)
generate error discardByOperation
and then
give (request-id of the given PDU#8, error-status of the given PDU#S8,
error-index of the given PDU#8, variable-bindings of the given PDU#38,
operation of the given PDU#8)
then
| | regive and cache the splitted PDU
and then
‘ cache the given messageProcessingModel as “MPModel”
and
‘ cache the given securityModel as “secModel”
and
‘ cache the given securityName as “secName”
and
‘ cache the given securityLevel as “secLevel’
and
‘ cache the given pduVersion as “pduVersion”
and
| cache the given contextEnginelD as “contextEng|D”
and
‘ cache the given contextName as “contextName”

e procedure Aplic send-response :: action[giving returnResponsePdu-SDU]

(a1) procedure Aplic send-response =
give (the cached “MPModel”,
the cached “secModel”’, the cached “secName”, the cached “secLevel”,
the cached “pduVersion”, the cached “contEnglD”, the cached “contName”)
and then
give Pdu of (the cached “request-id”, the given errorStatus#1,
the given Index#2, the given VarBindList#3) with tag Response

and then
| give (size of scopedPdu, the cached “stateReference”, the given errorStatus#1)

1.4 Protocol Operations

e operationRequest _ with (_, ,) :: opTag, Index, Index, tuple — action

(42) operationRequest Op:opTag with (S:Index, I:Index, T:tuple) =

15

| generate request-id
and
| generate VarBindList from T
then
’ give the PDU of (the given requestld#1, S, I, the given VarBindList#2) with tag Op

e generate VarBindList from _ :: tuple — action

(43) generate VarBindList from N:list of ObjectNamet =
‘ give N
then
‘ map using abstraction of emptyVarBind

(44) generate VarBindList from V:VarBindList = regive

(45) generate VarBindList from M :Notification-Macro =

| get(“sysUpTime.0")

then

’ give list of (“sysUpTime.0", the given ObjectValue)
and

| get(“snmpTrapOID.0")

then

| give list of (“snmpTrapOID.0", the given ObjectValue)
and

| generate ObjectNameList from M

then

‘ map using abstraction of consultVarBind

then

| give concatenation(the given list#1, the given list#2, the given list#3)

e operationResponse :: opTag — action

(46) operationResponse Get =
| setError(noError, 0)

and
| give the cached “variable-bindings”
then
‘ map using abstraction of consultVarBind
trap
| setError(genErr, the given Index)
and

| give the cached “variable-bindings”

16

(47) operationResponse GetNext =
| setError(noError, 0)

and
’ give the cached “variable-bindings”
then
‘ map using abstraction of consultNextVarBind
trap
| setError(genErr, the given Index)
and

‘ give the cached “variable-bindings”

(48) operationResponse GetBulk =
| setError(noError, 0)
and
| give min(the cached “non-repeaters”, count items of the cached “variable-bindings")
and
| give the cached “variable-bindings”
then
| break(the given list#2, the given integer#1)
then
| give the given list#1
then
‘ map using abstraction of consultNextVarBind
and then
’ give the cached “max-repetitions”
and
‘ give the given list#2
then
‘ map with repetition using abstraction of consultNextVarBind
then
] give concatenation(the given list#1, the given list#2)
trap
| setError(genErr, the given Index)
and
‘ give the cached “variable-bindings”

(49) operationResponse Set =

17

| give the cached “variable-bindings”

then

‘ map using abstraction of validateVarBind

then

| setError(noError, 0)

and

‘ map using abstraction of updateVarBind

trap

| setError(commitFailed, the given Index)

and
] break(the cached “variable-bindings”, the given Index)
then
‘ map using abstraction of undoVarBind

trap

| setError(undoFailed, 0)

trap

| setError(the given errorStatus#1, the given Index#2)

then

| give (the given errorStatus#1, the given Index#2, the cached “variable-bindings")

(50) operationResponse Inform =
‘ setError(noError, 0)

and

’ give the cached “variable-bindings”

and
‘ give the Application associated with NotificationTypeld of the cached “variable-bindings”
then

| send a message [to the given Application][containing the cached “variable-bindings”]

(51) operationResponse Trap =
| give the Application associated with NotificationTypeld of the cached “variable-bindings”

then
| send a message [to the given Application][containing the cached “variable-bindings’]

e generate request-id :: action[giving requestid]
(52) generate request-id = [
e generate ObjectNamelList from _ :: Notification-Macro — action[giving ObjectNameList]

