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Dire
ted Hypergraph PlanarityA. L. P. Guedes1 and L. Markenzon21 Universidade Federal do Paran�a, PR, Brazilandre�inf.ufpr.br2 Instituto Militar de Engenharia, RJ, Brazillilian�ime.eb.brAbstra
t. Dire
ted hypergraphs are generalizations of digraphs and
an be used to model binary relations among subsets of a given set.Planarity of hypergraphs was studied by Johnson and Pollak; planarityof dire
ted hypergraphs was studied by M�akinen, being assumed a re-stri
ted de�nition. In this paper we extend the planarity 
on
ept to di-re
ted hypergraphs. It is well known that the planarity of a digraph relieson the planarity of its underlying graph. However, for dire
ted hyper-graphs, this property 
annot be applied and we propose a new approa
hwhi
h generalizes the usual 
on
ept. We also show that the re
ognitionof the planarity for dire
ted hypergraphs is linear.1 Introdu
tionDire
ted hypergraphs [1, 2℄ are a generalization of digraphs and 
an modelbinary relations among subsets of a given set. Su
h relationships appearsin di�erent areas of Computer S
ien
e su
h as database systems [1℄, expertsystems [10℄, parallel programming [9℄ and s
heduling [6, 3℄.Planarity of hypergraphs was studied by Johnson and Pollak [5℄ andtheir paper yields our theoreti
al approa
h. M�akinen [7℄ gives emphasisto the drawing of hypergraphs, where planarity plays an important role.He in
ludes some remarks about dire
ted hypergraph drawing, being as-sumed a restri
ted de�nition.In this paper we extend the planarity 
on
ept to dire
ted hypergraphs.It is well known that the planarity of a digraph relies on the planarity ofits underlying graph. We show that, for dire
ted hypergraphs, the prop-erty 
annot be applied and we propose a whole new approa
h. In Se
tion 2some basi
 de�nitions about dire
ted hypergraphs and hypergraph draw-ing are presented; in Se
tion 3 the 
on
ept of hypergraph planarity isreviewed, and, in Se
tion 4, the dire
ted 
ase is presented, showing thatprevious results are parti
ular 
ases of a more general 
on
ept.



2 Basi
 NotionsThis se
tion introdu
es the hypergraph notation used throughout thepaper. Basi
 graph 
on
epts are assumed to be known and 
an be foundin [8℄.A dire
ted hypergraph [2, 4℄ 
an be de�ned as follows:De�nition 1. A dire
ted hypergraph H = (V;A) is a pair, where V isa (�nite) set of verti
es and A is a set of hyperar
s. A hyperar
 a 2 A isan ordered pair (X;Y ) where X and Y are (disjoint not empty) subsetsof V . The set X is the the origin of a and the set Y is the destination ofa, respe
tively, Org(a) and Dest(a).A dire
ted hypergraph H = (V;A) has size jHj = Pa=(X;Y )2A jXj +jY j:Figure 1 shows a dire
ted hypergraph,H = (V;A), where V = f1; 2; 3; 4,5; 6; 7; 8; 9; 10g, and A = fa; b; 
; d; e; f; g; hg. Two examples of hyperar
sare a = (f1; 2g; f3; 4g), and 
 = (f4g; f5; 8g).
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Fig. 1. Dire
ted Hypergraph H = (V;A)In the undire
ted version of hypergraphs ea
h hyperar
 is 
onsideredas a set instead of a pair of sets, and is named hyperedge.De�nition 2. Let H = (V;A) be a dire
ted hypergraph. The underly-ing hypergraph of H is the hypergraph Hu = (V;Au) where for everyhyperar
 a = (X;Y ) 2 A there is a hyperedge e = X [Y 2 Au, and everyhyperedge of Hu has a 
orresponding hyperar
 in H.



