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Abstract 

 

In this report we present three case studies in which ANEMONA [1] is used 
in actual conditions of network management. These case studies show 
ANEMONA programs that notify an administrator whenever a suspicious 
behavior is detected (an attack) or when the number of transmitted and 
received IP packages indicates link overload. 
 

1 Attack Detection 

 

  This case study uses ANEMONA programs to detect a probable Denial 
of Service (DoS) attack, which causes the unavailability of services in the attacked 
hosts. ICMP Flooding and TCP Syn Flooding [2] Attacks were tried, both based on 
flood. We successfully detected both attacks through ANEMONA scripts. 
 

1.1 ICMP Flooding Attack Detection 

 

This attack consists in sending a huge lot of ICMP protocol echo requests 
[3] to a given host. The attacked computer will try to respond all of these requests, 
consuming system resources and causing the unavailability of some services. 



The management object icmp.InEchos contains the number of received 
ICMP echo requests and its type is Counter32. With this object, we designed an 
ANEMONA application, which informs an administrator that an attack is happening. 

In order to build this application, we had been monitoring the above 
mentioned object’s behavior in several situations. Based on these data, we chose critical 
values which were used in the current program. To try it, we used a Linux computer 
with NET-SNMP agent, Event and Expression MIB prototypes and an ANEMONA 
translator. We also used a computer with Linux and another one with Windows NT. The 
mentioned computers were connected to an Ethernet Network through 10 Mbps network 
adapters. 

Since the object icmp.icmpInEchos is a counter, it needed to be sampled 
as delta. These samples, all of them delta with 6 seconds of interval, were achieved 
through the following set of tools: Event and Expression MIBs and ANEMONA 
translator. 
  While the network was normally working, with no ICMP echo requests, 
the icmp.icmpInEchos value was kept on zero. When the first host begun to ping the 
server, the delta value of icmp.icmpInEchos became 6 and, when there were two hosts 
pinging the server, the same value became 12. 
  Based on the statements above and ICMP protocol definitions, we can 
say that each ping command performed will generate an ICMP request per second. 
  If you type a ping command with the parameter ‘-f’, the destination host 
will be flooded with requests as fast as they are responded. Using ‘ping –f’, we 
collected, in intervals of 1 minute, the delta values shown in the table of figure 1. 
 

Elapsed time of 
attack 

icmp.icmpInEchos’ delta 
(6 s interval) 

0 min. 3089 
1 min. 4034 
2 min. 4107 
3 min. 4113 
4 min. 4126 
5 min. 4130 
6 min. 4119 
7 min. 4126 

Figure 1: ICMP Flooding attack 

   
  Based on the results above, we chose 1000 as critical value to 
icmp.icmpInEchos delta, using an interval of 6 seconds between samples, value which 
should stands for 166 simultaneous pings. We also noticed that during this attack the 
delta values of icmp.icmpInEchos were always greater than 1000. 
  The following ANEMONA program implements this application: 
 

watch: victim.cce.ufpr.br using private 
icmp.icmpInEchos.0 is Counter32: delta 
begin 

  when (icmp.icmpInEchos.0 > 1000) 
 do 

   notify manger.cce.ufpr.br private icmp.icmpInEchos.0 
 end 
end 

 



  In this program, the host victim.cce.ufpr.br is monitored with the object 
icmp.icmpInEchos from its MIB sampled as delta. When this object’s value will be 
grater than 1000, a notification with icmp.icmpInEchos.0 will be sent to 
manager.cce.ufpr.br1. 
  The ANEMONA translator generated the set of actions shown 
straightforward, where we can notice 14 SNMP commands needed to program this 
application plus additional operations to found empty entries in MIB tables. 
 

snmpset victim.cce.ufpr.br private 98.1.1.2.1.2.1 o icmp.icmpInEchos.0 

  snmpset victim.cce.ufpr.br private 98.1.1.2.1.3.1 i deltaValue 

  snmpset victim.cce.ufpr.br private 98.1.1.1.1.2.1 s “$1 > 1000” 

  snmpset victim.cce.ufpr.br private 98.1.1.1.1.3.1 i unsigned32 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.3.1 i boolean 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.4.1 i absoluteValue 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.5.1 o 98.1.2.1.1.3.1 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.8.1 i 1 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.9.1 i unequal 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.10.1 i 0 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.3.1 i notification 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.6.1 o icmp.icmpInEchos.0 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.7.1 i true 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.6.1 i true 

 
  During the normal operation of this host, with no attacks being 
performed, this program was translated and, after that, attacks were produced typing 
‘ping –f’ in another host. After an average of 4.3 seconds, the host manager.cce.ufpr.br 
got a notification. 
 

