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1 Actions

1.1 Entity

e Manager-daemon :: action

(1) Manager-daemon =
‘ subordinate a dispatcher then bind “dispatcher” to it
and
‘ subordinate an application then bind “CR” to it
and initiate user-applications
and initiate MPS
and initiate SS
hence

send a message[to the agent bound to “dispatcher’]

[containing closure abstraction of Dispatcher-daemon]

and
| send a message][to the agent bound to “CR"][containing closure abstraction of CR-daemon]
and activate user-applications
and activate MPS
and activate SS
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e Agent-daemon :: action

Agent-daemon =
‘ subordinate a dispatcher then bind “dispatcher” to it
and
‘ subordinate an application then bind “NR” to it
and initiate user-applications
and initiate MPS
and initiate SS
and initiate ACS
hence

send a message[to the agent bound to “dispatcher’]

[containing closure abstraction of Dispatcher-daemon]

and
| send a message[to the agent bound to “NR"][containing closure abstraction of NR-daemon]
and activate user-applications
and activate MPS
and activate SS
and activate ACS

e Dispatcher-daemon :: action

Dispatcher-daemon =
‘ initialize LCD-Dispatcher
hence unfolding
‘ procedure Dispatcher
trap complete
and then unfold

e user-application _ :: integer — action

user-application X:integer =
‘ initialize LCD-Generate
hence

procedure CommandGenerator

user-application X:integer =
| initialize LCD-Generate
hence

procedure NotificationOriginator

e CommandResponder-daemon :: action
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CommandResponder-daemon =

‘ initialize MIBs

and

‘ initialize LCD-Process

and

‘ register CR

hence unfolding
‘ procedure CommandResponder
trap complete

and then unfold

e NotificationReceiver-daemon :: action

NotificationReceiver-daemon =

| initialize LCD-Process

and

‘ register NR

hence unfolding
| procedure NotificationReceiver
trap complete

and then unfold

e initialize LCD-Dispatcher :: action

initialize LCD-Dispatcher =
allocate a cell then bind “sender” to it

e initialize LCD-Generate :: action

initialize LCD-Generate =
| rebind
and allocate a cell then bind “transpDom” to it
and allocate a cell then bind “transpAdd” to it
and allocate a cell then bind “MPModel” to it
and allocate a cell then bind “secModel” to it
and allocate a cell then bind “secName” to it
and allocate a cell then bind “secLevel” to it
and allocate a cell then bind “pduVersion” to it
and allocate a cell then bind “contextEngID" to it
and allocate a cell then bind “contextName” to it

e initialize LCD-Process :: action



(10) initialize LCD-Process =
| rebind
and allocate a cell then bind “MPModel” to it
and allocate a cell then bind “secModel” to it
and allocate a cell then bind “secName” to it
and allocate a cell then bind “secLevel” to it
and allocate a cell then bind “pduVersion” to it
and allocate a cell then bind “contextEngID" to it
and allocate a cell then bind “contextName” to it
and allocate a cell then bind “request-id” to it
and allocate a cell then bind “non-repeaters” to it
and allocate a cell then bind “max-repetitions” to it
and allocate a cell then bind “variable-bindings” to it

e initialize MIBs :: action
(11) initialize MIBs = OO
e register CR :: action

(12) register CR =
| get(“snmpEnginelD")
then
| associate performing-agent with (it, Get)
and
| associate performing-agent with (it, GetNext)
and
| associate performing-agent with (it, GetBulk)
and
| associate performing-agent with (it, Set)

e register NR :: action

(13) register NR =
| get(“snmpEnginelD")
then
| associate performing-agent with (it, Inform)
and
| associate performing-agent with (it, Trap)

e associate  with _ :: agent, tuple — action
(14) associate A:agent with (C:contextEngineld, O:pduType) = [

e initiate user-applications :: action
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initiate user-applications = [
initiate MPS :: action

initiate MPS = [

initiate SS :: action

initiate SS = [

initiate ACS :: action

initiate ACS =[O

activate user-applications :: action
activate user-applications = [
activate MPS :: action
activate MPS = [

activate SS :: action

activate SS = [J

activate ACS :: action

activate ACS = [T

1.2 Dispatcher

(23)

procedure Dispatcher :: action

procedure Dispatcher =
| accept a message[from an agent][containing a SDU]
then

‘ procedure Disp send-request

or

‘ procedure Disp send-response

or

‘ procedure Disp receive

procedure Disp send-request :: action[receiving tuple]



