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tLet G be a simple and �nite graph. In this paper we are 
on
erned with operationson G that transform it into a perfe
t graph. We de�ne some graph parameters relatedto these operations and prove some results about it. Using a well know lower boundfor Ramsey Numbers we 
on
lude that there are graphs that are highly imperfe
t.Keywords: perfe
t graphs, perfe
t subgraphs, perfe
t supergraphs, operation on graphs,vertex deletion, edge deletion, edge insertion, edge editing.1 PreliminariesAll graphs in this paper are �nite and simple. We denote the vertex set and the edgeset of a graph G by V (G) and E(G). We use �(G), �(G) and !(G) for the 
hromati
number, the independen
e number and the 
lique number of a graph G respe
tively.The 
omplement of a graph G is denoted by G. When there is no ambiguity we use �and � in the pla
e of �(G) and �(G) respe
tively. The same interpretation should bemade of �, �, ! and !.Given a graph G we denote by G�A the graph obtained from the deletion of a setA of edges (or verti
es with the 
are to take only indu
ed subgraphs) from E(G) (resp.V (G)). Similarly we use G+A in the 
ase of the insertion of a set A of edges (verti
es)into E(G) (resp. V (G)). A hole in G is a indu
ed 
y
le in G of length at least 4. Anantihole in G is a indu
ed subgraph of G whose 
omplement is a hole. We say that ahole (antihole) with an odd number of verti
es is an odd hole (antihole).Definition 1.1 (Perfe
t Graphs) A graph G is perfe
t if, for all indu
ed subgraphsH of G, the identity �(H) = !(H) holds.Theorem 1.1 (Perfe
t Graph Theorem) A graph G is perfe
t if and only if G isperfe
t.Theorem 1.2 (Strong Perfe
t Graph Theorem) A graph G is perfe
t if andonly if G it 
ontains neither odd holes nor odd antiholes as subgraphs.The proof of theorem 1.1 
an be found in [Diest00℄. The se
ond theorem was
onje
tured by Berge in 1961 and was settled re
ently in a joint work of Chudnovsky,Robertson, Seymour and Thomas [Chudn03℄.The Ramsey number r(k; l) is the smallest integer su
h that for every graph G withjV (G)j � r(k; l)j it holds that �(G) � k and !(G) � l. The Ramsey Theorem [Bondy76℄states that r(k; l) is well de�ned for all positive integers k and l. A graph G withjV (G)j = r(k; l)� 1 and with �(G) < k and !(G) < l is 
alled a r(k; l)-ramsey graph.A well know lower bound for r(k; l) is presented in the following theorem [Bondy76℄:Theorem 1.3 Let m = min(k; l), then it holds that r(k; l) � 2m.1



