
Universidade Federal do Paraná

Departamento de Informática

João Eugenio Marynowski and Andrey Ricardo Pimentel

HadoopTest:
A Dependability Testing Framework For Hadoop

Relatório Técnico
RT DINF 002/2013

Curitiba, PR
2013

HadoopTest:
A Dependability Testing Framework For Hadoop

(A Practical Experience Report)

João Eugenio Marynowski and Andrey Ricardo Pimentel
Department of Informatics

Federal University of Paraná
Curitiba, Brazil 81531-980
{jeugenio,andrey}@inf.ufpr.br

Abstract—Hadoop is a popular MapReduce implementation
used to analyze large data sets distributed over a huge number
of machines. Fault tolerance is a key feature of Hadoop, and
it is essential to execute representative fault cases for testing
the Hadoop’s dependability. The fault case execution is a hard
task that must be automated since it involves controlling and
monitoring all the Hadoop’s distributed components, and in-
jecting faults according to the components processing steps. To
address this problem, we present HadoopTest, a dependability
testing framework freely available. HadoopTest automates the
execution of fault cases in a real deployment scenario and
validates the Hadoop’s behavior. We show the adequacy and
efficacy of HadoopTest by executing representative fault cases
and identifying Hadoop bugs.

Keywords—Hadoop; MapReduce; Dependability; Test; Fault
Injection

I. INTRODUCTION

Hadoop is an open-source implementation of MapReduce,
that is a simplified programming model and the associated im-
plementation for processing and analyzing large-scale data [1].
A growing number of companies uses it to analyse the data
generated by several applications, such as social networks,
data mining, machine learning, log processing, and business
intelligence [2]. Hadoop allows one to use a huge number
of machines easily for the distributed data processing. As
any other large-scale system, Hadoop faces faults frequently
due to several different conditions, e.g., outages, hardware
problems, and bugs [3]. It is designed to detect and handle
those faults; however, it is necessary to test Hadoop to ensure
its dependability.

Dependability testing aims at validating the behavior of
fault tolerant systems, i.e., it aims at finding errors in the imple-
mentation or specification of fault tolerant mechanisms [4], [5].
For this purpose, the system is executed on a controlled testing
environment with the injection of artificial faults. A fault
case is the set of requirements for a complete execution and
validation of a system under test while faults are injected[6],
[7]. Two main issues concerning the dependability testing
are: (1) generate representative elements from the potentially
infinite and partially unknown set of possible fault cases and
(2) automate their executions.

In [8], [9] we show how to generate representative fault
cases from a Petri Net model of the Hadoop’s fault tolerance
mechanism. The generated fault cases involve the controlling

and monitoring each distributed Hadoop’s component, the fault
injection according to the components processing steps, and
the validation of the Hadoop’s behavior.

In this work, we describe HadoopTest, a dependability
testing framework that automates the execution of represen-
tative fault cases in a real deployment scenario. We show how
HadoopTest controls and monitors all Hadoop’s distributed
components individually. It injects faults according to their
processing steps and validates the system behavior. We show
the HadoopTest adequacy by executing some representative
fault cases and identifying some Hadoop bugs.

The remainder of this paper is organized as follows. The
next session introduces basic concepts, presenting a description
of Hadoop and defining a fault case. Section II-C presents the
representative fault cases. Section III presents our framework
for the dependability testing. Section IV describes the results
through implementation and experimentation. Section V sur-
veys related work. Section VI concludes.

II. BASIC CONCEPTS

Hadoop offers a programming environment based on two
high-level functions, map and reduce, and a runtime environ-
ment to execute them on a cluster. The Hadoop architecture
includes several TaskTracker components, and one JobTracker
that schedules map and reduce tasks to run at the TaskTrackers.

The Hadoop fault tolerance mechanism identifies faulty
TaskTracker by timeout, and reschedules their tasks to another
healthy TaskTracker. The fault handling differs between tasks
and their processing steps, e.g., if a TaskTracker fails when it
is executing a map task, the JobTracker only reschedules its
task for another TaskTracker; but if a component fails after
executing a map task, the JobTracker reschedules the task for
another TaskTracker and informs all TaskTrackers executing
reduce tasks that they must read the map result from the new
TaskTracker.

Testing the dependability of Hadoop requires to validate its
behavior stimulating its tolerated faults, which by turn requires
explicit control over all its components and their processing
steps. A fault case is a set of components required for a
complete execution and dependability validating of a system.

