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Abstract

This paper presents a comparison of the instruction set usage of the 32 bits mi-
croprocessors MIPS, PowerPC and SPARC. We measured dynamic instruction usage
of the 16 programs from MediaBench and 11 from CommBench benchmark suites, all
compiled with GCC-3.3.1. The measurements were taken on functional models writ-
ten in ArchC. The instruction counts for the 27 programs are 24.9, 27.0, and 26.0 ·109

for MIPS, PowerPC and SPARC, respectively. Except for memory references, the
number of dynamic instructions for SPARC are larger than the other’s, whereas Pow-
erPC has the highest memory reference count. We assessed the effects of three levels
of optimization on dynamic instructions and found small differences in instruction
counts. We also measured the distribution in time of memory references and control
instructions. While running CommBench programs, about 80% of loads and 60% of
stores are separated by less than five instructions. For MIPS and PowerPC, about
80% of conditional branches are separated by up to six instructions, while for SPARC
about 90% of branches are separated by up to three instructions.

1 Introduction

This paper presents a comparison of dynamic instruction usage of the 32 bits microproces-

sors MIPS, PowerPC and SPARC that are popular in embedded applications, typically as

part of a larger system (SoC). Sixteen programs from the MediaBench suite [9] and eleven

from the CommBench suite [18] were all compiled with the same version of GCC and their

execution was simulated on functional models of the CPUs written in ArchC [15]. The

simulation results are used to compare the CPUs and code generators, assessing the num-

ber of instructions executed, number and distribution of memory references, and number

and distribution of flow control instructions.

These studies are not original. There was a comparative analysis of the instruction set

architectures (ISA) of popular microprocessors in the first edition of [6] and the current

edition compares Alpha, MIPS, PA-RISC, PowerPC, and SPARC [7]. There is also a

comparison of MIPS and SPARC ISAs running the SPEC benchmarks compiled with

their native compilers and two distinct simulators in [2]. The comparison between Alpha

and PowerPC ISAs in [16] provided inspiration for this work. An assessment of SPARC

ISA, using the CommBench suite, is presented in [18].

Unlike those, our analysis is conducted “on a level playing field” with the same pro-

grams and same simulation framework. Our results can be used (i) to optimize a compiler’s
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back end, (ii) to design the CPU-memory interface, (iii) to improve the branch prediction

implementation, and (iv) ultimately to help in choosing a CPU best suited for a given

application.

The text is organized as follows. Section 2 gives a brief description of the three ISAs.

The benchmarks and simulation environment are described in Section 3. Our results are

presented in Section 4, and in Section 5 we draw our conclusions.

2 Microprocessors

The instruction sets we compare were conceived and designed in the early 1980’s and

they qualify as Reduced Instruction Set Computers or RISCs. One for the main goals of

their designers was to implement a complete 32 bit processor in a single integrated circuit

and therefore the instructions had to be simple, that is, reduced. It is no coincidence

the these ISAs are similar because their designs were subject to the same constraints,

which can be satisfied by: (i) the operands of logic and arithmetic instructions come

from registers; (ii) simple addressing modes, with load instructions reading values from

memory and store instructions writing results back; (iii) all instructions are the same

size and regularly encoded; and (iv) many general purpose registers with the same width.

The descriptions that follow are presented from an abstract point of view that con-

siders an ISA as the hardware’s API. In the text we focus on the 32 bit version of the

three instruction sets and ignore floating point instructions. To simplify the descriptions,

MIPS ISA is presented first and the other two are presented with the same syntax. The

instructions are defined with semantics similar to that of C. The description of the ISAs

is in historical order; the discussion of results follows an alphabetical order.

2.1 MIPS

The early designs of the Microprocessor without Interlocked Pipeline Stages defined the

execution model of a five stage pipeline. In this model, an instruction can do just a few

simple operations in each pipe stage [5].