2 Operations to make a Graph Perfe
tNow we de�ne four graph parameters: �1, �2, �3 and �4. Ea
h one of these parametersis related to an operation that 
an be performed on a graph to make it perfe
t.Definition 2.1 (Maximum Perfe
t Subgraph) Given a graph G, we denote by�1(G) the size of the smallest set A � E(G), su
h that G�A is perfe
t.Definition 2.2 (Minimum Perfe
t Completion) Given a graph G, we denote by�2(G) the size of the smallest edge set B, where B \ E(G) = ?, su
h that G + B isperfe
t.Definition 2.3 (Closest Perfe
t Subgraph) Given a graph G, we denote by �3(G)the size of the smallest integer jAj+ jBj, su
h that A � E(G) and B is an edge set withB \ E(G) = ?, and (G�A) +B is perfe
t.Definition 2.4 (Maximum Indu
ed Perfe
t Subgraph) Given a graph G, we de-note by �4(G) the size of the smallest set X � V (G), su
h that G�X is perfe
t.It is worth observing that in the de�nitions 2.1, 2.3 and 2.4 we are interested inperfe
t subgraphs and in de�nition 2.2 we are interested in perfe
t supergraphs.When there is no ambiguity we write only �1 in the pla
e of �1(G) and �1 in thepla
e of �1(G). Similarly we use �2, �2, �3, �3, �4 and �4.Fa
t 2.1 For all graphs it holds that:i. �4 = �4.ii. �1 = �2 and �2 = �1.iii. �3 = �3.Proof: (i) It 
omes dire
tly from theorem 1.1. (ii) Let G be a graph with �1(G) = kand let A � E(G) be a set of k edges su
h that G�A is perfe
t. It follows from theo-rem 1.1 that G + A is perfe
t and that obviously A is minimal. The identity �2 = �1
omes from the observation that if �1 = �2 then �1 = �2 = �2. (iii) Let A � E(G) andB \E(G) = ? su
h that �3(G) = jAj+ jBj and (G�A) +B is perfe
t. We know fromtheorem 1.1 (again) that (G�B)+A is perfe
t and that jAj+ jBj is minimum to makeG a perfe
t graph. 2Theorem 2.1 For all graphs it holds that �4 � �3 � �1; �2.Proof: The inequality �3 � �1; �2 
omes dire
tly from the inequality �3 � min(�1; �2).Now we need to show that �4 � �3. Let G be a graph with �3(G) = k. We 
an showthat �4 � �3 exhibiting a set X � V (G), with jX j � k, su
h that G�X is perfe
t.Let A = fa1; a2; :::; ak1g � E(G) and B = fb1; b2; :::; bk2g, where bi =2 E(G) for(1 � i � k2), su
h that H = (G�A)+B is perfe
t and jAj+jBj = k. Let ai = fv1ai ; v2aigfor 1 � ai � k1 and bi = fv1bi ; v2big for 1 � bi � k2. Take X = X1 [X2 where the vertexsets X1 = fx11; x21; :::; xk11 g and X2 = fx12; x22; :::; xk12 g are built in this manner:For 1 � i � k1, let ea
h xi1 = vjai , for j = 1 or j = 2. For 1 � i � k2, let ea
hxi2 = vjbi , for j = 1 or j = 2. In other words, the verti
es to be removed from G to makeit perfe
t are verti
es that are adja
ent to the �3(G) edges that should be removed fromand inserted in G to make it perfe
t. 2



Now we show that for X built in this manner we it holds that G � X is perfe
t.Suppose that G �X is imperfe
t. Then there are an odd hole either in G �X or inG�X , with, let us say the verti
es u1; u2; :::; ul, for some odd l, 5 � l � jV (G)j � jX j.If this odd hole is present in G �X it must also be present in H . If this odd hole ispresent in G �X it must also be present in H. But H (and H), is perfe
t, what is a
ontradi
tion. 2
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)Figure 1: (a) The graph G. (b) The graph H (isomorphi
 to G). (
) A graph with �4 < �3.It is important to note that the de�nition of �3 do not have mu
h information ifthere are no graphs for whi
h the stri
t inequality �3 < �1; �2 holds. We 
an 
ontru
tsu
h graphs from the graphs G and H presented in �gures 1(a) e 1(b) respe
tively. The
onstru
ted graph appears in �gure 2. Now, we see this 
onstru
tion in detail.First of all, note that �1(G) = 2 and �2(G) = 1 (the insertion of the edge a2a3, forexample, makes the graph perfe
t). As a 
onsequen
e we have �3(G) = 1. For thegraph H we have �1(H) = 2 and �2(H) = �3(H) = 1 (the deletion of the edge b2b3, forexample, makes the graph perfe
t), sin
e it is isomorphi
 to G.LetG0 with vertex set V (G0) = V (G)[V (H) and edge set E(G0) = E(G)[E(H) (see�gure 2). Removing the edge b2b3 from E(G0) and inserting a2a3 in it, we get a perfe
tgraph. By the 
onstru
tion of G0 it is easy to see that G00 = (G0 + fa2a3g) � fb2b3gdoes not have odd holes.Now we have to look at G00. By the 
onstru
tion we know that the subgraph ofG0 indu
ed by fv1; a1; a2; :::; a7g does not have odd holes. The same o

urs for thesubgraph indu
ed by fv1; b1; b2; :::; b7g. Let A = fa1; :::; a7g and B = fb1; :::; b7g.The last thing to 
he
k is if there is an odd hole using verti
es from both A and B.But su
h holes does not exists in G00 sin
e the subgraph of G00 indu
ed by A[B is the
omplete bipartite graph K7;7 (the two independent sets are A and B).We also have a 
ase where stri
t inequality �4 < �3 o

