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Abstract

Scheduling policies for Web servers have been designed to improve the delay at the servers, which
may be an important part of the response time. However, these policies have not taken into
consideration the interaction between the server system and the host TCP implementation. Web
servers are used mainly in the wide-area Internet, which presents high variability in bandwidths,
round-trip times and packet loss characteristics.

This paper introduces a new scheduling policy for the processing of the static HTTP requests in
Web servers. This policy, called FCF (Fastest Connection First), gives priority to HTTP requests
based on the size of the requested file and on the throughput of the user’s connection. The requests
for smaller files issued through faster connections receive the higher priorities. Our goal is to
improve the mean response time. If the fastest connections receive priority at the server, they will
have all good conditions (in the server and in the network) to finish quickly, contributing to
minimize the mean response time. This policy takes into consideration the interaction between the
server system and the TCP implementation at the server. We compare FCF with FIFO and SRPT
policies. We find that FCF gives the best mean response time, although SRPT provides the shortest
server delay. We conclude that the scheduling policy should be aware of the wan conditions and
take them into consideration for giving priorities to the requests.

Keywords: web server, scheduling policy, web performance

1. Introduction

Web servers service requests from a large and heterogeneous user population. The diversity of the
user characteristics is showed not only by their culture, idiom and geographical differences but also
by their hardware and software platforms and their connectivity conditions. The connectivity of the
Web users presents high variability. The link capacity goes from a 14.4 Kbps modem to a 10 Mbps
connection [8]. In addition to the high variability of the capacity of the user’s connections, some
dynamic factors contribute to increase the variability of the connection speed such as congestion,
number of hops in the TCP connection path, network and router delays, bottleneck links and many
characteristics of the TCP implementations.

Scheduling policies for Web servers have been designed to improve the delay at the servers, which



may be an important part of the response time. It has been shown that the performance of the Web
servers is affected by the Internet traffic [5, 17, 18]. In spite of these work, proposed scheduling
policies for web servers do not take into consideration the interaction between the server system
and the host TCP implementation which handles the TCP connections at the server. Previous work
[11, 12, 13] has shown that when the size of the file requested is the main criteria for the scheduling
policies, very good improvements in the server response time are observed in relation to policies
that make no use of this information. In fact, it has long been known that SRPT (Shortest
Remaining Processing Time) has the best mean response time of all scheduling policies [7,11]. Our
work differs from [12] because our scheduling is mainly based on the throughput of the user
connection while theirs is based only on the size of the response.

This paper proposes a new scheduling policy for Web servers that explores the high variability of
the Web, observed in two of its characteristics: the speed of the connections and the response file
sizes. The new idea is to explore the variability of the users connectivity. The proposed policy gives
the highest priority to the request issued through the connection that will be completed first, that is,
the connection that will have the smallest connection time. The fastest connection is the one that
has requested the smallest document and has the best connectivity conditions (large bandwidth, low
latency, no congestion). The proposed policy is called Fastest Connection First (FCF).

A policy that gives priority at the server to the requests issued through fast connections will reduce
the service time of these requests and the life time of the respective connection. As a consequence,
the number of pending requests is reduced. Pending requests are those which could have already
been served but are not finished due to the transfer time (Internet time). When a connection is
closed, the server resources reserved to that connection will be available for opening new
connections. Our goal is to improve the mean response time seen at the user side. Our idea is to take
into consideration the variability of the throughput of the opened connections. We think that we
should give to the request the same level of service it experiments at the network. Our intuition is
that if the connection has a high throughput, we should give high priority to the request from this
connection, giving the request at the server the same conditions that the connection experiments at
the network. This policy can be applied not only for Web servers but also for Web caches and other
servers that experiment the same variability in those characteristics.

When a server gives priority to the users with the best connectivity conditions, it is helping to keep
the response time according to the user expectation. The users connected by very fast connections
want to experiment very small response times. Using FCF the request is served as fast as
throughput of its respective connection. The main issue of our policy is to assure that the buffers of
the faster connections will receive data quickly from the file system. The user with very good
connectivity conditions might perceive the delay at the server when the server is overloaded. The
service time is not perceived by users of not so fast connections.

To show the effectiveness of our proposal, we simulated FCF and compared it to SRPT and FIFO
policies. We built simulation models for the server and the Internet. The workload was modeled
using SURGE [3, 14]. The server model includes CPU, disk and network interface resources. The
TCP and HTTP protocols were modeled, including RTT, congestion and packet loss characteristics.
We find that FCF gives the best mean response time, although SRPT provides the shortest server
delay. It means that the scheduling policy should be aware of the wan and connection conditions
and should take them into consideration for giving priorities to the requests.