The spartan design could not support interlocking to resolve data and control depen-

dencies forcing the designers to expose some of the implementation to the programmer,

who had the responsibility of placing an instruction (or a nop) after a branch instruction

to fill the branch delay slot. The programmer also had to ensure that an instruction de-

pendent on the result of a load did not use the value in the following cycle, because of the

load delay slot. Newer versions of the MIPS ISA (mips32) have kept the branch delay slot

but the implementations usually stall to resolve a load-use hazard. The 32 bit instruction

set is defined in [10]. The most relevant characteristics are briefly described below.

Registers 32 × 32 bit registers. Register r0 is always zero and stores to it are ignored.

Register r31 is the link register for function returns.

Logic and arithmetic These instructions take two operands from registers (or an imme-

diate) and place the result in a register. The immediate is a 16 bit value that can

be sign/zero extended. Multiplication takes two 32 bit operands and places the 64

bit result in the special registers hi and lo. Division places remainder and quotient

in these two registers. Instructions mfhi and mthi load values from, and into, these

registers. The suffix ‘u’ denotes an instruction that does not check for overflow (un-

signed), while signed instructions cause an exception on overflow. The same applies
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to the sign extension of immediates: suffix ‘u’ implies zero-extension, rather than

sign-extension. Logic instructions zero-extend the immediate operand.

Memory There is a single addressing mode for memory references: the contents of a base

register are added to a 2’s complement immediate. Memory is a 4Gbytes vector that

can be referenced as 8, 16, and 32 bit aligned bytes, half-words and words.

Conditional branches Branch targets are PC-relative with a reach of ±32K instructions.

Conditions are computed into registers as there is no status register for this purpose.

There are instructions that do an equality comparison and branch, while magnitude

comparisons take two instructions, a compare and a branch.

Unconditional Jumps The addressing mode of jump instructions is called pseudo-absolute

because the target is specified by juxtaposing the 4 most significant bits from the

PC, 26 bits from the operand and 2 zeroes to align the address. Thus, jumps can

reach a segment of 64M instructions. The jr instruction uses the 32 bit contents of

a register for its target.

Functions The instruction jal jumps to the target address and saves the next instruc-

tion’s address in the link register r31. Function return is accomplished with an indirect

jump through r31. The target addressing is pseudo-absolute.

Addressing modes There are five addressing modes: (i) register– operands come from

registers; (ii) immediate– one of the operands is an extended 16 bit field from the

instruction; (iii) base-displacement– the effective address is the sum of a base reg-

ister with a sign-extended displacement in the immediate field; (iv) PC relative–

branch target is less than ±32K instructions away from the branch instruction; and

(v) pseudo-absolute– effective address is obtained by the concatenation of 4 bits from

the PC and the word aligned 26 bit operand.

2.2 SPARC

The Scalable Processor ARChitecture (SPARC) descends from RISC I [11] and is more sim-

ilar to MIPS than to PowerPC. The distinguishing feature in this ISA is the organization of

the register file as a set of register windows, with a new window allocated on each function

call. While on a given call depth, the registers are split into four groups, each group used

for (i) holding globals, (ii) incoming parameters, (iii) local variables, and (iv) outgoing

parameters. When a function is invoked, the window slides and the incoming parameters

become the local variables of the called function. The window is used by compilers to

create a stack frame directly onto registers thus avoiding (several) memory references. A

window has 16 unique registers and implementations support up to eight windows, or 128

registers plus the 8 globals. SPARC instructions are encoded with a 2 bit opcode plus one

or two additional fields to define the instruction. Currently SparcInternational holds

control over the ISA and the 32 bit version is defined in [17].

Logic and arithmetic Instructions can optionally set status bits on the condition code

register rcc, and magnitude comparisons are achieved by subtracting from r0, which

is always zero. Immediates are 13 bits wide.

Memory Memory addressing can use indexed addressing: rd← M[rb+ri]. The instructions

ldd and std can load or store double words (64 bits) in a single memory reference.

Conditional branches Instructions test the appropriate bit in the condition code regis-

ter rcc. There is an annulling branch that executes the instruction in the branch
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delay slot only of the branch is taken; otherwise that instruction has no effect. The

delay slot of ordinary branches must be filled by the programmer.