A. Representative Fault Cases

The representativeness of a fault case is how important it is
to identify bugs on a system under test [10], [11]. We consider
the representative fault cases for the dependability testing of
Hadoop as the generated through an abstraction of its fault
tolerance mechanism. This approach is successfully used by
other systems [6], [7], [12], and guides the generation to a
finite set of actually tolerated fault cases, and that must be
tested to ensure the system dependability.

In [8], we show how to model the Hadoop fault tolerance
mechanism using Petri Nets (PN) [13]. We modeled the
Hadoop components as dynamic items, to be easily inserted
and removed, and to model the independence of these com-
ponents with their actions and states, i.e., an action can be
executed by any enabled component.

The representative fault cases obtained were composed by
a set of actions that must be executed in parallel, by a set
of components that are instantiated dynamically on run-time.
Therefore, the fault case execution involve the controlling and
monitoring of each distributed Hadoop’s component. The fault
injection according to the components processing steps, and
the validation of the Hadoop’s behavior.

B. Definitions

Definition 2.1 (Fault Case): A fault case is a 4-tuple F =
(CF , AF , RF ,O) where: CF = {c0, c1, . . . , cn}, and it is a
list of system components; AF = {a0, a1, . . . , am}, and it
is a list of actions that can involve fault injections; RF =
{ra0

, . . . , ram
}, and it is a list of action results; and O is an

oracle.

The oracle is a mechanism responsible for verifying the
system behavior during a fault case execution, and associating
its result, i.e., a verdict pass, fail or inconclusive. Each
action execution can get the result: success, failure, or timeout
(without response during a time limit). If all action executions
get success, the F verdict is pass. If any action execution
gets failure, the F verdict is fail. But if at least one action
execution gets timeout, the F verdict is inconclusive, making
the test inaccurate for assigning some of the earlier statements
and, moreover, it is necessary to re-run the fault case.

Definition 2.2 (Fault Case Action): A fault case action is
a 7-tuple ai = (h,D, n,C ′, I,W, t) where:

• h ∈ N|h 6 |A|, and it is an hierarchical order in which
action ai must execute - actions with same h execute
in parallel;

• D ⊆ A|∀aj ∈ D : raj
= success, and it is a set of

actions that must be successfully executed before ai,
otherwise the action result rai

is failure;

• n ∈ N|n 6 |C ′|, and it is the number of success action
results, i.e., the number of action executions to result
success for ai;

• C ′ ⊆ C, and it is a set of components that execute ai;

• I is a set of instructions or commands executed by the
components;

• W is an optional instruction or command that is a
trigger required to execute ai;

• t is a time to execute ai.

C. A Representative Fault Case Example

Table I shows an example of a representative fault case.
The goal is to validate the MapReduce execution while two
components fail, one when executing a map task and another
when executing a reduce task. This fault case involves four
components CF = {c0, . . . , c3} and eight actions AF =
{a0, . . . , a7}. The component c0 executes the action a0 to
start the JobTracker. If action a0 succeeds, the components
{c1, c2, c3} execute the action a1 to start the TaskTrackers.
Otherwise, the action a1 finishes and receives the failure result.
This occurs with all actions that have a dependency relation
with a failed action, recursively. Without failed actions, the
process continues, and the component c0 executes a2 that
submits a job. During the job execution: (1) only the first
component (na3 = 1) of {c1, c2, c3} fails when it executes
the map task (Wa3 = runningMap()), and (2) only the first
component (na4 = 1) of {c1, c2, c3} fails when it executes
the reduce task (Wa4 = runningReduce()). At action a5,
c0 validates the job result, comparing the expected with the
obtained. The next actions, a6 and a7, stop the Hadoop
execution.

III. HADOOPTEST

HadoopTest is a test framework to help researchers and
practitioners to execute fault cases automatically. It extends
the PeerUnit testing framework [14]. HadoopTest controls and
monitors all Hadoop’s distributed components. It injects faults
according to their processing steps and validates the system
behavior.

The HadoopTest architecture consists of one coordinator
and several testers. The coordinator controls the execution of
distributed testers. It coordinates the actions of fault cases
and generates the verdict from tester results. Each tester
receives coordination messages, executes fault case actions in
MapReduce components, and returns their results.