Subfamilies of dire
ted hypergraphs, as de�ned in [2℄, 
an be asso-
iated with some earlier de�nitions, as the one presented in [1℄. Su
hsubfamilies 
an be de�ned as follows:De�nition 3. Let H = (V;A) be a dire
ted hypergraph.1. If every hyperar
 a 2 A is su
h that jDest(a)j = 1 than H is 
alled aB-graph;2. If every hyperar
 a 2 A is su
h that jOrg(a)j = 1 than H is 
alled aF-graph;3. If every hyperar
 a 2 A is su
h that jDest(a)j = 1 or jOrg(a)j = 1than H is 
alled a BF-graph;A digraph is a parti
ular 
ase of BF-graphs, being jOrg(a)j = 1 andjDest(a)j = 1 for all ar
s.The visual representation of a hypergraph is as important as the sameproblem for graphs and digraphs. M�akinen [7℄ presented some hypergraphdrawing ideas based on methods for des
ribing a hypergraph: the subsetstandard and the edge standard. The �rst one uses the fa
t that a hyper-graph is a 
olle
tion of subsets, whi
h 
an be viewed as a Venn diagram,and in the se
ond the verti
es of a hyperedge are 
onne
ted by 
urves.The subset standard is not suitable to draw a dire
ted hypergraph, be-
ause the verti
es of the hyperar
 are divided in two parts: origin and des-tination. The edge standard is the best 
hoi
e for dire
ted hypergraphs,and we 
an draw the hyperar
s as two sets 
onne
ted by lines.In fa
t this pi
torial representation has been used by almost all papersrelated to the subje
t. The drawing shown in Fig. 1 is an example. In viewof that, we 
an apply the well known 
on
ept of planarity to this stru
ture,trying to avoid 
rossing lines when drawing.3 Hypergraph PlanarityPlanarity of (undire
ted) hypergraphs was studied by Johnson and Pollak[5℄, on a paper that presents three approa
hes of planarity. Two of theseapproa
hes, both introdu
ed by the authors, are based on Venn diagrams.As this kind of representation is related to the subset standard, we willnot develop these ideas. The third approa
h, based on Zykov planarity,is more 
onvenient for the edge standard.Zykov planarity asso
iates hyperedges with fa
es (regions) of a pla-nar subdivision. Let H = (V;E) be a hypergraph. Ea
h vertex of Vis represented by a vertex and ea
h hyperedge is represented by a fa
e



of the planar map. It 
an be observed that not every fa
e represents ahyperedge and we are 
onsidering just one of many possible representa-tions. Figure 2 shows an example of this representation for the hypergraphH = (V;E), with V = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g and E = ff1; 2; 9; 10g,f2; 3; 10; 11g, f3; 4; 5; 11g, f5; 6; 7; 8g, f1; 7; 8; 9g, f5; 8; 11gg.
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Fig. 2. Planar subdivisionJohnson and Pollak [5℄ de�ne Zykov planarity using a bipartite graphasso
iated with the hypergraph (see also [11℄).De�nition 4. A hypergraph H = (V;E) is Zykov-planar if and onlyif the bipartite graph HB = (U;F ) is planar, where U = V [ E andF = ffv; egje 2 E and v 2 eg.Figure 3 shows the graph HB of the hypergraph H above. The whiteverti
es a; b; 
; d; e; f represent hyperedges.The planar representation of the bipartite graph HB 
an be seen as are�nement of the planar subdivision used on the original de�nition fromZykov, as the verti
es representing the hyperedges 
an lie just inside thefa
es.The re
ognition of a hypergraph H = (V;E) as a Zykov-planar hyper-graph is equivalent to the re
ognition of the bipartite graph HB = (U;F )as a planar graph and it 
an be done in linear time. It is important toobserve that an ordinary graph is planar under De�nition 4 (when viewedas a hypergraph) if and only if it is planar in the ordinary sense. So, Zykovplanarity is a true generalization of the planarity 
on
ept to hypergraphs.