Functions When all windows are in use, the next function call causes an exception that

must save (spill) some registers in memory.

Addressing modes Same as in MIPS ISA, plus indexed. Jump targets are specified with

30 bits, with a 2 bit opcode.

2.3 PowerPC

The Power Performance Computing (PowerPC) ISA descends from IBM’s 801 [14], and

the PowerPC 601 was the first member of the family [1]. The project was developed

about a decade later than the other two RISCs described here, and the architecture was

conceived for superscalar implementation with three pipelines that operate in a (more or

less) decoupled way: a branch unit, an integer unit, and a floating point unit. Because of

this partitioning, more complex operations can be performed on each pipeline stage and

the designers of the PowerPC added instructions more complex than those of strict RISC

processors. The PowerPC architecture is managed by Power.org and the most recent

version of the ISA is described in [13]. Below we briefly mention the differences with

respect to MIPS and SPARC ISAs.

Logic and arithmetic Two operand logic and arithmetic instructions can, optionally, set

bits in the condition register rcr. r0 and r31 are general purpose registers.

Memory Data references can use indexed addressing. There are instructions that load

or store character strings of arbitrary length and alignment. The instruction lmw

(stmw) can load (save) up to 32 registers.

Conditional branches The condition register rcr holds 4 bits that can optionally be set by

logic and arithmetic instructions. The branch unit holds eight instances of rcr and

thus can hold the status of up to 8 instructions. The branch unit is near the beginning

of the fetch pipeline and so branches take effect with little or no delay. There is a

dedicated counter register rctr that can hold a loop iteration counter so that a single

branch instruction can decrement rctr, test against zero and then branch.

Functions Return addresses are kept in the dedicated link register rlk.

Addressing modes There are three addressing modes not found in MIPS ISA: in-

dexed, base-displacement with increment, and indexed with increment. In these

two, the base register is updated with the effective address just computed:

rd← M[〈x = rb + ri〉] ; rb←x . Jump targets are specified in 24 bits.

3 Simulation Environment

The simulators used to generate the instruction counts were written with the architecture

description language ArchC [15] and are available from http://www.archc.org. ArchC

enhances SystemC [3] so that a simulator can be generated from a description of both

the syntax and the semantics of an instruction set. The simulators model the processors

as described in [8] (MIPS), [12] (SPARC), and [19] (PowerPC). Notice that these are

functional simulators because no timing information is ever computed and each instruction

is executed atomically in a simulation cycle that is in no way related to a “clock cycle”.
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Workload The instruction counts were measured by simulating the execution of 16 pro-

grams from the MediaBench suite [9] and 11 programs from the CommBench suite [18].

All programs were compiled with GCC-3.3.1 provided with the simulators, all were opti-

mized with -O3 and statically linked to libraries that emulate system calls. The SPARC

model uses 256 registers, in 16 windows, which is twice the number found in typical im-

plementations. Thus, simulation of function calls with this processor is rather optimistic.

The MediaBench programs used are ADPCM (Adaptive Differential Pulse Code Mod-

ulation), EPIC (image data compression), G721 (CCITT G.711, G.721 and G.723 voice

compression), GSM (RPE/LTP voice coding at 13 kbit/s), JPEG (image compression

and decompression), MPEG (player for MPEG-1 and MPEG-2 video bit streams), and

PEGWIT (public key encryption and authentication).

CommBench programs are relatively small and contain kernels typical of the applica-

tions run on network processors. The suite contains “header-processing applications” that

read and write message headers, and “payload processing applications” that read and mod-

ify the payload of messages. The header-processing programs used are RTR (Radix-Tree

Routing), FRAG (IP packet fragmentation), and DRR (Deficit Round Robin scheduling),

and the payload processing programs were CAST (block ciphering with CAST-128), ZIP

(Lempel-Ziv compression), REED (Reed-Solomon encoding), and JPEG (lossy compres-

sion of image data).