(24) procedure Disp send-request =

| give (the given tuple)[sendPdu-SDU]

then

‘ procedure Disp send-request A

then

send a message[to the MPModel associated with the given messageProcessingModel#3]
[containing (the given tuple)[prepareOutgoingMsgIn-SDU]]

and then
‘ accept contents of a message[from an MPModel][containing a tuple[prepareOutgoingMsgOut-!
then
‘ procedure Disp send-request B
then
send a message[to the Dispatcher associated with (the given transportDomain#1,
the given transportAddress#2)][containing the given Network-MSG#3]

e procedure Disp send-request A :: action[receiving sendPdu-SDU][giving prepareOutgoingMsgIn-
SDU]

(25) procedure Disp send-request A =

‘ check (the MPModel associated with the given messageProcessingModel#3 is an agent)

or

] check not (the MPModel associated with the given messageProcessingModel#3 is an agent)
and then

‘ send noMPModel back to sender

and then

| escape

and then

| regive and generate SendPduHandle

e procedure Disp send-request B :: action[receiving prepareOutgoingMsgOut-SDU]

(26) procedure Disp send-request B =

| check (the given statusinformation#1 is success)
and then

‘ send the generated sendPduHandle back to sender
or

] check not (the given statusInformation#1 is success)
and then

| send the given statusInformation#1 back to sender
and then

| escape

and then

| give (the given transportDomain#2, the given transportAddress#3, the given Network-MSG#4




e procedure Disp send-response :: action[receiving tuple]

(27) procedure Disp send-response =

| give (the given tuple)[returnResponsePdu-SDU]

then

send a message[to the MPModel associated with the given messageProcessingModel#1]
[containing (the given tuple)[prepareResponseMsgin-SDU|]

and then
‘ accept contents of a message[from an MPModel][containing a tuple[prepareResponseMsgOut-!
then
‘ procedure Disp send-response B
then
send a message[to the Dispatcher associated with (the given transportDomain#1,
the given transportAddress#2)][containing the given Network-MSG#3]

e procedure Disp send-response B :: action[receiving prepareResponseMsgOut-SDU]

(28) procedure Disp send-response B =

| check (the given Result#1 is success)

or

| check not (the given Result#1 is success)

and then

| send the given Result#1 back to sender

and then

| escape

and then

| give (the given transportDomain#2, the given transportAddress#3, the given Network-MSG#4)

e procedure Disp receive :: action[receiving tuple]

(29) procedure Disp receive =



| give (the given tuple)[Network-MSG]
then
| procedure Disp receive A

then
send a message[to the MPModel associated with the given messageProcessingModel#1]

[containing (the rest of the given tuple)[prepareDataElementsin-SDU]]

and then

‘ accept contents of a message[from an MPModel][containing a tuple[prepareDataElementsOut-
then

‘ procedure Disp receive-request B

then

send a message[to the given Application#1]
[containing (the rest of the given tuple)[processPdu-SDU]]

or
‘ procedure Disp receive-response B

then

send a message[to the given Application#1]
[containing (the rest of the given tuple)[processResponsePdu-SDU]]




e procedure Disp receive A :: action[receiving Network-MSG]|

(30) procedure Disp receive A =
| increment(“snmplnPkts")
and then

| give the messageProcessingModel extracted from the given Network-MSG
trap

| increment(“snmplnASNParseErrs”)

and then

| escape
then
‘ give (the MPModel associated with the given messageProcessingModel)
or
‘ check not (the MPModel associated with the given messageProcessingModel is an agent)
and then
| increment(“snmplnBadVersions")
and then
| escape
and then
give (the transportDomain extracted from the given Network-MSG,

the transportAddress extracted from the given Network-MSG)

and then
’ regive

e procedure Disp receive-request B :: action[receiving prepareDataElementsOut-SDU]