1.2 TCP Syn Flooding Attack detection 

 

A TCP Syn Flooding Attack causes a failure in the engine responsible to 
establish connections in TCP protocol. To establish a connection, it is necessary to 
perform a three-way-handshake [8], which begins when a client sends to the server a 
TCP segment with a flag Syn set in its header. Normally the server returns a segment 
with the flags Syn and Ack set to the client’s address found in IP header. By the end, the 
client sends an Ack to the server and a connection is established. 

A TCP Syn Flooding Attack floods a given server with TCP segments 
which contain Syn flags set in their headers, but with their source addresses doctored in 
their IP headers. These source addresses correspond to an unreachable host. So, when a 
server gets these segments, it tries to return segments with flags Syn and Ack set to the 
source addresses written in the IP headers from the former segments. The segments 
returned by the server will not be responded until a timeout occur, which does not allow 
the TCP to complete the three-way-handshake. 

                                                 
1 During the tests, manager.cce.ufpr.br was just a canonical name to victim.cce.ufpr.br. 



  During an attack, the attacker host sends several requests to one or more 
TCP ports in the attacked server. The number of requests shall be enough to flood 
request queues, causing unavailability in services running in the attacked ports. 

To detect an attack like this, the object tcp.tcpAttemptFails counts how 
many times the TCP state’s machine switches from states SYN-SENT or SYN-RCVD 
to state CLOSED, plus how many times it switches from SYN-RCVD to LISTEN. 

A working server, waiting for connections, stays in LISTEN until it gets 
a Syn request. When it gets this request, which will have its source address doctored to 
an unreachable one during an attack, the server will send to the source address a 
segment with flags Syn and Ack set and will switch to SYN-RCVD, where it will wait 
for an ack. Since there will not this confirmation, the server will stay on SYN-RCVD 
until it reaches a timeout, when switches to CLOSED, incrementing 
tcp.tcpAttemptFails. 

In this case study, we used the program Neptune [2], which produces 
spoofing, generating doctored segments, with source and destination addresses and port 
given by the user. 

The equipment used was a computer with Linux, NET-SNMP agent, 
Event and Expression MIBs, ANEMONA translator and Apache, WU-FTP and telnetd 
servers plus another computer with Linux, telnet and Neptune. Both were connected to 
an Ethernet Network through 10 Mbps interfaces. 

As the object tcp.tcpAttemptFails is a counter, it was sampled as delta, 
with 6 seconds interval, using Expression MIB and ANEMONA translator. 

With the net working normally, we connected FTP, HTTP and telnet 
services using the monitored host as client and also as server. The value of 
tcp.tcpAttempt Fails.0 was kept in zero. We concluded that these errors are not frequent. 

We ran the first attack against the service at port 23 (telnet), using 5000 
segments and, using 6 seconds intervals, we collected the values from figure 2. After 30 
seconds, the delta value of tcp.tcpAttemptFails was stable in 300. Ending this attack, the 
absolute value of tcp.tcpAttemptFails.0 was 4887. 

 
Elapsed time of 

attack 
tcp.tcpAttemptFails’ delta 

(6 s interval) 

0 s 0 
6 s 0 

12 s 170 
18 s 300 
24 s 301 
30 s 300 
Figure 2: TCP Syn Flooding Attack 

 
  Based on these test results, we chose 25 as critical value to 
tcp.tcpAtemptFails delta, using 6 seconds of interval between samples, which stands for 
four failures per second. 
  The following ANEMONA program implements this application2: 

                                                 
2 During the tests, manager.cce.ufpr.br was just a canonical name to victim.cce.ufpr.br. 



watch: victim.cce.ufpr.br using private 
tcp.tcpAttemptFails.0 is Counter32: delta 
begin 
 when tcp.tcpAttemptFails.0 > 25 
 do 
  notify manager.cce.ufpr.br private tcp.tcpAttempFails.0 
 end 
end 