4 Results

The reader must bear in mind that a comparison of dynamic instruction counts is not a

fair indication of actual performance. The formula that computes the execution time of

a given program on one processor is time = N × CPI × T , where N is the number of

instructions executed, CPI is the average number of cycles per instruction, and T is the

clock period. The ISA has an impact on the number of instructions executed, and its

implementation determines both CPI and clock period. Furthermore, the compiler has

a strong influence on N and CPI as it can generate “fast” or “slow” code, as is further

discussed in Section 4.2. All else being equal, implementation techniques have a large

influence on performance, as for instance, in the implementations of Intel’s IA-32 in the

80386 and PentiumIV processors.

Table 1 shows the instruction counts of all programs, and also the totals for Comm-

Bench and MediaBench. Instructions are split into classes somewhat arbitrarily and the

choices are not trivial: (i) instructions listed as ALU comp could be counted as branches

since magnitude comparisons are used to test conditions; (ii) instructions listed as const MS

load the upper half of a register and are often used to load an absolute address into a base

register and thus could be counted as memory references (which ones?); (iii) not all in-

structions counted as ret are function returns because the jump-register instruction is also

used in jump tables. The histograms in Figure 1 compare the totals as well as the counts

of five main instruction classes. The instruction classes are listed below.

ALU logic logic operations: and,or,xor;

ALU arit arithmetic operations: add,sub,mul,div;

ALU desl shift and rotate;

ALU comp magnitude comparisons;

const MS load most significant half of register;
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move copy to/from register; MIPS, SPARC: to/from mult/div accumulators;

load loads, all sizes;

store stores, all sizes;

jump unconditional jumps;

branch conditional branches;

call function calls;

ret function returns and register indirect jumps;

save SPARC: change register window;

restore SPARC: restore register window;

nop MIPS e SPARC: fills delay slot;

total gross total;

ALU total all logic, arithmetic, comparison;

MEM total all memory references;

CTR total all jumps and branches;

FUN total all function calls and returns;

OTH total all other, not ALU, MEM, CTR, FUN.
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Figure 1: Number of instructions, total and by class (instr.×106)

4.1 Execution profile

Before our first look at the results, we expected that the number of dynamic instructions

would ordered as PowerPC, SPARC and MIPS, because of the more complex instructions

in PowerPC [16], and of the register windows in SPARC. Contrary to our expectations,

the PowerPC executes 10% more instructions than SPARC, 8% more than MIPS, and the

culprits seem to be the memory references, as shown in Table 1.

The programs that comprise MediaBench are larger, more general purpose, and process

larger data sets than those in CommBench. Therefore we chose to discuss separately

the results for the two sets. In the following two sections we focus on the results for

CommBench because these programs were selected from a narrower field of application

and therefore display behaviors with slightly less entropy.
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All MIPS PowerPC SPARC

class ×1000 % ×1000 % ×1000 %

ALU logic 2,804,816 11.28 3,280,844 12.13 5,390,427 20.77
ALU arit 6,305,592 25.35 3,617,228 13.37 4,881,806 18.81
ALU desl 2,540,121 10.21 3,159,846 11.68 1,834,513 7.07
ALU comp 1,401,805 5.64 2,816,278 10.41 2,787,738 10.74
const MS 380,163 1.53 934,740 3.46 758,031 2.92
move 146,939 0.59 816,883 3.02 71,320 0.27
load 3,446,317 13.86 4,500,029 16.64 3,273,393 12.61
store 2,247,748 9.04 3,573,505 13.21 1,640,929 6.32
jump 290,402 1.17 363,926 1.35 450,186 1.73
branch 2,886,063 11.60 3,294,023 12.18 3,543,752 13.65
call 315,161 1.27 373,507 1.38 334,897 1.29
ret 318,825 1.28 319,395 1.18 339,259 1.31
save — — — — 271,384 1.05
restore — — — — 271,384 1.05
nop 1,790,057 7.20 — — 106,170 0.41

total 24,874,009 — 27,050,203 — 25,955,189 —
ALU total 13,052,334 52.47 12,874,196 47.59 14,894,483 57.39
MEM total 5,694,064 22.89 8,073,534 29.85 4,914,322 18.93
CTR total 3,176,465 12.77 3,657,949 13.52 3,993,939 15.39
FUN total 633,987 2.55 692,902 2.56 1,216,924 4.69
OTH total 2,317,159 9.32 1,751,623 6.48 935,521 3.60