The rest of this paper is organized as follows. Section 2 describes the Fastest Connection First
(FCF) scheduling policy. Section 3 discusses the experiment of simulation designed to compare the
performance results of FCF, FIFO and SRPT policies. Section 4 presents the performance results.



Section 5 concludes the paper and briefly discusses plans for future work.

2. The Fastest Connection First (FCF) Scheduling Policy

Web servers service many requests concurrently. For example, the Apache Web server is a
process-based server that forks several processes and serially accepts new connections. It makes the
admission of the requests according to FIFO policy, no matter the response size or other request
characteristic. So, the process that will get a system resource (CPU, disk or network interface) is
chosen according to the arrival order.

FCF policy gives priority to the processes according to some characteristics of the specific request
issued. The next process to get the resource is the one with the highest priority. The priority is
based on two parameters: the throughput of the connection and the number of bytes to be processed.
The idea is to give priority to the request which connection can be finished first, that is, the smallest
request issued through the fastest connection (the one with the best transmission rate). The transfer
rate depends on the connectivity conditions of the user as well as the dynamic behavior of the
Internet.

In this work we make the assumption that the time required to serve a request is well approximated
by the size of the response (size of the requested file). This is quite reasonable when the request is
static, that is, when all the work the server has to do is to read a file at the disk and serves it. Static
requests are the majority in a Web server workload.

The FCF policy algorithm has two steps. First it searches the request queue for the request with the
shortest remaining number of bytes to process. Second, it searches the queue again for all requests
which size is smaller than the smallest one times some constant (called beta). From those, we
choose the one with the highest estimated throughput. Beta defines the range of the second search
and the trade-off between size and throughput. If beta is large we are giving priority to throughput.
On the other side, if beta is small (close to 1), we are giving priority to the remaining size of the
request. In the next section we describe the process to estimate the throughput.

This policy aims to consider the connectivity conditions of the user, including all aspects that
affects the data transmission in the Internet. At the end, we are considering the end-to-end
performance of each connection and giving priority to the one that has the best performance. Fast
connections tend to have smaller RTT and larger TCP reception and congestion windows [9]. Asa
consequence, if priority is given to the requests issued through fast connections, at the server, these
requests will be able to finish quickly, releasing the resources at the server to the requests waiting in
the queue.

Web requests are served through a TCP connection. Due to the TCP congestion control (slow start)
a small number of packets are sent each time, while the remaining packets must wait for the ack
confirmation package [6,10]. The acks from the fast connections arrive first and then new packets
can be sent through these connections. The FCF policy aims to ensure that the socket buffers of the
fast connections will always have data to be sent as soon as the ack arrives. It means that the next
packets will be ready to be sent. FCF policy looks forward to handling the requests at the server
according to the performance level of the respective connection. The performance of the connection
is taken by the measured throughput of the connection. The higher the throughput of a connection,
the higher the priority of the respective request at the server.

In order to have the packets ready to be sent, the server must give priority to the requests at the
CPU, at the disk and at the network interface. The buffers of the fast connections must receive the



data from the disk as soon as the acks arrive. When the load on the server is light or moderate the
connection buffers usually have the data to send as the ack arrives [16] no matter the scheduling
policy. Nevertheless, when the server is overloaded, giving priority to the small requests issued
through fast connections will ensure that the buffers of these requests will have data to transfer
when the acks arrive. In addition, as the server load grows the TCP control messages and IP
datagrams queues become longer. The FCF policy may be applied to these queues as well [23].

3. The Simulation Model

The FCF policy was simulated and compared to two other policies, FIFO (First In First Out) and
SRPT (Shortest Remaining Processing Time). The simulation model includes the server model, the
workload generator and the Internet model. We describe the simulation model and the experimental
methodology in the next sections.

3.1. Server Modeling

Static requests make use of three system resources: CPU, disk and network card. The processing of
the requests at the server can be describe as: opening of a TCP connection, getting the HTTP
request, parsing the HTTP request header, reading the file in the disk, package and sending the data
through the connection, close the connection and make the register at the log file.

The service demand of a request is composed of three parts [5, 7, 12]: the CPU time, that represents
the time spent at the CPU to parser the request, to pack and to unpack the TCP segments and IP
datagrams, to control the data transfer from the disk to the socket buffer and then to the network
interface, and other demands to handle the TCP connection. The second part is the time to transfer
the data from the disk to the socket buffer. The last part is the time to transfer the data to the
network interface.

These demands can be associated with each resource of the system, CPU, disk, and network card.
The Web server simulation model is composed by three queues, one for each resource. The queues
hold HTTP requests. There is a socket buffer corresponding to each connection. Each queue is
driven by a scheduling policy. The CPU queue was implemented as a FIFO queue because the
information needed to give the priority according to FCF policy was not available before the parser
of the request. The requests admitted at the CPU are serviced according to PS (Processor Sharing).
The requests at the disk queue are waiting for data transfer from the file system to the socket buffer.
The data is read in blocks of 16 Kbytes (block mode). The network queue transfer the data from the
socket buffer to the network interface buffer and closes the connection when the transfer has
finished. Otherwise, it will place the connection into the disk queue. Thus the connections alternate
between the disk and network queues until all the requested data has been served.