  In this program, victim.cce.ufpr.br is monitored, having 
tcp.tcpAttemptFails from its MIB sampled as delta. When delta value from this object 
will be greater than 25, a notification with tcp.tcpAttemptFails.0 will be sent to 
manager.cce.ufpr.br. Actions generated by this program translation are shown 
straightforward: 
 

snmpset victim.cce.ufpr.br private 98.1.1.2.1.2.1 o tcp.tcpAttemptFails.0 

  snmpset victim.cce.ufpr.br private 98.1.1.2.1.3.1 i deltaValue 

  snmpset victim.cce.ufpr.br private 98.1.1.1.1.2.1 s “$1 > 25” 

  snmpset victim.cce.ufpr.br private 98.1.1.1.1.3.1 i unsigned32 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.3.1 i boolean 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.4.1 i absoluteValue 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.5.1 o 98.1.2.1.1.3.1 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.8.1 i 1 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.9.1 i unequal 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.10.1 i 0 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.3.1 i notification 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.6.1 o tcp.tcpAttemptFails.0 

  snmpset victim.cce.ufpr.br private 99.1.2.1.1.7.1 i true 

  snmpset victim.cce.ufpr.br private 99.1.1.1.1.6.1 i true  

 
  During normal computer operation, i. e., with no attack happening, this 
program was translated and we produced an attack similar to the former, from another 
host. In a representative result, after 7 seconds, manager.cce.ufpr.br got a notification. 
  This attack was detected with the time above but, even if it was aborted 
as soon as noticed, the service in port 23 would be interrupted. It happens due TCP 
state’s machine only switches from SYN-RCVD to CLOSED after a timeout, when this 
service is already interrupted. 
 

2 Link Overload Detection 

 

This experience produced a notification when an overload was noticed 
over a link. In order to simulate a link overload, the link utilization was measured based 
on the number of IP datagrams, using a flow generator program, especially designed to 
it, whose source code is available in [1]. 
  This program sends a huge number of small size UDP packages in order 
to cause link overload. We chose UDP because, different from TCP, this protocol has 
no algorithms to control the data flow. 



  The object ip.ipInReceives counts the number of IP datagrams received 
and ip.ipOutRequests counts the number of IP datagrams sent. The total of datagrams in 
a link is given by the sum of these two objects’ values. 
  We used a computer with Linux, NET-SNMP agent, Event and 
Expression MIBs, ANEMONA translator and UDP flow generator’s server and client 
plus another computer with Linux and UDP flow generator’s server and client, both 
connected through a 10 Mbps interfaces. 
  Since objects ip.ipInReceives and ip.ipOutRequests are counters, they 
were sampled as delta, using 6 seconds intervals. The following ANEMONA program 
samples the mentioned objects as delta, add them and assign its result to an entry in 
Expression MIB results table, denoted by utilization, whose address will be reported to 
the user after this program translation. 
 

watch: ahost.cce.ufpr.br using private 
ip.ipInReceives.0 is Counter32: delta 
ip.ipOutRequests.0 is Counter32: delta 
begin 
 bind utilization to (ip.ipInReceives.0 + ip.ipOutRequests.0);  
end 

 
The actions produced by this program are shown below: 

 
snmpset ahost.cce.ufpr.br private 98.1.1.2.1.2.1 o ip.ipInReceives.0 

  snmpset ahost.cce.ufpr.br private 98.1.1.2.1.3.1 i deltaValue 

snmpset ahost.cce.ufpr.br private 98.1.1.2.1.2.2 o ip.ipOutRequests.0 

  snmpset ahost.cce.ufpr.br private 98.1.1.2.1.3.2 i deltaValue 

snmpset ahost.cce.ufpr.br private 98.1.1.1.1.2.1 s “$1 + $2” 

  snmpset ahost.cce.ufpr.br private 98.1.1.1.1.3.1 i counter32 

After these commands, the entry address corresponding in the Expression 
MIB results table is associated to macro utilization and will be 98.1.2.1.1.2.1. This 
address is printed in the screen by ANEMONA translator. 

The data achieved with the program above were collected in two distinct 
situations: with no network resources utilization and with heavy network utilization. 

Without using applications which require network resources, the 
representative values of the total of network datagrams, given by the summation of 
ip.ipInReceives and ip.ipOutRequests deltas, registered in intervals of 1 minute were 80, 
88 and 84, respectively. 

To ensure heavy utilization of network resources, we established FTP 
connections to the server inside the monitored host. Although the heavy link utilization 
during a FTP session is related with datagram’s size, this application ensures a 
continuous traffic in the server-client direction and is relevant to this experience. 

In the beginning, we established a FTP session, after that, two, three and 
four sessions, respectively. To each new session, we collected the number of datagrams 
in this network three times, which is the sum of ip.ipInReceives and ip.ipOutRequests 
deltas, according to figure 3. 



