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Abstract. Directed hypergraphs are generalizations of digraphs and
can be used to model binary relations among subsets of a given set.
Planarity of hypergraphs was studied by Johnson and Pollak; planarity
of directed hypergraphs was studied by Méikinen, being assumed a re-
stricted definition. In this paper we extend the planarity concept to di-
rected hypergraphs. It is well known that the planarity of a digraph relies
on the planarity of its underlying graph. However, for directed hyper-
graphs, this property cannot be applied and we propose a new approach
which generalizes the usual concept. We also show that the recognition
of the planarity for directed hypergraphs is linear.

1 Introduction

Directed hypergraphs [1, 2] are a generalization of digraphs and can model
binary relations among subsets of a given set. Such relationships appears
in different areas of Computer Science such as database systems [1], expert
systems [10], parallel programming [9] and scheduling [6, 3].

Planarity of hypergraphs was studied by Johnson and Pollak [5] and
their paper yields our theoretical approach. Mékinen [7] gives emphasis
to the drawing of hypergraphs, where planarity plays an important role.
He includes some remarks about directed hypergraph drawing, being as-
sumed a restricted definition.

In this paper we extend the planarity concept to directed hypergraphs.
It is well known that the planarity of a digraph relies on the planarity of
its underlying graph. We show that, for directed hypergraphs, the prop-
erty cannot be applied and we propose a whole new approach. In Section 2
some basic definitions about directed hypergraphs and hypergraph draw-
ing are presented; in Section 3 the concept of hypergraph planarity is
reviewed, and, in Section 4, the directed case is presented, showing that
previous results are particular cases of a more general concept.



2 Basic Notions

This section introduces the hypergraph notation used throughout the
paper. Basic graph concepts are assumed to be known and can be found
in [8].

A directed hypergraph [2,4] can be defined as follows:

Definition 1. A directed hypergraph H = (V, A) is a pair, where V is
a (finite) set of vertices and A is a set of hyperarcs. A hyperarc a € A is
an ordered pair (X,Y) where X and Y are (disjoint not empty) subsets
of V.. The set X is the the origin of a and the set 'Y is the destination of
a, respectively, Org(a) and Dest(a).

A directed hypergraph H = (V, A) has size |H| = 3, (x yyea |X| +
Y.

Figure 1 shows a directed hypergraph, H = (V, A), where V = {1, 2, 3,4,
5,6,7,8,9,10}, and A = {a,b,c,d,e, f,g,h}. Two examples of hyperarcs
are a = ({1,2}, {3,4}), and ¢ = ({4}, {5, 8}).

Fig. 1. Directed Hypergraph H = (V, A)

In the undirected version of hypergraphs each hyperarc is considered
as a set instead of a pair of sets, and is named hyperedge.

Definition 2. Let H = (V, A) be a directed hypergraph. The underly-
ing hypergraph of H is the hypergraph H" = (V, A"*) where for every
hyperarc a = (X,Y) € A there is a hyperedge e = X UY € A", and every
hyperedge of H* has a corresponding hyperarc in H.



Subfamilies of directed hypergraphs, as defined in [2], can be asso-
ciated with some earlier definitions, as the one presented in [1]. Such
subfamilies can be defined as follows:

Definition 3. Let H = (V, A) be a directed hypergraph.

1. If every hyperarc a € A is such that |Dest(a)| =1 than H is called a
B-graph;

2. If every hyperarc a € A is such that |Org(a)| = 1 than H is called a
F-graph;

3. If every hyperarc a € A is such that |Dest(a)] = 1 or |Org(a)] =1
than H is called a BF-graph;

A digraph is a particular case of BF-graphs, being |Org(a)| = 1 and
|Dest(a)| =1 for all arcs.

The visual representation of a hypergraph is as important as the same
problem for graphs and digraphs. Méakinen [7] presented some hypergraph
drawing ideas based on methods for describing a hypergraph: the subset
standard and the edge standard. The first one uses the fact that a hyper-
graph is a collection of subsets, which can be viewed as a Venn diagram,
and in the second the vertices of a hyperedge are connected by curves.