(31) procedure Disp receive-request B =



| check not (the given Result#1 is sucess)

and then escape

or

| check (the given Result#1 is sucess)

and then

| check (the given sendPduHandle#11 is none)

and then

‘ give the Application associated with (the given contextEnginelD#7, the given pduType#1(

trap

| increment(“snmpUnknownPDUHandlers")

and then

| regive and get(“snmpUnknownPDUHandlers”)

then

give (the given messageProcessingModel#2, securityModel#3, securityName#4,

securityLevel#5, pduVersion#6, contextEnginelD#7, contextName#8, PDU#9,
maxSizeResponseScopedPdu#12, stateReference#14,
par of(noApplication, the given ObjectValue#15))

then

‘ procedure Disp send-response

and then

| escape

and then

give (the given messageProcessingModel#2, securityModel#3, securityName#4, securityLevel#

pduVersion#6, contextEnginelD#7, contextName#8, PDU#9,

maxSizeResponseScopedPdu#12, stateReference#14)
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e procedure Disp receive-response B :: action[receiving prepareDataElementsOut-SDU]

(32) procedure Disp receive-response B =
| check not (the given Result#1 is sucess)
and then
| escape
or
| check (the given Result#1 is sucess)
and then
| check not (the given sendPduHandle#11 is none)
and then
‘ give the Application associated with the given sendPduHandle#11
trap
| increment(“snmpUnknownPDUHandlers”)
and then
| escape
and then
give (the given messageProcessingModel#2, securityModel#3, securityName#4, securityLevel#
pduVersion#6, contextEnginelD#7, contextName#8, PDU#09, statusinformation#13,
sendPduHandle#11)

e generate sendPduHandle :: action[giving sendPduHandle]

(33) generate sendPduHandle = [J

1.3 Standard Applications

e procedure CommandGenerator :: action

(34) procedure CommandGenerator =
‘ procedure Aplic send-request
then
| send a message[to Dispatcher of entity][containing (the given tuple)[sendPdu-SDU]]
then
| accept contents of a message[from Dispatcher of entity][containing a datum]
then
| ifnot (it is a sendPduHandle) generate error it
and then
| cache it as “sendPduHandle”
and then
accept contents of a message[from Dispatcher of entity]
[containing a tuple[processResponsePdu-SDU]]

then
‘ procedure Aplic receive-response
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e procedure CommandResponder :: action

(35) procedure CommandResponder =
| accept contents of a message[from Dispatcher of entity][containing a tuple[processPdu-SDU]]
then
‘ procedure Aplic receive-request
then
‘ give the cached ‘“variable-bindings” then map using abstraction of isAccessAllowed
and then
‘ operationResponse the given opTag#5
then
‘ procedure Aplic send-response
then
| send a message[to Dispatcher of entity][containing (the given tuple)[returnResponsePdu-SDU]]

e procedure NotificationOriginator :: action

36) procedure NotificationOriginator =
‘ give the given list#2
then
‘ map using abstraction of isAccessAllowed
and then
‘ procedure Aplic send-request
then
| send a message[to Dispatcher of entity][containing (the given tuple)[sendPdu-SDU]]
and then
| check (the given opTag#1 is Inform)
and then
accept contents of a message[from Dispatcher of entity]
[containing a tuple[processResponsePdu-SDU]]
then
give (the error-status of the given Pdu#s8, the error-index of the given Pdu#8,
the given variable-bindings of the given Pdu#38)

or
| check (the given opTag#1 is Trap)

e procedure NotificationReceiver :: action

(37) procedure NotificationReceiver =
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| accept contents of a message[from Dispatcher of entity][containing a tuple[processPdu-SDU]]

then
‘ procedure Aplic receive-request

then

’ check (the given opTag#5 is Inform)
and then

| operationResponse Inform

then

‘ procedure Aplic send-response

then
| send a message[to Dispatcher of entity][containing (the given tuple)[returnResponsePdu-SL

or
| check (the given opTag#5 is Trap)
and then

] operationResponse Trap

e procedure Aplic send-request :: action[giving sendPdu-SDU]