MediaBench

total 18,218,559 — 19,787,460 — 17,488,485 —
ALU total 9,723,901 53.37 9,493,691 47.98 10,207,180 58.37
MEM total 4,150,512 22.78 5,984,398 30.24 3,263,276 18.66
CTR total 2,131,439 11.70 2,356,910 11.91 2,230,919 12.76
FUN total 496,579 2.73 543,172 2.75 996,443 5.70
OTH total 1,716,129 9.42 1,409,289 7.12 790,667 4.52

CommBench

total 6,655,450 — 7,262,743 — 8,466,704 —
ALU total 3,328,433 50.01 3,380,505 46.55 4,687,303 55.36
MEM total 1,543,552 23.19 2,089,136 28.77 1,651,046 19.50
CTR total 1,045,027 15.70 1,301,039 17.91 1,763,020 20.82
FUN total 137,408 2.06 149,729 2.06 220,481 2.60
OTH total 601,030 9.03 342,334 4.71 144,854 1.71

Table 1: Instruction counts, all programs

MediaBench The graph on the left of Figure 1 shows the results for the 16 MediaBench

programs. The totals for the PowerPC are taken as reference and the counts of the other

two ISAs are compared to that. MIPS executes 8.6% less instructions than PowerPC,

2.2% more ALU instructions, 44% less memory references, about 10% less flow control

and function call/return instructions. MIPS executes 18% more instructions grouped as

‘other’, that include 1.3× 109 nops, while PowerPC executes three times as many moves

and address constant loads. PowerPC’s more powerful addressing modes are not being

put to good use in these programs.

SPARC executes 12% less instructions than PowerPC, with the memory references

accounting for most of the difference. SPARC executes about half (55%) as many memory
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references and here the advantage comes from the register windows. For the three pro-

cessors, the number of function calls and returns is similar (within 20%, less than 1.5% of

all instructions) and the advantage in memory references comes from SPARC not saving

and restoring activation records. GCC seems to be able to hide 18 times more of SPARC

delay slots than those of MIPS (0.07 / 1.26).

CommBench As was done for the MediaBench programs, PowerPC is used as the ref-

erence for the comparisons. PowerPC executes 9% more instructions than MIPS, and 17%

less than SPARC. Except for memory references, SPARC performs more instructions than

the other two. If all the memory related operations are considered (loads, stores, save,

restore, nop), SPARC performs 19% less memory related instructions than PowerPC

and 18% less than MIPS, on the assumption that one half of nops are filling load de-

lay slots. If the other half of nops is counted as filling branch delay slots, then SPARC

performs 36% more control instructions than PowerPC and 34% more than MIPS.

Somewhat surprisingly, the two processors with additional addressing modes (Pow-

erPC and SPARc) execute more memory reference instructions than MIPS, which has one

simple addressing mode. If one half of MIPS nops are counted as filling load delay slots1,

PowerPC performs 15% more memory operations than MIPS —down from 35% without

nops. Furthermore, PowerPC executes 7.5× (3.2×) more instructions that load the upper

half of a register (moves) than MIPS. The code generator for MIPS seems to be doing an

excellent job in generating effective addresses and in keeping data in the global area, from

whence it can be referenced via the global pointer rgp.

The compiler seems to fill SPARC’s delay slots much more efficiently than it does for

MIPS’s: the ratio of “exposed nops” is 14.7× MIPS/SPARC, or for MIPS 8, 0% of all

instructions are nops whereas for SPARC these account for 0.44% of all instructions. The

numbers for all 27 programs are 16.8× exposed nops MIPS/SPARC, 7.2% of all MIPS’s

instructions ares nops, 0.41% of all SPARC’s instructions are nops. Notice that SPARC

ISA only defines branch delay slots whereas MIPS ISA also defines load delay slots.

