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Abstract

Let G be a simple and finite graph. In this paper we are concerned with operations
on G that transform it into a perfect graph. We define some graph parameters related
to these operations and prove some results about it. Using a well know lower bound
for Ramsey Numbers we conclude that there are graphs that are highly imperfect.
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1 Preliminaries

All graphs in this paper are finite and simple. We denote the vertex set and the edge
set of a graph G by V(G) and E(G). We use x(G), a(G) and w(G) for the chromatic
number, the independence number and the clique number of a graph G respectively.
The complement of a graph G is denoted by G. When there is no ambiguity we use x
and X in the place of x(G) and x(G) respectively. The same interpretation should be
made of o, @, w and @.

Given a graph G we denote by G — A the graph obtained from the deletion of a set
A of edges (or vertices with the care to take only induced subgraphs) from E(G) (resp.
V(@)). Similarly we use G + A in the case of the insertion of a set A of edges (vertices)
into E(G) (resp. V(G)). A hole in G is a induced cycle in G of length at least 4. An
antihole in G is a induced subgraph of G whose complement is a hole. We say that a
hole (antihole) with an odd number of vertices is an odd hole (antihole).

DEFINITION 1.1 (PERFECT GRAPHS) A graph G is perfect if, for all induced subgraphs
H of G, the identity x(H) = w(H) holds.

THEOREM 1.1 (PERFECT GRAPH THEOREM) A graph G is perfect if and only if G is
perfect.

THEOREM 1.2 (STRONG PERFECT GRAPH THEOREM) A graph G is perfect if and
only if G it contains neither odd holes nor odd antiholes as subgraphs.

The proof of theorem 1.1 can be found in [Diest00]. The second theorem was
conjectured by Berge in 1961 and was settled recently in a joint work of Chudnovsky,
Robertson, Seymour and Thomas [Chudn03].

The Ramsey number r(k,l) is the smallest integer such that for every graph G with
|[V(G)| > r(k,1)| it holds that a(G) > k and w(G) > I. The Ramsey Theorem [Bondy76)
states that r(k,[l) is well defined for all positive integers k£ and I. A graph G with
[V(G)| = r(k,1) — 1 and with a(G) < k and w(G) <1 is called a r(k,1)-ramsey graph.

A well know lower bound for r(k,1) is presented in the following theorem [Bondy76]:

THEOREM 1.3 Let m = min(k,l), then it holds that r(k,1) > 2™.



2 Operations to make a Graph Perfect

Now we define four graph parameters: p;, p2, ps and ps. Each one of these parameters
is related to an operation that can be performed on a graph to make it perfect.

DEFINITION 2.1 (MAXIMUM PERFECT SUBGRAPH) Given a graph G, we denote by
p1(G) the size of the smallest set A C E(G), such that G — A is perfect.

DEFINITION 2.2 (MINIMUM PERFECT COMPLETION) Given a graph G, we denote by
p2(G) the size of the smallest edge set B, where BN E(G) = &, such that G + B is
perfect.

DEFINITION 2.3 (CLOSEST PERFECT SUBGRAPH) Given a graph G, we denote by p3(G)
the size of the smallest integer |A| + |B|, such that A C E(G) and B is an edge set with
BNE(G) =@, and (G — A) + B is perfect.

DEFINITION 2.4 (MAXIMUM INDUCED PERFECT SUBGRAPH) Given a graph G, we de-
note by ps(G) the size of the smallest set X C V(G), such that G — X is perfect.

It is worth observing that in the definitions 2.1, 2.3 and 2.4 we are interested in
perfect subgraphs and in definition 2.2 we are interested in perfect supergraphs.

When there is no ambiguity we write only p; in the place of p;(G) and py in the

place of p; (G). Similarly we use p2, Pz, ps3, P3, pa and pg.

Fact 2.1 For all graphs it holds that:

i. ps=7p1.
it. pr =p2 and p2 = p1.
ifi. ps = 3.

PRroOF: (i) It comes directly from theorem 1.1. (i) Let G be a graph with p;(G) =k
and let A C E(G) be a set of k edges such that G — A is perfect. It follows from theo-
rem 1.1 that G + A is perfect and that obviously A is minimal. The identity p» = p1
comes from the observation that if p; = ps then py = ps = p2. (%) Let A C E(G) and
BN E(G) = @ such that p3(G) = |A| + |B| and (G — A) + B is perfect. We know from

theorem 1.1 (again) that (G — B) + A is perfect and that |A| +|B| is minimum to make
G a perfect graph. O

THEOREM 2.1 For all graphs it holds that ps < p3 < p1, p2.

ProOOF: The inequality ps < p1, p2 comes directly from the inequality ps < min(p1, p2)-
Now we need to show that ps < p3. Let G be a graph with p3(G) = k. We can show
that pg < p3 exhibiting a set X C V(G), with |X| < k, such that G — X is perfect.

Let A = {a1,a2,...,ar,} C E(G) and B = {b1,ba,...,b, }, where b; ¢ E(G) for
(1 <i < k), such that H = (G—A)+ B is perfect and [A|+|B| = k. Let a; = {v},,v2,
for 1 < a; < ki and b; = {v; , vy } for 1 < b; < ky. Take X = X; U X, where the vertex
sets X, = {z},22,..., 2%} and Xy = {z},23,...,25"} are built in this manner:

For 1 < i < ki, let each o} = vl , for j = 1 or j = 2. For 1 <4 < ky, let each
rh = in, for j =1 or j = 2. In other words, the vertices to be removed from G to make
it perfect are vertices that are adjacent to the p3(G) edges that should be removed from
and inserted in G to make it perfect.