(38) procedure Aplic send-request =
give (the cached “transpDom”, the cached “transpAdd”, the cached “MPModel”,

the cached “secModel”’, the cached “secName”, the cached “secLevel”,

the cached “pduVersion”, the cached “contEngID", the cached “contName”)
and

‘ check not (the given opTag#1 is GetBulk)

and then

] operationRequest the given opTag#1 with (0, 0, the given list#2)

or

| check (the given opTag#1 is GetBulk)

and then
operationRequest GetBulk with (the given non-repeaters#3, the given max-repetitions#4,

the given list#2)

and
| give not (the given opTag#1 is Trap)

e procedure Aplic receive-response :: action[receiving processResponsePdu-SDU]|

(39) procedure Aplic receive-response =
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ifnot (the given messageProcessingModel#1 is the cached “MPModel”)
generate error discardByMPModel

and

ifnot (the given securityModel#2 is the cached “secModel”)
generate error discardBySecModel

and

ifnot (the given securityName#3 is the cached “secName”)
generate error discardBySecName

and

ifnot (the given pduVersion#5 is the cached “pduVersion”)
generate error discardByPduVersion

and

ifnot (the given contextEnginelD#6 is the cached “contEnglD")
generate error discardByContextEnglD

and

ifnot (the given contextName#7 is the cached “contName”)
generate error discardByContextName

and

ifnot (the request-id of the given Pdu#8 is the generated “request-id”)
generate error discardByRequestID

and then
give (error-status of the given Pdu#8, error-index of the given Pdu#S8,
variable-bindings of the given Pdu#8)

e procedure Aplic receive-request :: action[receiving processPdu-SDU][giving (request-id,error-
status,Index,list,opTag)]

(40) procedure Aplic receive-request =
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ifnot (the performing-agent is associated with the operation of the given PDU#8)
generate error discardByOperation
and then
give (request-id of the given PDU#8, error-status of the given PDU#S8,
error-index of the given PDU#8, variable-bindings of the given PDU#38,
operation of the given PDU#8)
then
| | regive and cache the splitted PDU
and then
‘ cache the given messageProcessingModel as “MPModel”
and
‘ cache the given securityModel as “secModel”
and
‘ cache the given securityName as “secName”
and
‘ cache the given securityLevel as “secLevel’
and
‘ cache the given pduVersion as “pduVersion”
and
| cache the given contextEnginelD as “contextEng|D”
and
‘ cache the given contextName as “contextName”

e procedure Aplic send-response :: action[giving returnResponsePdu-SDU]

(a1) procedure Aplic send-response =
give (the cached “MPModel”,
the cached “secModel”’, the cached “secName”, the cached “secLevel”,
the cached “pduVersion”, the cached “contEnglD”, the cached “contName”)
and then
give Pdu of (the cached “request-id”, the given errorStatus#1,
the given Index#2, the given VarBindList#3) with tag Response

and then
| give (size of scopedPdu, the cached “stateReference”, the given errorStatus#1)

1.4 Protocol Operations

e operationRequest _ with (_, , ) :: opTag, Index, Index, tuple — action

(42) operationRequest Op:opTag with (S:Index, I:Index, T:tuple) =
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| generate request-id
and
| generate VarBindList from T
then
’ give the PDU of (the given requestld#1, S, I, the given VarBindList#2) with tag Op

e generate VarBindList from _ :: tuple — action

(43) generate VarBindList from N:list of ObjectNamet =
‘ give N
then
‘ map using abstraction of emptyVarBind