4.2 Optimization effects

Since the compiler has an important role in performance, we measured the dynamic in-

structions with the three optimization levels -O1, -O2 e -O3. In order to simplify the

presentation, we discuss only the results for the encoding and decoding versions of JPEG

from CommBench. Table 2 shows, for the two JPEG programs, the ratio of dynamic in-

structions in the -O3 version to the other three versions, including the non-optimized -O0.

An entry smaller than 1.00 means the number for -O3 is smaller than that produced

with the level indicated for the column. For instance, the MIPS total count for JPEGenc

with -O0 is 1.0/0.37 = 2.7 times larger than the -O3 version.

Optimized versions with -O3 display reductions in the number of executed instructions

from 2.2× to 2.7× that of the non-optimized versions (-O0). The highest gains are in

memory references, with elimination of some 3/4 of all references, mainly loads. This is

relevant because memory references are costly operations and even modest gains might

have a large impact on overall performance, not only because of the reduction on instruc-

tions executed but also in the better utilization of data that is brought into the cache. The

1This is somewhat biased: in JPEGenc there are 2.8× more nops in load delay slots than in branch

delay slots; for JPEGdec the ratio is 7.5×.
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JPEGenc JPEGdec
-O0 -O1 -O2 -O0 -O1 -O2

MIPS

total 0.37 0.95 1.01 0.40 0.96 1.00
ALU 0.75 1.02 1.00 0.92 1.07 1.00
MEM 0.27 1.04 1.01 0.29 1.06 1.00
CTR 0.71 1.00 1.00 0.80 1.19 1.00
FUN 1.00 1.00 1.00 1.00 1.00 1.00
OTH 0.03 0.54 1.01 0.13 0.81 1.01

PowerPC

total 0.42 1.04 1.00 0.44 1.02 1.00
ALU 0.56 1.02 1.00 0.70 1.08 1.01
MEM 0.27 1.04 1.01 0.28 1.00 1.00
CTR 0.71 1.00 1.00 0.69 0.91 1.00
FUN 1.00 1.00 1.00 1.00 1.00 1.00
OTH 0.42 2.00 1.00 2.50 2.96 1.00

SPARC

total 0.45 1.03 1.00 0.48 1.05 1.00
ALU 0.73 1.06 1.00 0.78 1.07 1.01
MEM 0.24 1.00 1.00 0.29 1.04 1.00
CTR 0.74 1.02 1.00 0.70 1.04 1.00
FUN 1.00 1.00 1.00 0.99 0.99 1.00
OTH 0.03 0.20 1.00 0.00 0.92 1.00

Table 2: Optimization effects compared to -O3, JPEG encode and decode

reduction in the number of nops is also worth mentioning: from 7.7× to 33× for MIPS,

and from 175× to 1018× for SPARC.

The differences between the optimized versions from -O1 to -O3 are on the order of 5%,

but some interesting cases are worth mentioning. For MIPS, the reduction in nops from

-O2 to -O3 is between 60 to 70%, and the number of jumps in the -O3 is 7.2× that of the

-O2 version. For SPARC, the number of jumps increases in the most optimized versions,

by 1.27× and 2.5× for JPEGenc and JPEDdec, respectively. For both processors, the

number of jumps is under 2% of all instructions executed and therefore these effects are

not catastrophic. For PowerPC, in the -O3 version there in an increase in the number of

moves, in the number of logical operations, and also a larger number of load immediates

to the most significant half of registers, and these result from more involved computation

of addresses and possibly from reducing the strength of some operations.