(53) generate ObjectNameList from M :Notification-Macro = [

1.5 VarBind Operations
e emptyVarBind :: action[receiving VarBind][giving VarBind)]

18

(54) emptyVarBind =
give (the given ObjectName#1, unSpecified)

e consultVarBind :: action[receiving VarBind][giving VarBind)]

(s5) consultVarBind =
| check (existsObject the given ObjectName1)
and then
| check not (existsInstance the given ObjectName#1)
and then

| give the given ObjectName#1

and

| get(the given ObjectName#1)
else
| give (the given ObjectName#1, noSuchlInstance)
else
’ give (the given ObjectName#1, noSuchObject)

e consultNextVarBind :: action[receiving VarBind|[giving VarBind]

(s6) consultNextVarBind =
| give the next to the given ObjectName#£1
then
’ regive
and
| get(the given ObjectName)
else
’ give (the given ObjectName#1, endOfMibView)

e validateVarBind :: action[receiving VarBind]

(57) validateVarBind =

19

ifnot (existsObject the given ObjectName#1)
generate error notWritable

and then

ifnot (type(the given VarBind) is type(the given ObjectName#1))
generate error wrongType

and then

ifnot (length(the given VarBind) is length(the given ObjectName#1))
generate error wronglLength

and then

ifnot (encoding(the given VarBind) is encoding(the given ObjectName#1))
generate error wrongEncoding

and then

ifnot (alwaysAtrib(the given ObjectName#1, the given ObjectSyntax#?2))
generate error wrongValue

and then

ifnot (alwaysCreate(the given ObjectName#1))
generate error noCreation

and then

ifnot (nowCreate(the given ObjectName#1))
generate error inconsistentName

and then

ifnot (not access(the given ObjectName#1) is READ-ONLY and
not access(the given ObjectName#1) is NOT-ACCESSIBLE)
generate error notWritable

and then

ifnot (nowAtrib(the given ObjectName#1, the given ObjectSyntax#?2))
generate error inconsistentValue

e updateVarBind :: action[receiving VarBind][giving VarBind]

(58) updateVarBind =
set(the given ObjectName#1, the given ObjectSyntax#?2)

o isAccessAllowed :: action

(59) isAccessAllowed =

20

give (the cached “secModel”, the cached “secName”, the cached “secLevel”,
class of the cached “pduType”, the cached “contextName”, the given ObjectName#1)

then
| send a message[to ACModel of entity][containing then]
then
| accept contents of message[from ACModel of entity][containing an Statuslnformation]
then
‘ check all (it is noSuchView, it is noAccessEntry, it is noGroupNome)
and then
| setError(authorizationError, 0) and give the cached “variable-bidings”
then escape with them
else
| check (it is noSuchContext)
and then
| setError(0,0) and give empty-list
then escape with them

else
‘ setError(genError,0) and give the cached “variable-bidings”

then escape with them

1.6 Management Information Operations

e get() :: ObjectName — action[giving ObjectValue]
(60) get(N:ObjectName) =[O
e set(_,):: ObjectName, ObjectSyntax — action

(61) set(N:ObjectName,S:ObjectSyntax) = [

1.7 Auxiliar

e map using _ :: abstraction — action[receiving list]

(62) map using A:abstraction =

21

unfolding

| check (the given list is empty-list)
and then
’ give it
or
| check not (the given list is empty-list)
and then
| give head of the given list
then
’ enact A
then
| give list of the given tuple
and
’ give tail of the given list
then unfold
then
‘ give concatenation(the given list#1, the given list#2)

e map with repetition using _ :: abstraction — action[receiving (natural, list)]

(63) map with repetition using A:abstraction =

unfolding
| check (the given natural#1is 0)
and then
| give the empty-list
or
| check not (the given natural#1 is greater than 0)
and then
| give difference(the given natural#1, 1)
and
‘ give the given list#2
then
‘ map using A
then
‘ give the given list#2
and
| unfold
then
| give concatenation(the given list#1, the given list#2)
e break :: (list, integer) — action[giving (list, list)]

(64) break (L:list, I:integer) =

22

| give 0 and give L
then
unfolding
‘ ckeck (the given list#2 is empty-list)
and then
| give (empty-list, empty-list)
or
| ckeck (the given integer#t1 is I)
and then
‘ give (empty-list, the given list#2)
or
| ckeck (the given integer#t1 is less than I)
and then
‘ give list of head of the given list#2
and
‘ give sum(the given integer#1, 1)
and
| give tail of the given list#2
then
‘ unfold
then
| give (concatenation(the given list#1, the given list#2), the given list#3)

e accept _ :: message — action[giving tuple]