(44) generate VarBindList from V:VarBindList = regive

(45) generate VarBindList from M :Notification-Macro =

| get(“sysUpTime.0")

then

’ give list of (“sysUpTime.0", the given ObjectValue)
and

| get(“snmpTrapOID.0")

then

| give list of (“snmpTrapOID.0", the given ObjectValue)
and

| generate ObjectNameList from M

then

‘ map using abstraction of consultVarBind

then

| give concatenation(the given list#1, the given list#2, the given list#3)

e operationResponse  :: opTag — action

(46) operationResponse Get =
| setError(noError, 0)

and
| give the cached “variable-bindings”
then
‘ map using abstraction of consultVarBind
trap
| setError(genErr, the given Index)
and

| give the cached “variable-bindings”
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(47) operationResponse GetNext =
| setError(noError, 0)

and
’ give the cached “variable-bindings”
then
‘ map using abstraction of consultNextVarBind
trap
| setError(genErr, the given Index)
and

‘ give the cached “variable-bindings”

(48) operationResponse GetBulk =
| setError(noError, 0)
and
| give min(the cached “non-repeaters”, count items of the cached “variable-bindings")
and
| give the cached “variable-bindings”
then
| break(the given list#2, the given integer#1)
then
| give the given list#1
then
‘ map using abstraction of consultNextVarBind
and then
’ give the cached “max-repetitions”
and
‘ give the given list#2
then
‘ map with repetition using abstraction of consultNextVarBind
then
] give concatenation(the given list#1, the given list#2)
trap
| setError(genErr, the given Index)
and
‘ give the cached “variable-bindings”

(49) operationResponse Set =
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| give the cached “variable-bindings”

then

‘ map using abstraction of validateVarBind

then

| setError(noError, 0)

and

‘ map using abstraction of updateVarBind

trap

| setError(commitFailed, the given Index)

and
] break(the cached “variable-bindings”, the given Index)
then
‘ map using abstraction of undoVarBind

trap

| setError(undoFailed, 0)

trap

| setError(the given errorStatus#1, the given Index#2)

then

| give (the given errorStatus#1, the given Index#2, the cached “variable-bindings")

(50) operationResponse Inform =
‘ setError(noError, 0)

and

’ give the cached “variable-bindings”

and
‘ give the Application associated with NotificationTypeld of the cached “variable-bindings”
then

| send a message [to the given Application][containing the cached “variable-bindings”]

(51) operationResponse Trap =
| give the Application associated with NotificationTypeld of the cached “variable-bindings”

then
| send a message [to the given Application][containing the cached “variable-bindings’]

e generate request-id :: action[giving requestid]
(52) generate request-id = [
e generate ObjectNamelList from _ :: Notification-Macro — action[giving ObjectNameList]

(53) generate ObjectNameList from M :Notification-Macro = [

1.5 VarBind Operations
e emptyVarBind :: action[receiving VarBind][giving VarBind)]
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(54) emptyVarBind =
give (the given ObjectName#1, unSpecified)

e consultVarBind :: action[receiving VarBind][giving VarBind)]

(s5) consultVarBind =
| check (existsObject the given ObjectName1)
and then
| check not (existsInstance the given ObjectName#1)
and then

| give the given ObjectName#1

and

| get(the given ObjectName#1)
else
| give (the given ObjectName#1, noSuchlInstance)
else
’ give (the given ObjectName#1, noSuchObject)

e consultNextVarBind :: action[receiving VarBind|[giving VarBind]

(s6) consultNextVarBind =
| give the next to the given ObjectName#£1
then
’ regive
and
| get(the given ObjectName)
else
’ give (the given ObjectName#1, endOfMibView)

e validateVarBind :: action[receiving VarBind]

(57) validateVarBind =
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ifnot (existsObject the given ObjectName#1)
generate error notWritable

and then

ifnot (type(the given VarBind) is type(the given ObjectName#1))
generate error wrongType

and then

ifnot (length(the given VarBind) is length(the given ObjectName#1))
generate error wronglLength

and then

ifnot (encoding(the given VarBind) is encoding(the given ObjectName#1))
generate error wrongEncoding

and then

ifnot (alwaysAtrib(the given ObjectName#1, the given ObjectSyntax#?2))
generate error wrongValue

and then

ifnot (alwaysCreate(the given ObjectName#1))
generate error noCreation

and then

ifnot (nowCreate(the given ObjectName#1))
generate error inconsistentName

and then

ifnot (not access(the given ObjectName#1) is READ-ONLY and
not access(the given ObjectName#1) is NOT-ACCESSIBLE)
generate error notWritable

and then

ifnot (nowAtrib(the given ObjectName#1, the given ObjectSyntax#?2))
generate error inconsistentValue

e updateVarBind :: action[receiving VarBind][giving VarBind]