 
 Elapsed Time 

Number of FTP sessions 1 minute 2 minutes 3 minutes 

1 Session 2055 2926 3003 
2 Sessions 3052 3244 2762 
3 Sessions 3686 3318 3837 
4 Sessions 3796 3569 3230 

Figure 3: Traffic in FTP sessions 

 
  After that, we monitored the number of network datagrams while the 
UDP flow generator runs. First of all, we monitored the flow in only one direction, i. e., 
with a server running in the monitored host and a client in the other computer on the 
net. Then we monitored the flow in two directions, with servers and clients running in 
each one of the computers used. Figure 4 shows representative values of the number of 
datagrams on the net, using 6 seconds interval, collecting from 6 in 6 seconds, with the 
flow generator running in one direction and two directions. 
 

Elapsed Time 1 direction 2 directions 

0 seconds 90 86 
6 seconds 16091 96463 

12 seconds 55483 57489 
18 seconds 81360 62784 
24 seconds 65859 125463 
30 seconds 78524 124944 

Figure 4: Number of IP datagrams 

 
  Based on data above, we chose 8000 as critical value for the delta of the 
number of datagrams on network. The program below samples ip.ipInReceives.0 and 
ip.ipOutRequests.0 as delta, calculates its sum, assigning this result to an entry in the 
Expression MIB results table, denoted by utilization. When the value assigned to 
utilization will be greater than the critical value, in this case 8000, a notification will be 
sent to the specified host with the object instance assigned to utilization. 
   

watch: ahost.cce.ufpr.br using private 
ip.ipInReceives.0 is Counter32: delta 
ip.ipOutRequests.0 is Counter32: delta 
begin 
 bind utilization to (ip.ipInReceives.0 + ip.ipOutRequests.0);  
 when utilization > 8000 
 do 
  notify manager.cce.ufpr.br private utilization 
 end 
end 

 
  The actions produced by this program translation are shown 
straightforward. Thus, the reader is able to compare the effort necessary to produce 
commands to manual programming with the use of ANEMONA programs. 
 

snmpset ahost.cce.ufpr.br private 98.1.1.2.1.2.1 o ip.ipInReceives.0 

  snmpset ahost.cce.ufpr.br private 98.1.1.2.1.3.1 i deltaValue 

snmpset ahost.cce.ufpr.br private 98.1.1.2.1.2.2 o ip.ipOutRequests.0 

  snmpset ahost.cce.ufpr.br private 98.1.1.2.1.3.2 i deltaValue 



snmpset ahost.cce.ufpr.br private 98.1.1.1.1.2.1 s “$1 + $2” 

  snmpset ahost.cce.ufpr.br private 98.1.1.1.1.3.1 i counter32 

snmpset ahost.cce.ufpr.br private 99.1.1.1.1.3.1 i boolean 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.4.1 i absoluteValue 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.5.1 o 98.1.2.1.1.2.1 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.8.1 i 1 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.9.1 i unequal 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.10.1 i 0 

  snmpset ahost.cce.ufpr.br private 99.1.2.1.1.3.1 i notification 

  snmpset ahost.cce.ufpr.br private 99.1.2.1.1.6.1 o 98.1.2.1.1.2.1 

  snmpset ahost.cce.ufpr.br private 99.1.2.1.1.7.1 i true 

  snmpset ahost.cce.ufpr.br private 99.1.1.1.1.6.1 i true  

 
  With a computer working under normal operation conditions, i. e., 
without running UDP flow generator, this program was translated and, after that, we 
start the flow generator server in this computer, and we ran its client on another 
computer attached on the network. In a representative experience, after 19 seconds a 
notification was received by manager.cce.ufpr.br3. 
 

3 Conclusion 

 

  This technical report documented the case studies done to monitor a 
given system, in order to detect Denial of Service attacks and also to detect a link 
overload. 
  During these tests, we confirmed the usefulness of ANEMONA to 
program Event and Expression MIBs, letting the user free from think about and type a 
lot of complex commands from NET-SNMP agent, as well as control MIB tables. 
Instead of this, the user has a high-level interface, given by ANEMONA language. 
  About this tool performance, we can say that actions generated by it are 
exactly the same than those would be generated by manual MIBs configuration, but 
with a smaller incidence of mistakes and faster execution, which increases the network 
administrator’s productivity. 
 

4 References 

 

[1] FERNANDES, H. ANEMONA: Uma Linguagem de Configuração para Aplicações 
de Monitoração de Redes. Dissertação (Mestrado em Informática) – Departamento de 
Informática, Universidade Federal do Paraná, 2001. 
[2] “Project Neptune”. Phrack Magazine. Volume Seven. Issue Forty-Eight. July, 1996. 
[3] COMER, D. Internetworking with TCP/IP, volume 1. New Jersey: Prentice-Hall, 
1997. 

                                                 
3 During the tests, manager.cce.ufpr.br was just a canonical name to ahost.cce.ufpr.br. 