Figure 1 shows HadoopTest running a fault case example
for the dependability testing of Hadoop. The coordinator
individually controls the execution of four testers, identi-
fied by {t0, ..., t3}. Tester t0 controls the JobTracker com-
ponent, and each other tester {t1, t2, t3}, controls a Task-
Tracker instance. Tester t0 submits a job to the jobtracker
that coordinates the TaskTracker components, identified by
{tasktracker0,tasktracker1,tasktracker2}. It assigns the map
function to {tasktracker0,tasktracker1,tasktracker2}, and each
one reads the input data from the files splitted in the Hadoop
Distributed File System (HDFS)[15], applies the user-defined
map function on each split, and creates the outputs locally.
However, tester t2 injects a fault on tasktracker1 while it
executes a map function. The jobtracker assigns the reduce
function to tasktracker0 and tasktracker2, but tester t1 injects
a fault on tasktracker0. Then, only tasktracker2 reads the
map outputs locally or remotely, applies user-defined reduce
function, and then, writes the results to an HDFS file.

TABLE I. A HADOOP FAULT CASE EXAMPLE

h D n C′ I W t
a0 1 ∅ 1 {c0} startJobTracker() 9000
a1 2 {a0} 3 {c1, c2, c3} startTaskTracker() 1000
a2 3 {a1} 1 {c0} sendJob() 900000
a3 3 {a1} 1 {c1, c2, c3} failTaskTracker() runningMap 1000
a4 3 {a1} 1 {c1, c2, c3} failTaskTracker() runningReduce 1000
a5 4 {a2} 1 {c0} assertResult() 10000
a6 5 {a1} 1 {c1, c2, c3} stopTaskTracker() 1000
a7 6 {a0} 1 {c0} stopJobTracker() 1000

Fig. 1. HadoopTest running a fault case example

A. The Fault Case Coordination

The fault case execution consists of coordinating and
controlling testers to execute actions in a distributed, parallel
and synchronized way. Algorithm 1 shows the main steps to
coordinate testers to execute a fault case F . For each hier-
archical level h, existing in AF , coordinator sends messages
to testers for executing actions in parallel, receives the local
results, and processes them to set the action results, RF . After
executing all actions, the oracle O analyzes RF and assigns a
fault case verdict.

Algorithm 1: Coordination
Input: F , a fault case; M, a map function between

AF and the hierarchical orders of its actions.
Data: nr, a number of success action results; and Rl, a

set of local tester results.
Output: A verdict.
foreach h ∈M(AF) do

nr ← SendMessages(M−1(h), RF)
Rl ← ReceiveResults(M−1(h), nr)
RF ← ProcessResults(M−1(h), Rl)

return O(RF)

Algorithm 2 shows the SendMessages function. It receives
a set of actions with the same hierarchical order, checks
the action dependency relations, and if no problems, sends
controlling messages to the specified testers execute them and
returns the required number of success action results.

Algorithm 3 shows the ReceiveResults function. It receives
action results while the required number of success actions
results and the time limit are not achieved. It verifies whether
the result can be considered, checking the number of success
actions results from related action; and returns the set of local
tester results.

Algorithm 2: Send Messages
Input: A′, a set of same hierarchical order actions;

RF , a set of action results
Output: nr, a number of success action results
nr ← 0
foreach ai ∈ A′ do

if RF [aj] = pass,∀aj ∈ Dai
then

Send execute ai for all t ∈ T ′ai

nr ← nr + nai

else
RF [ai]← failure

return nr

Algorithm 3: Receive Results
Input: A′, a set of actions; nr, a number of success

action results
Output: Rl, a set of local tester results
while (nr > 0) ∧ (clock < tai

,∀ai ∈ A′) do
Receive result r from t and identify its action ai
if (nai

= |C ′ai
|) then

nr ← nr − 1
Rl[t]← r

else
if (nai > 0) then

if (r = success) then
nr ← nr − 1
nai ← nai − 1
Rl[t]← r

return Rl ;

Finally, Algorithm 4 shows the ProcessResults function. It
processes the local results of actions executed in parallel and
assigns a single result for each action, compounding the set of
action results that it is returned.

B. The Faul Case Action Execution

Algorithm 5 shows the steps to execute a fault case action
by a tester. It receives the coordination message to execute ai.
If the trigger Wai is defined, it waits its execution. After that,
or if Wai

is not defined, the tester verifies if the number of
success action results nai

is greater than zero, then it executes
the set of instructions Iai

and returns its result. Otherwise, it
returns failure.