(58) updateVarBind =
set(the given ObjectName#1, the given ObjectSyntax#?2)

o isAccessAllowed :: action

(59) isAccessAllowed =
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give (the cached “secModel”, the cached “secName”, the cached “secLevel”,
class of the cached “pduType”, the cached “contextName”, the given ObjectName#1)

then
| send a message[to ACModel of entity][containing then]
then
| accept contents of message[from ACModel of entity][containing an Statuslnformation]
then
‘ check all (it is noSuchView, it is noAccessEntry, it is noGroupNome)
and then
| setError(authorizationError, 0) and give the cached “variable-bidings”
then escape with them
else
| check (it is noSuchContext)
and then
| setError(0,0) and give empty-list
then escape with them

else
‘ setError(genError,0) and give the cached “variable-bidings”

then escape with them

1.6 Management Information Operations

e get( ) :: ObjectName — action[giving ObjectValue]
(60) get(N:ObjectName) =[O
e set(_, ):: ObjectName, ObjectSyntax — action

(61) set(N:ObjectName,S:ObjectSyntax) = [

1.7 Auxiliar

e map using _ :: abstraction — action[receiving list]

(62) map using A:abstraction =
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unfolding

| check ( the given list is empty-list )
and then
’ give it
or
| check not ( the given list is empty-list )
and then
| give head of the given list
then
’ enact A
then
| give list of the given tuple
and
’ give tail of the given list
then unfold
then
‘ give concatenation(the given list#1, the given list#2)

e map with repetition using _ :: abstraction — action[receiving (natural, list)]

(63) map with repetition using A:abstraction =

unfolding
| check ( the given natural#1is 0)
and then
| give the empty-list
or
| check not ( the given natural#1 is greater than 0 )
and then
| give difference(the given natural#1, 1)
and
‘ give the given list#2
then
‘ map using A
then
‘ give the given list#2
and
| unfold
then
| give concatenation(the given list#1, the given list#2)
e break  :: (list, integer) — action[giving (list, list)]

(64) break (L:list, I:integer) =
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| give 0 and give L
then
unfolding
‘ ckeck (the given list#2 is empty-list)
and then
| give (empty-list, empty-list)
or
| ckeck (the given integer#t1 is I)
and then
‘ give (empty-list, the given list#2)
or
| ckeck (the given integer#t1 is less than I)
and then
‘ give list of head of the given list#2
and
‘ give sum(the given integer#1, 1)
and
| give tail of the given list#2
then
‘ unfold
then
| give (concatenation(the given list#1, the given list#2), the given list#3)

e accept _ :: message — action[giving tuple]

(65) accept M:message =
’ receive M
then
‘ cache the sender of it as “sender”
and
| give the contents of it

e accept contents of _ :: message — action[giving tuple]

(66) accept contents of M:message =

| receive M
then
’ give the contents of it
e ifnot _ generate error _ :: yielder[of truth-value], errorStatus — action[receiving Object-
Name]

(67) ifnot Y:yielder generate error E:errorStatus =
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(68)

(69)

(70)

(71)