The subset standard is not suitable to draw a directed hypergraph, be-
cause the vertices of the hyperarc are divided in two parts: origin and des-
tination. The edge standard is the best choice for directed hypergraphs,
and we can draw the hyperarcs as two sets connected by lines.

In fact this pictorial representation has been used by almost all papers
related to the subject. The drawing shown in Fig. 1 is an example. In view
of that, we can apply the well known concept of planarity to this structure,
trying to avoid crossing lines when drawing.

3 Hypergraph Planarity

Planarity of (undirected) hypergraphs was studied by Johnson and Pollak
[5], on a paper that presents three approaches of planarity. Two of these
approaches, both introduced by the authors, are based on Venn diagrams.
As this kind of representation is related to the subset standard, we will
not develop these ideas. The third approach, based on Zykov planarity,
is more convenient for the edge standard.

Zykov planarity associates hyperedges with faces (regions) of a pla-
nar subdivision. Let H = (V,E) be a hypergraph. Each vertex of V
is represented by a vertex and each hyperedge is represented by a face



of the planar map. It can be observed that not every face represents a
hyperedge and we are considering just one of many possible representa-
tions. Figure 2 shows an example of this representation for the hypergraph
H= (V,E),withV ={1,2,3,4,5,6,7,8,9,10,11} and F = {{1,2,9,10},
{2,3,10,11}, {3,4,5,11}, {5,6,7,8}, {1,7,8,9}, {5,8,11}}.
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Fig. 2. Planar subdivision

Johnson and Pollak [5] define Zykov planarity using a bipartite graph
associated with the hypergraph (see also [11]).

Definition 4. A hypergraph H = (V, E) is Zykov-planar if and only
if the bipartite graph Hg = (U, F) is planar, where U = V U E and
F ={{v,e}le € E and v € e}.

Figure 3 shows the graph Hp of the hypergraph H above. The white
vertices a, b, ¢, d, e, f represent hyperedges.

The planar representation of the bipartite graph Hp can be seen as a
refinement of the planar subdivision used on the original definition from
Zykov, as the vertices representing the hyperedges can lie just inside the
faces.

The recognition of a hypergraph H = (V, E) as a Zykov-planar hyper-
graph is equivalent to the recognition of the bipartite graph Hg = (U, F))
as a planar graph and it can be done in linear time. It is important to
observe that an ordinary graph is planar under Definition 4 (when viewed
as a hypergraph) if and only if it is planar in the ordinary sense. So, Zykov
planarity is a true generalization of the planarity concept to hypergraphs.



Fig. 3. Graph Hp

4 Directed Hypergraph Planarity

As it was mentioned earlier in this paper, testing the planarity of a digraph
is the same as testing the planarity of the underlying graph. So, it would
be nice if the solution presented in Sect. 3 could also be extended to
directed hypergraphs.

Let us try to adapt Definition 4. Each hyperedge generates a new
vertex for the bipartite graph Hp. So, it can be established that the
vertex which represents the hyperarc lies in a central point, connected
to the original vertices by arcs. However as we can see in Fig. 4(a), the
drawing of the hyperarc a = ({1,2,3},{4,5}) mix the vertices of the
origin with the vertices of

the destination of the hyperarc. So it is not enough to add direction
when generating the graph, it is necessary to group the vertices of each
set just like it is shown in Fig. 4(b).

A solution that forces such grouping to happen is to use two new ver-
tices, instead of just one, to represent the hyperarc. One of these vertices
is used to group the origin and the other to group the destination of the
hyperarc. Figure 4(c) shows the result for this example. With this trans-
formation the vertices of the origin and destination will not be mixed in
a planar representation and the drawing of the hyperarc obeys the edge
standard presented on Sect. 2.