Algorithm 4: Process Results
Input: A′, a set of actions; Rl, a set of local results
Output: RF , a set of actions results
foreach ai ∈ A′ do

if nai
= 0 then

RF [ai]← success

if Rl[c] = success,∀c ∈ C ′ai
then

RF [ai]← success

else
if ∃r ∈ Rl[c] : r = failure,∀c ∈ C ′ai

then
RF [ai]← failure

else
RF [ai]← timeout

return RF ;

Algorithm 5: Fault Case Action Execution
Data: ai, a fault case action
Output: An action execution result
ai ← ReceiveAction()
if Wai 6= NULL then

Run Wai

if nai
> 0 then

return Run Iai

return failure

C. Writing Fault Cases

A fault case is composed by a set of system components,
a set of fault case actions, a set of action results, and an oracle
(Definition 2.1). HadoopTest provides the set of action results
and the oracle, while obtains the set of system components
from a set of fault case actions. Thus, to deploy a fault case
in HadoopTest is necessary to describe a set of fault actions
and execute it via HadoopTest.

A set of fault case actions is a Java class where each
action is a method marked with the @TestStep annotation. This
annotation has metadata that represent the attributes of a fault
case action. HadoopTest uses reflection to read this metadata
and use them during the fault case execution. The @TestStep
available attributes are:

• order, that is the h attribute and it is a natural number;

• depend, that is the D attribute and it is an optional
string composed by a set of methods separated by
comma;

• answers, that is the n attribute and it is an optional
natural number;

• range, that is the C ′ attribute and it is a string com-
posed by a set of tester identifiers (natural numbers)
separated by comma, or a natural number range (e.g.,
“1− 3”), or an asterisk to all testers;

• when, that is the W attribute and it is a string
composed by a command;

• timeout is the t attribute and it is a natural number
interpreted as milliseconds.

Listing 1 shows the FaultCaseExample sliced class. It
is a subclass of AbstractHadoop and implements two main
methods of the representative fault case example described in
Table I. The AbstractHadoop class implements the Hadoop
library and provides access to the methods that abstract the
Hadoop programming complexity, e.g., the method failTask-
Tracker(), that injects a fault in the TaskTracker component.

Listing 1. Fault Case Class Example
p u b l i c c l a s s F a u l t C a s e e x t e n d s AbstractMR{

. . .
@TestStep (o r d e r =3 , depend =” a1 ” , answer s =1 ,

r a n g e =”0” , when =”” , t i m e o u t =900000)
p u b l i c vo id a2 () {

sendJob () ;
}
@TestStep (o r d e r = 3 , depend = ” a1 ” ,

answer s = 1 , r a n g e = ”1−3” ,
when = ” waitMapRun ” , t i m e o u t = 1000)

p u b l i c vo id a3 () {
f a i l T a s k T r a c k e r () ;

}
. . .

}

IV. EXPERIMENTAL VALIDATION

This section presents an evaluation and validation of
HadoopTest through the automatic execution of fault cases for
the Hadoop’s dependability testing. We follow the well-known
properties presented by Arlat et al. [10] to characterize the fault
injection techniques. We generated fault cases from a model
of the Hadoop fault tolerance mechanism, and we use them to
show the HadoopTest adequacy.

The experiments were executed on the Grid5000 plat-
form [16] using up to 200 cluster machines running Debian
GNU/Linux. The cluster machines were connected by a 1 Gbps
network and they had a similar configuration: 2 Intel Xeon
2.6GHz dual-core processors, 8 GB RAM memory and 250
GB SATA HD.

A. Controllability

The controllability property denotes the ability to control
where and when faults are injected. We executed the fault case
example presented in Table I to show the high HadoopTest con-
trollability property. We executed this fault case considering
two setups. In the first, tester 1 failed its TaskTracker because
it was the first to execute a map task, and tester 2 failed its
TaskTracker because it was the first to execute a reduce task.
The fault case verdict was PASS once the Hadoop behavior
was according the specified, and the result was the expected.