urs. An example is showed in�gure 1(
).
3
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Figure 2: The graph G0.3 Lower Bounds and Imperfe
t GraphsWe start this se
tion with some lower bounds for �4.Fa
t 3.1 For all graphs with n verti
es we havei. �� ! � �4ii. �� � � �4iii. n=�� ! � �4Proof: (i) This inequality is a 
onsequen
e that for all v 2 V (G) we have �(G�fvg) ��(G) � 1 (in other words the 
hromati
 number 
an not de
ay more than one with avertex deletion). (ii) It 
omes dire
tely from (i) and from fa
t 2.1(ii). (iii) This in-equality 
omes from (i) and from the well know inequality �� � n. 2From the theorem 2.1, we have that the bounds from Lema 3.1 are valid for �1, �2and �3.Sin
e there are graphs with arbitrary high 
hromati
 number and with 
lique num-ber ! = 2 [Bondy76℄, we 
an 
on
lude from lemma 3.1(i) that there are graphs witharbitrarily high �4. However, from this result we 
an not know if �4 is high when 
om-pared to the size of the vertex set of the graph. We 
an gain more information aboutit from lemma 3.1(iii) 
ombinated with the theorem 1.3. From these results we knowthat there exist graphs with high �4 even when 
ompared to the size of the vertex set.In some way we 
an say that these graphs are highly imperfe
t. We state this result inthe following way:Theorem 3.1 There exist graphs with n verti
es and�4 � nlg (2n) � lg (2n).Proof: From the Ramsey Theorem we know that r(k; k) is well de�ned for any integerk > 0. From theorem 1.3 we have r(k; k) � 2k=2. Let G be a (k; k)-ramsey graph. Inother words, G is a graph with r(k; k)�1 verti
es, with �(G) < k and !(G) < k. Fromlema 3.1(iii) we have�4 � r(k; k)� 1(k � 1) � (k � 1) � nlg (2n) � lg (2n). 24



4 Remarks4.1 Upper BoundsTwo obvious upper bounds for �1 and �2 (and 
onsequentely for �3 and �4) are thefollowing:Fa
t 4.1 For all graphs with n verti
es and m edges we havei. �1 � min �m� (n� 1); m2 �ii. �2 � min0B�h�n2��mi� (n� 1);  n2!�m2 1CAProof: (i) It 
omes dire
tly from the fa
t that trees and bipartite graphs are perfe
tand from the fa
t that for any graph G, there exists X � E(G), jX j � m=2, su
h thatG�X is bipartite (see [Alon92℄). (ii) It follows from the fa
t 2.1(ii). 24.2 Computational ComplexitySin
e perfe
tness is a hereditary (on the indu
ed subgraphs) and non trivial property,it follows from the result of Lewis and Yannakakis [Lewis80℄ (stated below) that theproblem of �nding �4 is a NP-
omplete problem.Theorem 4.1 (Lewis and Yannakakis) If � is a grapy property satisfying the fol-lowing 
onditions:i. There are in�nitely many graphs for whit
h � holds.ii. There are in�nitely many graphs for whit
h � does not holds.iii. If � holds for a graph G then � holds for all indu
ed subgraphs of G.Then the following problem is NP-
omplete: Given a graph G and a positive integerk � jV (G)j, is there a subset V 0 � V (G) with jV 0j � k su
h that � holds for thesubgraph of G indu
ed by V 0?Natanzon, Shamir and Sharan [Natan99℄ showed in 1999 that the de
ision versionof the problems of �nding a maximum perfe
t subgraph, a minimum perfe
t 
ompletionand a 
losest perfe
t subgraph 1 are also NP-
omplete. These three problems 
an beseen as the same as the problem of �ndind �1, �2 and �3.Referen
es[Alon92℄ N. Alon and J. Spen
er. The Probabilisti
 Method. John Wiley & Sons In
.,1992.[Bondy76℄ J. A. Bondy and U. S. R. Murty. Graph Theory with Appli
ations. North-Holland, New York, 1976.[Chudn03℄ M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas.The strong perfe
t graph theorem. Manus
ript, 2003.http://www.math.gate
h.edu/~thomas/spg
.html.[Diest00℄ Reinhard Diestel. Graph Theory. Graduate Texts in Mathemati
s. Springer-Verlag, New York, 2nd edition, 2000.1Natanzon et al 
all this problem Minimum Perfe
t Edition.5
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