The directed hypergraph planarity can now be defined. First, we need
to define a new transformation of the directed hypergraph.
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Fig. 4. Transformation of a hyperarc

Definition 5. Let H = (V, A) be a directed hypergraph. The structure
graph associated with H is the digraph Hs = (V U U, B), where U =
A x {1,2}, and the elements of U are denoted by a;, with a € A and
i =1,2; and B = Bo U Bp U {(a1,a2)|a € A}, where Bo and Bp are
defined as

Bo ={(v,a1)|la € A and v € Org(a)}, and
Bp = {(az,v)|a € A and v € Dest(a)}.

Definition 6 (Planarity). A directed hypergraph H is planar if and
only if its structure graph Hg is planar.

The relation between this concept of planarity and the Zykov planarity
can now be establish.

Given a graph G = (V, E), the contraction of an edge is defined as the
operation of removing e = (z,y) € E from G and identifying = and y (with
a single new vertex zy) so that every edge (other than (z,y)) originally
incident with either = or y becomes incident with zy. By the Contraction



Form of Kuratowski Theorem [8], we know that this operation preserves
planarity, that is, if G is planar than the resulting contracted graph is
also planar.

Lemma 1. Let H = (V, A) be a directed hypergraph. If H is planar then
the underlying hypergraph of H is Zykov-planar.

Proof. If H is planar then the structure graph associated with H, Hg, is
planar and obviously, also its underlying graph, H¢, is planar.

Let Hp be the bipartite graph of Definition 4 applied to H", the
underlying hypergraph of H.

Let a be a hyperarc of H; (a1,a2) is an edge of H¢. The contraction of
each one of these edges generates a new graph, isomorphic to Hg. Since
the contraction preserves planarity, if H¢ is planar, so is Hp. Finally, as
Hp is planar, by Definition 4, the underlying hypergraph of H is Zykov-
planar. O

The converse of Lemma 1 is not true; Fig. 5(a) shows a directed hy-
pergraph H that is a counter-example. Fig. 5(b) presents the bipartite
planar graph, constructed for the underlying hypergraph of H; Fig. 5(c)
shows Hg, the the underlying graph of the structure graph Hg associated
with H, which is clearly not planar, since it is homeomorphic to K3 3.

The planarity concept for directed hypergraphs is more restrictive
when compared with the same concept for hypergraphs. This restriction
is abolished for some important particular cases.

Theorem 1. Let H be BF-graph. Then H is planar if and only if its
underlying hypergraph is Zykov-planar.

Proof. Every hyperarc a of H has |Org(a)| = 1 or |Dest(a)| = 1. Let
us suppose, without loss of generality, that the hyperarc ¢ has only one
vertex at its destination.

When constructing Hg (by Definition 6), vertex as has degree 2 (as
in Fig. 6(b)). We must recognize if H¢ is planar. Vertex ap plus its in-
cident edges can be replaced by a single edge. A similar operation can
be performed on all the vertices with degree 2 generated by the hyper-
arcs of H. In other words, we construct a homeomorphic graph with a
smaller number of vertices. After such operations, the resulting graph is
isomorphic to Hp. So, H¢ is homeomorphic to Hp. As homeomorphism
does not interfere with planarity, Hg is planar if and only if Hp is pla-
nar. Consequently, H is planar if and only if its underlying hypergraph
is Zykov-planar. O
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Fig. 5. H" is Zykov-planar but H is not planar

Corollary 1. If G is a digraph then G is planar if and only if its under-
lying graph is Zykov-planar.

Proof. G is a BF-graph. O

It is interesting to highlight the complexity of the recognition of pla-
narity for directed hypergraphs.

Let H = (V,A) be a directed hypergraph. The number of vertices
of Hg, ng, is equal to |V| + 2|A|. As |V| < |H| and 2|A| < |H|, then
ng < 2|H|.

As the construction of the structure graph Hg can be done in linear
time in the size of the hypergraph (|H|), and testing the planarity of a
digraph can be done in linear time in its number of vertices (ng), the test
whether a directed hypergraph is planar can be done in linear time in its
size (O(|H|)).



Fig. 6. The transformation of an hyperarc with one vertex at destination
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