In the second setup, we executed the same fault case with
other set of machines. Although the fault case verdict also was
PASS, tester 0 failed its TaskTracker first, instead of tester 1
as before occurred. Hadoop distributed tasks differently in this
setup, but HadoopTest successfully and individually controlled

each Hadoop component, it injected faults according to its
processing steps and validated its behaviors.

HadoopTest enables an apprimorate control of Hadoop
when executing a fault case. We executed two similar fault
cases to show this. Both fault cases have four testers and
two testers fault their TaskTracker when they are executing
a map task. However, in one, the TaskTrackers failed have
the input data, in the other not, i.e., the input data remain at
the TaskTracker online. HadoopTest returned the verdict PASS
in the first fault case, once Hadoop stopped and returned an
error informing that the input data were no longer available. In
the second fault case, the verdict was FAIL because Hadoop
interrupted the execution when the second TaskTracker failed,
although the input data remained in the other active Task-
Tracker. The correct behavior would be to schedule the tasks
to the active TaskTracker, but Hadoop did not do it due to a
corruption of a control file.

B. Time Measurement

HadoopTest enables to acquire and use timing information
associated to the monitored events, e.g., measurement of
error detection latency. We detected that Hadoop does not
use some configuration attributes that would be to detect
component faults. We set the mapreduce.task.timeout attribute
to one minute, but Hadoop spent about thirteen minutes to
forward a failed map task. The same occurred with other
timeout attributes to detect fault components, except mapre-
duce.JobTracker.expire.trackers.interval that could be success-
fully used to set the fault component detection latency.

We executed another fault case to validate the Hadoop
behavior when the input data were no longer available, i.e.,
all components that store data fail. This fault case has one
JobTracker and two TaskTracker that store the input data.
Both TaskTrackers fail when executing a map task, and as
there no other TaskTracker, JobTracker should interrupt the
execution and return an error, but it does not occur. Hadoop did
not interrupt the job execution for until thirteen hours, when
HadoopTest interrupted the sendJob execution by timeout and
the fault case verdict was FAIL.

C. Nonintrusiveness

The nonintrusiveness property relates to the level of avoid-
ing or minimizing any undesired impact on the SUT behavior.
HadoopTest presents a high nonintrusiveness since it does not
need to alter the Hadoop source code to deploy any fault case.
HadoopTest uses the Hadoop scripts to start and stop their
components, uses local logs as a trigger to activate a fault
injection, and uses the kill bash command to inject a fault.
The AbstractHadoop class provides these cited functions and
can be implemented by intention, e.g., use another tool to inject
faults or Aspect-Oriented Programming [17] to activate a fault
injection.

PiEstimator is an application bundled into Hadoop and
calculates the π value. We evaluated the HadoopTest impact
by executing this application by two ways. In the first, we
executed Hadoop alone to know the raw execution time, and
in the second, we executed Hadoop by HadoopTest to evaluate
the overhead produced during testing. We used 10, 50, 100 and
200 machine-nodes on the Grid5000 to realize this experiment,

and varied the map tasks number in each execution. Figure 2
shows the average execution time of PiEstimator running
on Hadoop and HadoopTest. HadoopTest confirms its high
nonintrusiviness once presents a minimal impact controlling
Hadoop during the fault cases executions.

Fig. 2. Execution time variance between Hadoop and HadoopTest

D. Repeatability and Reproducibility

The repeatability is the ability to accurately reproduce
fault cases, and reproducibility is the ability to reproduce
results statistically for a given set-up. HadoopTest presents
high repeatability and reproducibility since all fault cases are
fully repeatable and reproducible. We execute at least three
times all fault cases presented here and we obtained the same
results in all executions1.

E. Efficacy

The efficacy property is the ability to produce significant
fault cases. Our approach achieves a high efficacy since it
generates representative fault cases from the model of the
Hadoop fault tolerance mechanism, ensuring to exercised it
entirely. Moreover, HadoopTest executed fault cases in real
deployment scenarios automatically and identified bugs in
Hadoop by executing only some fault cases.

V. RELATED WORK

Hadoop related testing frameworks are not applicable to
the dependability testing. MRUnit [18] and Herriot [19] pro-
vide a set of interfaces that validates small system parts,
e.g., a method or a function. Herriot was proposed to be a
large-scale automated test framework but its Csallner et al.
[20] systematically search the bad-defined map and reduce
functions, possibly identified by component faults. Others,
evaluate Hadoop execution by log analysis to detect Hadoop
performance problems [21], [22], [23], [24]. Although, these
approaches evaluate Hadop functionality and performance,
they do not automatically execute fault cases and validate the
system dependability.