3.2. Server Workload Modeling

The second component of the simulation model is the server workload. To generate the server
workload we used the SURGE benchmark [3, 14]. SURGE has an workload generator designed to
reproduce important characteristics of Web workloads including heavy-tailed file size and request
distribution, Zipf popularity and temporal locality of the requested files, distribution of the
embedded references, on-off times and the number of simultaneous users. SURGE generates
requests simulating the access of hundreds or even thousands users.

SURGE defines the concept of user equivalents (UE). A user equivalent is a single process which



represents the load produced by a single user. The workload intensity in SURGE is given by the
number of user equivalents. In our simulation, the UE ranges from 70 to 700.

3.3. Internet Modeling

Modeling the Internet is a difficult task [21, 22]. Nevertheless, many works have been modeled and
studied some aspects of the Internet [2, 9, 10, 19, 20]. Despite this work the Web server
performance evaluation has been done on high-speed LANs.The Internet modeling in our work
considers performance aspects of WANS. In our work the Internet was modeled considering the
main aspects of the TCP and the HTTP/1.1 protocols. We focus on the following characteristics:
RTT, bandwidth ranges, network traffic and losses. We discuss each of these characterizations.

The first characterization is of RTT and bandwidth. Table 1 presents the probability distribution of
the RTTs and of the bandwidths based on work [9]. We defined four classes of minimum RTT: 20,
50, 90 and 280 ms. Then we defined the bandwidth distribution and the corresponding RTT class. A
more realistic distribution of the RTTs must consider the effects of the traffic. We model the RTT
oscillations according to a limited Pareto distribution, having the minimum RTT as a parameter for
the minimum value. The maximum value was set up as the minimum times eight. The alpha
parameter was 1.4. The set of values generated by this model is according to the statistics of
observed values for RTT presented in [2]. Packet losses were defined in 5%.

The TCP and HTTP/1.1 protocols were modeled in our simulation. The model included the TCP
connection establishment and termination, slow start, flow control and congestion control
(advertised and congestion windows). The mechanisms for fast retransmit and recovery were not
modeled. The calculation of the transmission rate (throughput) needed to attribute the priorities in
the FCF policy is made by the simulation model.

Bandwidth Percentage RTT class
14 Kbps 2 90 and 280
28 Kbps 4 90 and 280
33 Kbps 12 90 and 280
56 Kbps 34 90 and 280
128 Kbps 19 20 and 50
1 Mbps 13 20 and 50
4 Mbps 9 20 and 50
10 Mbps 7 20 and 50

Table 1 : Bandwidth distribution and RTT classes.

4. Simulation Results

In this section we summarize our results. The simulation goal is to evaluate and compare the
performance of the policies FCF, FIFO and SRPT. The performance metrics are the delay at the
server, the response time seen by the client, the slowdown and the analysis of starvation of large
requests and of slow connections. First we present the workload characterization, followed by the
performance results.

The results for FIFO run means that this policy was applied to the three queues (CPU, disk and



network interface). The FCF option means that the FIFO policy was applied to CPU queue and the
FCF policy was applied to the other queues. The SRPT option means that the FIFO policy was also
applied to CPU queue and the SRPT policy was applied to the other queues.

The beta constant value was two in the simulation. It means that the files which size was up to two
times the smallest file were considered to get the highest priority. In other words, the highest
priority was given to the request issued through the fastest connection (highest throughput) from the
requests which size is up to two times the smallest response.

It 1s important to highlight that some results for FCF and SRPT are similar because those policies
share the same criteria, the response size. Both give priority to the shortest remaining processing
time. The difference between them is that FCF also consider the throughput of the user’s
connection. The goal of FCF is to help the interaction between the server and the network. As
already known, SRPT is the best policy when we consider the metrics related to the server [11]
such as server delay. FCF improves the request response time measured at the client side. We argue
that the user response time is the most important metric and should be the one chose to be
improved. As we will show, FCF presents the best results for response time.

4.1 Server Workload Characterization

The server workload was generated by SURGE. Each simulation run was composed by more than a
million requests. The mean file size was 14 KB. The UEs varying from 70 to 700. From the server
point of view, each run serviced the same requests in the same sequence. From the user point of
view, some users may have issued a different number of requests according to the priority given to
them by the scheduling policy. This behavior is due to the SURGE generator. As soon as the user
receives the file requested, he is able to issue another request. So the users with the higher priorities
will get the responses quickly and will send more requests.