Now we show that for X built in this manner we it holds that G — X is perfect.
Suppose that G — X is imperfect. Then there are an odd hole either in G — X or in
G — X, with, let us say the vertices w1, us, ..., u;, for some odd 1, 5 < I < |V(G)| — | X]|.
If this odd hole is present in G — X it must also be present in H. If this odd hole is
present in G — X it must also be present in H. But H (and H), is perfect, what is a
contradiction. O

(a) (b) ()

Figure 1: (a) The graph G. (b) The graph H (isomorphic to G). (c) A graph with ps < ps.

It is important to note that the definition of p3 do not have much information if
there are no graphs for which the strict inequality p3 < p1, p2 holds. We can contruct
such graphs from the graphs G and H presented in figures 1(a) e 1(b) respectively. The
constructed graph appears in figure 2. Now, we see this construction in detail.

First of all, note that p;(G) = 2 and p2(G) = 1 (the insertion of the edge asas, for
example, makes the graph perfect). As a consequence we have p3(G) = 1. For the
graph H we have p1 (H) = 2 and p2(H) = p3(H) = 1 (the deletion of the edge b2bs, for
example, makes the graph perfect), since it is isomorphic to G.

Let G' with vertex set V(G') = V(G)UV (H) and edge set E(G') = E(G)UE(H) (see
figure 2). Removing the edge b2b3 from E(G') and inserting asas in it, we get a perfect
graph. By the construction of G' it is easy to see that G = (G’ + {azas}) — {b2b3}
does not have odd holes.

Now we have to look at G”. By the construction we know that the subgraph of
G’ induced by {vi,a1,as,...,ar} does not have odd holes. The same occurs for the
subgraph induced by {vy, b1, ba,...,b7}. Let A ={ay,...,a7} and B = {by,...,b7}.

The last thing to check is if there is an odd hole using vertices from both A and B.
But such holes does not exists in G since the subgraph of G induced by AU B is the
complete bipartite graph K7 7 (the two independent sets are A and B).

We also have a case where strict inequality ps < p3 occurs. An example is showed in
figure 1(c).



Figure 2: The graph G'.

3 Lower Bounds and Imperfect Graphs

We start this section with some lower bounds for p4.

Fact 3.1 For all graphs with n vertices we have
X —w< pa
W X —a<py
iW. nja—w < py

PROOF: (i) This inequality is a consequence that for all v € V(G) we have x(G—{v}) >
X(G) — 1 (in other words the chromatic number can not decay more than one with a
vertex deletion). (i) It comes directely from (i) and from fact 2.1(ii). (7%) This in-
equality comes from (i) and from the well know inequality ax > n. O

From the theorem 2.1, we have that the bounds from Lema 3.1 are valid for p1, po
and ps.

Since there are graphs with arbitrary high chromatic number and with clique num-
ber w = 2 [Bondy76], we can conclude from lemma 3.1(i) that there are graphs with
arbitrarily high ps. However, from this result we can not know if p4 is high when com-
pared to the size of the vertex set of the graph. We can gain more information about
it from lemma 3.1(iii) combinated with the theorem 1.3. From these results we know
that there exist graphs with high ps even when compared to the size of the vertex set.
In some way we can say that these graphs are highly imperfect. We state this result in
the following way:

THEOREM 3.1 There exist graphs with n vertices and

n
> ——— —1g(2n).
P o) g(2n)
PROOF: From the Ramsey Theorem we know that r(k, k) is well defined for any integer
k > 0. From theorem 1.3 we have r(k,k) > 2%/2. Let G be a (k, k)-ramsey graph. In
other words, G is a graph with r(k, k) — 1 vertices, with a(G) < k and w(G) < k. From
lema 3.1(iii) we have

pz D12

> g @) —lg(2n). O



4 Remarks

4.1 Upper Bounds

Two obvious upper bounds for p; and ps (and consequentely for ps3 and p,) are the
following;:

FacT 4.1 For all graphs with n vertices and m edges we have

i. p1 <min (m—(n—1),%)
1. pa < min [(g) —m] —(n— 1%@

ProOOF: (i) It comes directly from the fact that trees and bipartite graphs are perfect
and from the fact that for any graph G, there exists X C E(G), |X| < m/2, such that
G — X is bipartite (see [Alon92]). (ii) It follows from the fact 2.1(ii). O

4.2 Computational Complexity

Since perfectness is a hereditary (on the induced subgraphs) and non trivial property,
it follows from the result of Lewis and Yannakakis [Lewis80] (stated below) that the
problem of finding p4 is a NP-complete problem.

THEOREM 4.1 (LEWIS AND YANNAKAKIS) If II is a grapy property satisfying the fol-
lowing conditions:

i. There are infinitely many graphs for whitch 11 holds.
i1. There are infinitely many graphs for whitch II does not holds.
iti. If II holds for a graph G then II holds for all induced subgraphs of G.

Then the following problem is NP-complete: Given a graph G and a positive integer
kE < |V(GQ)|, is there a subset V' C V(G) with |V'| > k such that II holds for the
subgraph of G induced by V'?

Natanzon, Shamir and Sharan [Natan99] showed in 1999 that the decision version
of the problems of finding a maximum perfect subgraph, a minimum perfect completion
and a closest perfect subgraph ! are also NP-complete. These three problems can be
seen as the same as the problem of findind p;, p2 and p3.
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