(72)

| check Y

or
| check not ¥
and then
‘ escape with (E, index of the given ObjectName in the cached “variable-bindings”)
ifnot _ generate error _ :: yielder[of truth-value], errorIndication — action

ifnot Y :yielder generate error E:errorindication =
| check Y
or
| check not ¥
and then
| escape with E

increment(_) :: token — action

increment(N:ObjectName) =
| get(N)
then
‘ set(N, sum(it, 1))

increment( K :token) =
store the sum(the integer stored in the cell bound to K, 1) in the cell bound to K

cache as  : tuple, token — action

cache D:tuple as K:token =
store D in the cell bound to K

cache the splitted PDU :: action

cache the splitted PDU =
] cache the given requestld#1 as “request-id”

and

| cache max(0, the given Index#2) as “non-repeaters”
and

] cache the given Index#3 as “max-repetitions”

and

| cache the given VarBindList#4 as “variable-bindings”

e setError _ :: (errorStatus, Index) — action[giving (errorStatus, Index)]

(73) setError(S:errorStatus, |:Index) =

| give (S, 1)

e send  back to sender :: tuple — action
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(74) send T:tuple back to sender =
send a message[to the cached “sender”][containing T

2 Productors

2.1 Entity
e Dispatcher of entity :: yielder[of agent]
(75) Dispatcher of entity = give the agent bound to “dispatcher”
e ACModel of entity :: yielder[of agent]
(76) ACModel of entity = [
e the generated request-id :: yielder[of requestld]
(77) the generated request-id = [
e the generated sendPduHandle :: yielder[of sendPduHandle]
(78) the generated sendPduHandle = [J
e the extracted from _ :: tuple, tuple — yielder[of tuple]
(79) the D < messageProcessingModel extracted from N:Network-MSG = [
(80) the D < transportDomain extracted from N:Network-MSG = [
(81) the D < transportAddress extracted from N:Network-MSG = [J
e the associated with _ :: agent, tuple — yielder|[of agent]
(82) the A < Application associated with M :Notification-Macro = [J
(83) the A < Dispatcher associated with N:transportData = [
(88) the A < MPModel associated with M:messageProcessingModel = [
(85) the A < Application associated with ( C:contextEnginelD, O:pduType) = [
86) the A < Application associated with H:sendPduHandle = [
e the s associated with _ :: agent, opTag — yielder[of truth-value]

(87) the A:agent is associated with O:opTag = [J
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2.2 Management Information Operations

e existsObject  :: ObjectName — yielder[of truth-value]
(88) existsObject N:ObjectName = [

e existsinstance _ :: ObjectName — yielder|of truth-value]
(89) existslnstance N:ObjectName = [

e the next to  :: ObjectName — yielder[of ObjectName]
(90) the next to N:ObjectName = [J

e access () :: ObjectName — yielder
(91) access(N:ObjectName) = [J

e type( ) :: tuple — yielder
(92) type(V:VarBind) = O
(93) type(N:ObjectName) = [

e length(_) :: tuple — yielder[of number]
(94) length(V:VarBind) = O
(95) length(N:ObjectName) = O

e encoding( ) :: tuple — yielder
(96) encoding( V:VarBind) = O
(97) encoding(N:ObjectName) = [

e alwaysCreate( ) :: ObjectName — yielder[of truth-value]
(98) alwaysCreate(/N:ObjectName) = [

e nowCreate( ) :: ObjectName — yielder[of truth-value]
(99) nowCreate( N:ObjectName) = [

e alwaysAtrib(_, ) :: ObjectName, ObjectSyntax — yielder[of truth-value]
(100) alwaysAtrib( N:ObjectName, S:ObjectSyntax) = [J

e nowAtrib(_) :: ObjectName, ObjectSyntax — yielder[of truth-value]

(101) nowAtrib(N:ObjectName, S:ObjectSyntax) = [J
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2.3 Auxiliar

e the cached _ :: token — yielder[of datum]

(102) the cached K:token =
the datum stored in the cell bound to K

e class of  :: opTag — yielder
(103) class of 0:opTag = O

e index of _in _ :: ObjectName, VarBindList — yielder[of Index]
(104) index of N:ObjectName in V:VarBindList = [

e NotificationTypeld of _ :: VarBindList — yielder[of ObjectValue]
(105) NotificationTypeld of V:VarBindList = [

e size of scopedPdu :: yielder[of integer]

(106) size of scopedPdu = [

3 Data

3.1 PDU

(107) opTag = Get | GetNext | GetBulk | Set | Inform | Trap | Response | [I (individual)