Related work to Hadoop dependability generate fault cases
randomly or by the Test Engineer [25], [26], [27]. These

1Execution logs are available at http://goo.gl/mfKYH

approaches are inadequate for the dependability testing of Ha-
doop systems because they disregard the internals of the fault
tolerance mechanism, i.e., they ignore the behavior of fault
recovery protocols regarding the different processing steps,
e.g., they inject faults in some machines (fails 3 of 10) for
some period (from 30 to 40 sec). They can evaluate system
behavior but they cannot test system dependability.

The dependability of other distributed systems is evaluated
by fault cases systematically generated from source code, but
even applying pruning techniques they are too costly and they
limit the fault cases to few concurrent faults [28], [29], [30].

VI. CONCLUSION

We exposed and analyzed the problem of testing the
Hadoop dependability. We presented HadoopTest, a de-
pendability testing framework that executes fault cases in
real deployment scenarios automatically. We showed how
HadoopTest controls and monitors all Hadoop distributed
components individually, injects faults according to their pro-
cessing steps, and validates the system behavior. We showed
the adequacy of HadoopTest by executing some representative
fault cases and identifying some Hadoop bugs. We believe our
framework is promising for testing other distributed systems,
and we plan primarily to test other Hadoop-based systems,
such as HadoopDB and Hive.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI - USENIX Symposium
on Operating Systems Design and Implementation. San
Francisco, California: ACM Press, 2004, pp. 137–149. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=
53CA72B524B9A6153BFE89FE26FBB832?doi=10.1.1.163.5292

[2] Hadoop, “The Apache Hadoop,” http://hadoop.apache.org/, 2012.
[Online]. Available: http://hadoop.apache.org/

[3] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware
topology matching in P2P systems,” in INFOCOM - Joint Conference
of the IEEE Computer and Communications Societies, IEEE, Ed.,
vol. 4, no. C. IEEE, 2004, pp. 2220–2230. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1354645

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=1335465

[5] P. Ammann and J. Offutt, Introduction to Software
Testing. Cambridge University Press, 2008. [Online].
Available: http://books.google.com/books?hl=en&lr=&id=
leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+
to+Software+Testing&ots=3JsXf2NVb &sig=ft wIA
w6mDlqU5dVfNYja6ykYohttp://books.google.com/books?hl=en&
lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=
Introduction+to+software+testing&ots=3JsXf2NW7X&sig=
KWH4Q0eAg7eP5N9TKeQ0vG9yai8

[6] K. Echtle and M. Leu, “Test of fault tolerant distributed systems by
fault injection,” in FTPDS - Workshop on Fault-Tolerant Parallel and
Distributed Systems. IEEE, 1994, pp. 244–251. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=494496http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=
494496&contentType=Conference+Publications&searchField=Search
All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+
injection

[7] A. M. Ambrosio, F. Mattiello-Francisco, N. L. Vijaykumar, S. V.
de Carvalho, V. Santiago, and E. Martins, “A methodology for
designing fault injection experiments as an addition to communication
systems conformance testing,” in DSN-W - International Conference
on Dependable Systems and Networks Workshops, Yokohama, Japan,
2005. [Online]. Available: http://pdf.aminer.org/000/220/599/on the
development of fault tolerant on board control software.pdf

[8] J. E. Marynowski, “Towards Dependability Testing of MapReduce
Systems,” in IPDPS - IEEE International Parallel and Distributed
Processing Symposium, PhD Forum. Boston, MA, USA: To appear,
2013.

[9] E. Marynowski, A. R. Pimentel, T. S. Weber, and A. J. Mattos, “De-
pendability Testing of MapReduce Systems,” in ICEIS - International
Conference on Enterprise Information Systems, 2013.