The workload was classified in eight classes according to the response (file) size. Figure 1 shows a
plot with the distribution of the bytes and of the requests for each class. Most of the requests are for
small files while most of the bytes are requested by a small set of requests. More than 90% of the
requests are for files smaller than 32 KB and, on the other side, only 1.47% of the requests are for
files larger than 128KB. The requests for files larger than 128 KB compose almost 40% of the
server workload. This distribution of the bytes and files represents a real Web server workload.
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Figure 1: Distribution of the requests and bytes in the classes based on the file sizes.

4.2. Analysis of the Starvation of the Large Files

A common concern about the SRTP is its unfairness. Since it gives preference to small files, large
ones may starve. We can observe in the plot of Figure 1 that about 85% of the requests are for files
smaller than 16 KB and they represent 21,5% of the server demand. If the server gives priority to
the small requests, it will have 78,5 % of the resource to handle the last 15% (larger) requests.
Considering these numbers, it is not necessary to have a dynamic criteria for the scheduling policy
to avoid starvation because most of the server resources will be dedicated to the large requests. This
approach is also taken in a number of works [11, 12, 13].

Figure 2 shows the response time for each class of file size for a workload of 700 UE. We observe
that the class with files larger than 128 KB experiments a small penalization when compared to the
size-independent (FIFO) policy. This class comprises 1.47% of the requests only. We see that for
more than 98% of the requests there is a considerable improvement in the mean response size given
by FCF and SRPT policies compared to FIFO.
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Figure 2: Mean response time per class of file sizes for workload of 700 UEs.

4.3 Analysis of the Starvation of the Slow Connections

The plot on Figure 3 shows the mean response time seen by the client as a function of the
connection bandwidth. The question is weather the slow connections suffers. We observe that the
response times are proportional to the classes of connection bandwidth for all policies. The higher
the bandwidth, the smaller the response time. This result validates the TCP simulation. It means
that the simulated TCP algorithms recognizes and controls the flows.

FIFO has the worst response times for all connectivity conditions. It means that there is no
starvation of the connections with low throughput. FCF results are worse than SRPT results when
the bandwidth is low. FCF has the best results for the best connectivity conditions. We also
conclude that the FCF policy interacts well with the TCP algorithms, leading to improvements in
TCP performance in the case of good connectivity conditions. This results also shows that we have
reached our goal that was to improve the response time for the fastest connections.
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Figure 3: Mean response time as a function of the connection bandwidth.

4.4 Slowdown

The slowdown evaluates the fairness of the policies. It is calculated as the waiting time in all
queues divided by the total service time. A small value for slowdown means that the waiting time
the tasks experiment is proportional to their size. Figure 4 shows the slowdown for the three
policies. We see that FIFO discipline is much more unfair than FCF and SRPT policies.
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Figure 4: Slowdown.

4.5 The Delay at the Server

Figure 5 shows the mean delay at the server as the load increases. The delay is the sum of the
service demand at all resources plus the waiting times at the server queues. FIFO has the worst
result. FCF and SRPT have similar results but consistently better for SRPT. This is an predicted
result since SRPT discipline is known to have the best server delay of all queueing disciplines. So,
this result also contributes to validate our simulation. We observed that FCF also get good results at
the server because it considers the size of the request as a criteria to give priorities.
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4.6 Mean Response Time

Figure 6 shows the result for the most important metric, the mean response time, that is, the delay
seen at the client. FIFO has again the worst result. FCF has consistently the best results at all loads.
Although FCF policy has not the best server delay, the interaction done with the server and the TCP
implementation leads to the best results in response time. The response time includes the server

Figure 5: Mean Server Delay

delay and the transmission time. We did not model the delay at the client.
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6. Conclusion and Future Work

The information sharing between a Web server system and the TCP connections opened in the




server are explored in this paper to propose a new scheduling policy that is based on the throughput
of the user’s connection. The proposal policy, FCF improves the mean response time with no
excessive penalization for large requests and slow connections. The results show evidences that the
different levels of connectivity in the Internet affect the performance of the Web server, and that
this information can be used to improve the performance of the system significantly.

Why should this policy be taken into consideration? FCF improves the interaction between server
and network systems, giving similar priorities to the requests in both environments, and leading to
better mean response time. In the long term, even as bandwidth costs continue to drop and higher
end-user speeds become available, FCF wil continue to reap the benefits because a bunch of facts.
First, non-uniform bandwidth and network latencies will persist (or even be higher) due to financial
constraints and physical limitations such as environment and location. Second, network distances
and latencies are increasing. Third, user expectations of faster performance continue to increase. In
fact, we think that the variability of the bandwidth and latencies will increase because although new
high-end speeds become available, many users do not improve their connectivity conditions. So, the
range of the speeds increases, and also increases the variability.
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