(108) PDU of (R:requestld, S:errorStatus, I:Index, V:VarBindList) with tag T:tag — PDU

(109) request-id of PDU of (R,S,I,V) with tag T = R
(110) error-status of PDU of (R,S,I,V) with tag T = S
(111) error-index of PDU of (R,S,I,V) with tag T = I
(112) variable-bindings of PDU of (R,S,I,V) with tag T = V
(113) operation of PDU of (R,S,I,V) with tag T = T
e  tagged with _ :: PDU, tag — PDU

(114) P:PDU tagged with Op:opTag =
if operation of P is Op then P else nothing
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3.2 SDU

(115) SDU > sendPdu-SDU | prepareOutgoingMsgIn-SDU | prepareOutgoingMsgOut-SDU |
returnResponsePdu-SDU | prepareResponseMsgIn-SDU | prepareResponseMsgOut-SDU

|
prepareDataElementsin-SDU | prepareDataElementsOut-SDU |

processPdu-SDU | processResponsePdu-SDU | Network-MSG
(116) sendPdu-SDU = (transportData, messageData, securityData, accessData, expectResponse)

(117) prepareOutgoingMsgIn-SDU = (transportData, messageData, securityData, accessData,
expectResponse, sendPduHandle)

(118) prepareOutgoingMsgOut-SDU = (statusInformation, transportData, Network-MSG)

(119) returnResponsePdu-SDU = (messageData, securityData, accessData, maxSizeRespons-
eScopedPdu, stateReference, statusinformation)

(120) prepareResponseMsgIn-SDU = (messageData, securityData, accessData, maxSizeRespons-
eScopedPdu, stateReference, statusinformation)

(121) prepareResponseMsgOut-SDU = (Result, transportData, Network-MSG)
(122) prepareDataElementsIin-SDU = (transportData, Network-MSG)

(123) prepareDataElementsOut-SDU = (Result, messageData, securityData, accessData, pdu-
Type, sendPduHandle, maxSizeResponseScopedPdu, statusinformation, stateReference)

(124) processPdu-SDU = (messageData, securityData, accessData, maxSizeResponseScoped-
Pdu, stateReference)

(125) processResponsePdu-SDU = (messageData, securityData, accessData, statusInformation,
sendPduHandle)

(126) transportData = (transportDomain, transportAddress)
(127) messageData = (messageProcessingModel)
(128) securityData = (securityModel, securityName, securityLevel)

(129) accessData = (pduVersion, scopedPdu)

3.3 MSG
(130) Network-MSG = v3MPMessage | [
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3.4 Auxiliar PDU

(131) errorStatus = noError | genErr | commitFailed | undoFailed | wrongType | wronglLength
| wrongEncoding | wrongValue | noCreation | inconsistentValue | notWritable |
inconsistentName | authorizationError (individual)

(132) errorStatus < Index

(133) Index < integer

134) VarBindList = list of VarBind™

(135) VarBind = (ObjectName, ObjectValue)
(136) ObjectName < token

(137) ObjectValue = ObjectSyntax | Exceptions
(138) ObjectSyntax = [

(139) Exceptions = unSpecified | noSuchObject | noSuchinstance | endOfMibView (individual)

3.5 Auxiliar SDU

(140) sendPduHandle = none | O (individual)

(141) pduType = opTag

(142) statuslnformation = Result = success | errorindication
(143) success = noError

(144) errorindication = noMPModel | noApplication | discardByMPModel | discardBySec-
Model | discardBySecName | discardByContextEnglD | discardByContextName |
discardByPduVersion | discardByRequestID | discardByOperation (individual)

(145) par of (E:errorIndication, V:ObjectValue) — errorindication

3.6 Auxiliar

(146) handle > requestld

(147) handle > sendPduHandle

(148) handle > stateReference

(149) agent > Application | MPModel | Dispatcher
(150) Notification-Macro = [J

(151) MaxAccess = Not-Acessible | Read-Only | Read-Create | Read-Write | O
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