(65) accept M:message =
’ receive M
then
‘ cache the sender of it as “sender”
and
| give the contents of it

e accept contents of _ :: message — action[giving tuple]

(66) accept contents of M:message =

| receive M
then
’ give the contents of it
e ifnot _ generate error _ :: yielder[of truth-value], errorStatus — action[receiving Object-
Name]

(67) ifnot Y:yielder generate error E:errorStatus =

23

(68)

(69)

(70)

(71)

(72)

| check Y

or
| check not ¥
and then
‘ escape with (E, index of the given ObjectName in the cached “variable-bindings”)
ifnot _ generate error _ :: yielder[of truth-value], errorIndication — action

ifnot Y :yielder generate error E:errorindication =
| check Y
or
| check not ¥
and then
| escape with E

increment(_) :: token — action

increment(N:ObjectName) =
| get(N)
then
‘ set(N, sum(it, 1))

increment(K :token) =
store the sum(the integer stored in the cell bound to K, 1) in the cell bound to K

cache as : tuple, token — action

cache D:tuple as K:token =
store D in the cell bound to K

cache the splitted PDU :: action

cache the splitted PDU =
] cache the given requestld#1 as “request-id”

and

| cache max(0, the given Index#2) as “non-repeaters”
and

] cache the given Index#3 as “max-repetitions”

and

| cache the given VarBindList#4 as “variable-bindings”

e setError _ :: (errorStatus, Index) — action[giving (errorStatus, Index)]

(73) setError(S:errorStatus, |:Index) =

| give (S, 1)

e send back to sender :: tuple — action

24

(74) send T:tuple back to sender =
send a message[to the cached “sender”][containing T

2 Productors

2.1 Entity
e Dispatcher of entity :: yielder[of agent]
(75) Dispatcher of entity = give the agent bound to “dispatcher”
e ACModel of entity :: yielder[of agent]
(76) ACModel of entity = [
e the generated request-id :: yielder[of requestld]
(77) the generated request-id = [
e the generated sendPduHandle :: yielder[of sendPduHandle]
(78) the generated sendPduHandle = [J
e the extracted from _ :: tuple, tuple — yielder[of tuple]
(79) the D < messageProcessingModel extracted from N:Network-MSG = [
(80) the D < transportDomain extracted from N:Network-MSG = [
(81) the D < transportAddress extracted from N:Network-MSG = [J
e the associated with _ :: agent, tuple — yielder|[of agent]
(82) the A < Application associated with M :Notification-Macro = [J
(83) the A < Dispatcher associated with N:transportData = [
(88) the A < MPModel associated with M:messageProcessingModel = [
(85) the A < Application associated with (C:contextEnginelD, O:pduType) = [
86) the A < Application associated with H:sendPduHandle = [
e the s associated with _ :: agent, opTag — yielder[of truth-value]

(87) the A:agent is associated with O:opTag = [J

25

2.2 Management Information Operations

e existsObject :: ObjectName — yielder[of truth-value]
(88) existsObject N:ObjectName = [

e existsinstance _ :: ObjectName — yielder|of truth-value]
(89) existslnstance N:ObjectName = [

e the next to :: ObjectName — yielder[of ObjectName]
(90) the next to N:ObjectName = [J

e access () :: ObjectName — yielder
(91) access(N:ObjectName) = [J

e type() :: tuple — yielder
(92) type(V:VarBind) = O
(93) type(N:ObjectName) = [

e length(_) :: tuple — yielder[of number]
(94) length(V:VarBind) = O
(95) length(N:ObjectName) = O

e encoding() :: tuple — yielder
(96) encoding(V:VarBind) = O
(97) encoding(N:ObjectName) = [

e alwaysCreate() :: ObjectName — yielder[of truth-value]
(98) alwaysCreate(/N:ObjectName) = [

e nowCreate() :: ObjectName — yielder[of truth-value]
(99) nowCreate(N:ObjectName) = [

e alwaysAtrib(_,) :: ObjectName, ObjectSyntax — yielder[of truth-value]
(100) alwaysAtrib(N:ObjectName, S:ObjectSyntax) = [J

e nowAtrib(_) :: ObjectName, ObjectSyntax — yielder[of truth-value]

(101) nowAtrib(N:ObjectName, S:ObjectSyntax) = [J

26

2.3 Auxiliar

e the cached _ :: token — yielder[of datum]