[10] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and
G. Leber, “Comparison of Physical and Software-Implemented
Fault Injection Techniques,” IEEE Transactions on Computers,
vol. 52, no. 9, pp. 1115–1133, Sep. 2003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.5908http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1228509

[11] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On
Fault Representativeness of Software Fault Injection,” TSE - IEEE
Transactions on Software Engineering, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6122035http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6122035

[12] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability Modeling
and Assessment in UML-Based Software Development,” The Scientific
World Journal, vol. 2012, pp. 1–11, 2012. [Online]. Available:
http://www.tswj.com/2012/614635/

[13] G. Callou, P. Maciel, D. Tutsch, and J. Araújo, “A Petri Net-Based
Approach to the Quantification of Data Center Dependability,” in
Petri Nets - Manufacturing and Computer Science, P. Pawlewski,
Ed. InTech, 2012, p. 492. [Online]. Available: http://cdn.intechopen.
com/pdfs/38510/InTech-A petri net based approach to the
quantification of data center dependability.pdfhttp://www.intechopen.
com/books/petri-nets-manufacturing-and-computer-science/
a-petri-net-based-approach-to-the-quantification-of-data-center-dependability

[14] E. C. de Almeida, J. E. Marynowski, G. Sunyé, and P. Valduriez,
“PeerUnit: a framework for testing peer-to-peer systems,” in ASE
- International Conference on Automated Software Engineering.
New York, USA: ACM, 2010, pp. 169–170. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859030

[15] “Hadoop Distributed File System,” http://hadoop.apache.org/hdfs/.
[16] “Grid 5000,” http://www.grid5000.fr/. [Online]. Available: http:

//www.grid5000.fr/
[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-m.

Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in ECOOP
- European Conference on Object-Oriented Programming, no. June.
Finland: Springer, 1997.

[18] “MRUnit,” http://www.cloudera.com/hadoop-mrunit. [Online]. Avail-
able: http://archive.cloudera.com/docs/mrunit/index.htmlhttp://www.
cloudera.com/hadoop-mrunit

[19] K. Boudnik, B. Rajagopalan, and A. C. Murthy, “Herriot,”
https://issues.apache.org/jira/browse/HADOOP-6332, 2010. [Online].
Available: https://issues.apache.org/jira/browse/HADOOP-6332

[20] C. Csallner, L. Fegaras, and C. Li, “New Ideas Track: Testing
MapReduce-Style Programs,” in ESEC/FSE 2011, Szeged, Hungary,
2011.

[21] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “SALSA:
analyzing logs as state machines,” in WASL - Conference on Analysis
of System Logs. CA, USA: USENIX, Dec. 2008, p. 6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855886.1855892

[22] X. Pan, J. Tan, S. Kalvulya, R. Gandhi, and P. Narasimhan, “Blind Men
and the Elephant: Piecing Together Hadoop for Diagnosis,” in ISSRE -
International Symposium on Software Reliability Engineering, 2009.

[23] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi:
visual log-analysis based tools for debugging hadoop,” in HotCloud -
Conference on Hot Topics in Cloud Computing. USENIX, 2009, p. 18.

[24] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data

http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=53CA72B524B9A6153BFE89FE26FBB832?doi=10.1.1.163.5292
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=53CA72B524B9A6153BFE89FE26FBB832?doi=10.1.1.163.5292
http://hadoop.apache.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1354645
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+Software+Testing&ots=3JsXf2NVb_&sig=ft_wIA_w6mDlqU5dVfNYja6ykYo http://books.google.com/books?hl=en&lr=&id=leokXF8pLY0C&oi=fnd&pg=PR5&dq=Introduction+to+software+testing&ots=3JsXf2NW7X&sig=KWH4Q0eAg7eP5N9TKeQ0vG9yai8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494496 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=494496&contentType=Conference+Publications&searchField=Search_All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+injection
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494496 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=494496&contentType=Conference+Publications&searchField=Search_All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+injection
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494496 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=494496&contentType=Conference+Publications&searchField=Search_All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+injection
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494496 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=494496&contentType=Conference+Publications&searchField=Search_All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+injection
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494496 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=494496&contentType=Conference+Publications&searchField=Search_All&queryText=Test+of+fault+tolerant+distributed+systems+by+fault+injection
http://pdf.aminer.org/000/220/599/on_the_development_of_fault_tolerant_on_board_control_software.pdf
http://pdf.aminer.org/000/220/599/on_the_development_of_fault_tolerant_on_board_control_software.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.5908 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1228509
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.5908 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1228509
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6122035 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6122035
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6122035 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6122035
http://www.tswj.com/2012/614635/
http://cdn.intechopen.com/pdfs/38510/InTech-A_petri_net_based_approach_to_the_quantification_of_data_center_dependability.pdf http://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/a-petri-net-based-approach-to-the-quantification-of-data-center-dependability
http://cdn.intechopen.com/pdfs/38510/InTech-A_petri_net_based_approach_to_the_quantification_of_data_center_dependability.pdf http://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/a-petri-net-based-approach-to-the-quantification-of-data-center-dependability
http://cdn.intechopen.com/pdfs/38510/InTech-A_petri_net_based_approach_to_the_quantification_of_data_center_dependability.pdf http://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/a-petri-net-based-approach-to-the-quantification-of-data-center-dependability
http://cdn.intechopen.com/pdfs/38510/InTech-A_petri_net_based_approach_to_the_quantification_of_data_center_dependability.pdf http://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/a-petri-net-based-approach-to-the-quantification-of-data-center-dependability
http://cdn.intechopen.com/pdfs/38510/InTech-A_petri_net_based_approach_to_the_quantification_of_data_center_dependability.pdf http://www.intechopen.com/books/petri-nets-manufacturing-and-computer-science/a-petri-net-based-approach-to-the-quantification-of-data-center-dependability
http://doi.acm.org/10.1145/1858996.1859030
http://www.grid5000.fr/
http://www.grid5000.fr/
http://archive.cloudera.com/docs/mrunit/index.html http://www.cloudera.com/hadoop-mrunit
http://archive.cloudera.com/docs/mrunit/index.html http://www.cloudera.com/hadoop-mrunit
https://issues.apache.org/jira/browse/HADOOP-6332
http://dl.acm.org/citation.cfm?id=1855886.1855892