It must be borne in mind that these figures refer to the number of instructions executed

and may not be directly related to their ‘quality’ nor their execution order. By ‘quality’

we mean the ‘latency’ or “repetition rate” of multiplies and divides, or references to static

data through the global pointer (MIPS). The compiler tries to reorder the code in order

to fill delay slots with useful instructions. With superscalar processors, the compiler can

group instructions in tuples that have a better chance of parallel execution. These gains

can only be assessed with detailed simulation or direct hardware execution.
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4.3 Time profile

The time distribution of memory references can help in designing memory hierarchies

for embedded systems. The histograms in Figure 2 show the distribution of distances

among pairs of loads, pairs of stores, and pairs of branches. ‘Distance’ is the number of

instructions between the members of the pair, and “zero distance” means two consecutive

instructions. All distances longer than 15 instructions are counted on the bar marked ‘+’.

These data were collected for the CommBench programs.
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Figure 2: Distance between pairs of loads, stores and branches, all CommBench programs

For MIPS, 80% of all loads are separated by less than five instructions, a large majority

of 62% of stores are adjacent, but 20% are separated by more than 14 instructions. For

PowerPC the distribution of loads and stores is very similar to that of MIPS with

smaller peaks. For SPARC, loads display roughly the same behavior: 85% have less

than five intervening instructions. As for stores, less than 30% are clustered, with 62%

separated by more than 14 instructions, highlighting the positive effects of the register

windows.

These programs display a behavior that can be problematic to a designer of memory

interfaces. Since the references are so close together, the CPU-cache and cache-memory

interfaces must be designed to deliver near peak bandwidth. With such a high concentra-

tion of clustered stores, there must be some form of store queue to accommodate the speed

differences between CPU and memory, regardless of how good the cache design may be.

MIPS and PowerPC display a similar distribution of conditional branches, with the

majority (≈80%) of the branches separated by up to six instructions. For PowerPC, 2.5%

of the branches are adjacent —these may not cause any stalls because the processor is

capable of resolving a branch condition in the same cycle it is dispatched for execution.

The data for SPARC shows that 90% (ninety) of the branches are separated by up to

3 instructions! The proportion of branches to all instructions is 15.7%. 18.7%, and 20.8%

for MIPS, PowerPC e SPARC, respectively.

The distance distributions for JPEG-decode are shown in Figure 3. The three proces-

sors show similar behaviors with this program. loads are clustered in groups of up to

5 instructions and about half of stores are separated by up to 8 instructions —SPARC

does not seem to benefit from the register window. The loops that perform most of the

work were translated to similar instruction sequences because the distribution of branches

are also very similar for the three processors.

JPEG causes relatively high miss rates on the first level of the memory hierarchy [4].

Thus, a cache design for a device in which JPEG is the primary application must be

capable of providing high bandwidth between CPU, cache, and memory because of the
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Figure 3: Distance between pairs of loads, stores and branches, JPEGdec

clustering of references and of the high miss rates. As for the control instructions, the

distances between branches indicate that a relatively simple branch predictor can provide

adequate performance.

5 Conclusion

This paper contains a comparison, at the level of instruction set, of the three 32 bit

microprocessors MIPS, PowerPC, and SPARC. The instruction sets were compared by

functional simulation of the execution of 16 programs from the MediaBench suite and 11

programs from the CommBench suite. The programs were all compiled with the same

version of GCC and were run on the same simulation framework.

The dynamic instruction counts for the 27 programs are 24.9, 27.0, and 26.0 · 109 for

MIPS, PowerPC and SPARC, respectively. If memory references are ignored, SPARC has

the highest instruction count of the three; PowerPC has the highest memory reference

count; MIPS has the better overall performance, contrary to our expectations and in spite

of the architectural devices of the two other contenders: register windows (SPARC) and

more complex instructions (PowerPC).

We assessed the effects of three levels of optimization (-O1, -O2, -O3) on dynamic

instructions and found small differences in instruction counts. We also measured the dis-

tribution in time of memory references and conditional branches. While running Comm-

Bench programs, about 80% of loads and 60% of stores are separated by less than five

instructions, for the three processors. For MIPS and PowerPC, about 80% of conditional

branches are separated by up to six instructions, while for SPARC about 90% of branches

are separated by up to three instructions.
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