(102) the cached K:token =
the datum stored in the cell bound to K

e class of :: opTag — yielder
(103) class of 0:opTag = O

e index of _in _ :: ObjectName, VarBindList — yielder[of Index]
(104) index of N:ObjectName in V:VarBindList = [

e NotificationTypeld of _ :: VarBindList — yielder[of ObjectValue]
(105) NotificationTypeld of V:VarBindList = [

e size of scopedPdu :: yielder[of integer]

(106) size of scopedPdu = [

3 Data

3.1 PDU

(107) opTag = Get | GetNext | GetBulk | Set | Inform | Trap | Response | [I (individual)

(108) PDU of (R:requestld, S:errorStatus, I:Index, V:VarBindList) with tag T:tag — PDU

(109) request-id of PDU of (R,S,I,V) with tag T = R
(110) error-status of PDU of (R,S,I,V) with tag T = S
(111) error-index of PDU of (R,S,I,V) with tag T = I
(112) variable-bindings of PDU of (R,S,I,V) with tag T = V
(113) operation of PDU of (R,S,I,V) with tag T = T
e tagged with _ :: PDU, tag — PDU

(114) P:PDU tagged with Op:opTag =
if operation of P is Op then P else nothing

27

3.2 SDU

(115) SDU > sendPdu-SDU | prepareOutgoingMsgIn-SDU | prepareOutgoingMsgOut-SDU |
returnResponsePdu-SDU | prepareResponseMsgIn-SDU | prepareResponseMsgOut-SDU

|
prepareDataElementsin-SDU | prepareDataElementsOut-SDU |

processPdu-SDU | processResponsePdu-SDU | Network-MSG
(116) sendPdu-SDU = (transportData, messageData, securityData, accessData, expectResponse)

(117) prepareOutgoingMsgIn-SDU = (transportData, messageData, securityData, accessData,
expectResponse, sendPduHandle)

(118) prepareOutgoingMsgOut-SDU = (statusInformation, transportData, Network-MSG)

(119) returnResponsePdu-SDU = (messageData, securityData, accessData, maxSizeRespons-
eScopedPdu, stateReference, statusinformation)

(120) prepareResponseMsgIn-SDU = (messageData, securityData, accessData, maxSizeRespons-
eScopedPdu, stateReference, statusinformation)

(121) prepareResponseMsgOut-SDU = (Result, transportData, Network-MSG)
(122) prepareDataElementsIin-SDU = (transportData, Network-MSG)

(123) prepareDataElementsOut-SDU = (Result, messageData, securityData, accessData, pdu-
Type, sendPduHandle, maxSizeResponseScopedPdu, statusinformation, stateReference)

(124) processPdu-SDU = (messageData, securityData, accessData, maxSizeResponseScoped-
Pdu, stateReference)

(125) processResponsePdu-SDU = (messageData, securityData, accessData, statusInformation,
sendPduHandle)

(126) transportData = (transportDomain, transportAddress)
(127) messageData = (messageProcessingModel)
(128) securityData = (securityModel, securityName, securityLevel)

(129) accessData = (pduVersion, scopedPdu)

3.3 MSG
(130) Network-MSG = v3MPMessage | [

28

3.4 Auxiliar PDU

(131) errorStatus = noError | genErr | commitFailed | undoFailed | wrongType | wronglLength
| wrongEncoding | wrongValue | noCreation | inconsistentValue | notWritable |
inconsistentName | authorizationError (individual)

(132) errorStatus < Index

(133) Index < integer

134) VarBindList = list of VarBind™

(135) VarBind = (ObjectName, ObjectValue)
(136) ObjectName < token

(137) ObjectValue = ObjectSyntax | Exceptions
(138) ObjectSyntax = [

(139) Exceptions = unSpecified | noSuchObject | noSuchinstance | endOfMibView (individual)

3.5 Auxiliar SDU

(140) sendPduHandle = none | O (individual)

(141) pduType = opTag

(142) statuslnformation = Result = success | errorindication
(143) success = noError

(144) errorindication = noMPModel | noApplication | discardByMPModel | discardBySec-
Model | discardBySecName | discardByContextEnglD | discardByContextName |
discardByPduVersion | discardByRequestID | discardByOperation (individual)

(145) par of (E:errorIndication, V:ObjectValue) — errorindication

3.6 Auxiliar

(146) handle > requestld

(147) handle > sendPduHandle

(148) handle > stateReference

(149) agent > Application | MPModel | Dispatcher
(150) Notification-Macro = [J

(151) MaxAccess = Not-Acessible | Read-Only | Read-Create | Read-Write | O

29