analysis,” in ICDEW - International Conference on Data Engineering
Workshops. IEEE, 2010, pp. 41–51. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5452747

[25] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “HadoopDB: An architectural hybrid of MapReduce and
DBMS technologies for analytical workloads,” in VLDB - International
Conference on Very Large Data Bases. VLDB Endowment, 2009,
pp. 922–933. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1687731

[26] A. Sangroya, D. Serrano, and S. Bouchenak, “Benchmarking
Dependability of MapReduce Systems,” University of Grenoble - LIG
- INRIA, Grenoble, France, Tech. Rep., 2012. [Online]. Available:
http://rr.liglab.fr/research report/RR-LIG-027 orig.pdf

[27] F. Dinu and T. E. Ng, “Understanding the Effects and Implications
of Compute Node Related Failures in Hadoop,” in HPDC -
International Symposium on High-Performance Parallel and Distributed
Computing. New York, USA: ACM, 2012, p. 187. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2287076.2287108

[28] P. Joshi, H. S. Gunawi, and Kou, “PREFAIL: A Programmable
Tool for Multiple-Failure Injection,” in OOPSLA - Conference on
Object-Oriented Programming, Portland, Oregon, USA, 2011. [Online].
Available: http://srl.cs.berkeley.edu/\simksen/papers/prefail.pdf

[29] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott, “Testing of
java web services for robustness,” in ISSTA - International Symposium
on Software Testing and Analysis, Jul. 2004, pp. 23–33. [Online].
Available: http://dl.acm.org/citation.cfm?id=1013886.1007516

[30] P. D. Marinescu, R. Banabic, and G. Candea, “An extensible
technique for high-precision testing of recovery code,” in USENIXATC
- Conference on USENIX Annual Technical Conference. USENIX,
Jun. 2010, p. 23. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1855840.1855863

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5452747
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5452747
http://dl.acm.org/citation.cfm?id=1687731
http://dl.acm.org/citation.cfm?id=1687731
http://rr.liglab.fr/research_report/RR-LIG-027_orig.pdf
http://dl.acm.org/citation.cfm?doid=2287076.2287108
http://srl.cs.berkeley.edu/$\sim $ksen/papers/prefail.pdf
http://dl.acm.org/citation.cfm?id=1013886.1007516
http://dl.acm.org/citation.cfm?id=1855840.1855863
http://dl.acm.org/citation.cfm?id=1855840.1855863

	Introduction
	Basic Concepts
	Representative Fault Cases
	Definitions
	A Representative Fault Case Example

	HadoopTest
	The Fault Case Coordination
	The Faul Case Action Execution
	Writing Fault Cases

	Experimental Validation
	Controllability
	Time Measurement
	Nonintrusiveness
	Repeatability and Reproducibility
	Efficacy

	Related Work
	Conclusion
	References