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Fig. 3. Graph HB4 Dire
ted Hypergraph PlanarityAs it was mentioned earlier in this paper, testing the planarity of a digraphis the same as testing the planarity of the underlying graph. So, it wouldbe ni
e if the solution presented in Se
t. 3 
ould also be extended todire
ted hypergraphs.Let us try to adapt De�nition 4. Ea
h hyperedge generates a newvertex for the bipartite graph HB. So, it 
an be established that thevertex whi
h represents the hyperar
 lies in a 
entral point, 
onne
tedto the original verti
es by ar
s. However as we 
an see in Fig. 4(a), thedrawing of the hyperar
 a = (f1; 2; 3g; f4; 5g) mix the verti
es of theorigin with the verti
es ofthe destination of the hyperar
. So it is not enough to add dire
tionwhen generating the graph, it is ne
essary to group the verti
es of ea
hset just like it is shown in Fig. 4(b).A solution that for
es su
h grouping to happen is to use two new ver-ti
es, instead of just one, to represent the hyperar
. One of these verti
esis used to group the origin and the other to group the destination of thehyperar
. Figure 4(
) shows the result for this example. With this trans-formation the verti
es of the origin and destination will not be mixed ina planar representation and the drawing of the hyperar
 obeys the edgestandard presented on Se
t. 2.The dire
ted hypergraph planarity 
an now be de�ned. First, we needto de�ne a new transformation of the dire
ted hypergraph.
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Fig. 4. Transformation of a hyperar
De�nition 5. Let H = (V;A) be a dire
ted hypergraph. The stru
turegraph asso
iated with H is the digraph HS = (V [ U;B), where U =A � f1; 2g, and the elements of U are denoted by ai, with a 2 A andi = 1; 2; and B = BO [ BD [ f(a1; a2)ja 2 Ag, where BO and BD arede�ned asBO = f(v; a1)ja 2 A and v 2 Org(a)g; andBD = f(a2; v)ja 2 A and v 2 Dest(a)g:De�nition 6 (Planarity). A dire
ted hypergraph H is planar if andonly if its stru
ture graph HS is planar.The relation between this 
on
ept of planarity and the Zykov planarity
an now be establish.Given a graph G = (V;E), the 
ontra
tion of an edge is de�ned as theoperation of removing e = (x; y) 2 E fromG and identifying x and y (witha single new vertex xy) so that every edge (other than (x; y)) originallyin
ident with either x or y be
omes in
ident with xy. By the Contra
tion



Form of Kuratowski Theorem [8℄, we know that this operation preservesplanarity, that is, if G is planar than the resulting 
ontra
ted graph isalso planar.Lemma 1. Let H = (V;A) be a dire
ted hypergraph. If H is planar thenthe underlying hypergraph of H is Zykov-planar.Proof. If H is planar then the stru
ture graph asso
iated with H, HS, isplanar and obviously, also its underlying graph, HuS , is planar.Let HB be the bipartite graph of De�nition 4 applied to Hu, theunderlying hypergraph of H.Let a be a hyperar
 of H; (a1; a2) is an edge of HuS . The 
ontra
tion ofea
h one of these edges generates a new graph, isomorphi
 to HB. Sin
ethe 
ontra
tion preserves planarity, if HuS is planar, so is HB. Finally, asHB is planar, by De�nition 4, the underlying hypergraph of H is Zykov-planar. utThe 
onverse of Lemma 1 is not true; Fig. 5(a) shows a dire
ted hy-pergraph H that is a 
ounter-example. Fig. 5(b) presents the bipartiteplanar graph, 
onstru
ted for the underlying hypergraph of H; Fig. 5(
)shows HuS , the the underlying graph of the stru
ture graph HS asso
iatedwith H, whi
h is 
learly not planar, sin
e it is homeomorphi
 to K3;3.The planarity 
on
ept for dire
ted hypergraphs is more restri
tivewhen 
ompared with the same 
on
ept for hypergraphs. This restri
tionis abolished for some important parti
ular 
ases.Theorem 1. Let H be BF-graph. Then H is planar if and only if itsunderlying hypergraph is Zykov-planar.Proof. Every hyperar
 a of H has jOrg(a)j = 1 or jDest(a)j = 1. Letus suppose, without loss of generality, that the hyperar
 a has only onevertex at its destination.When 
onstru
ting HS (by De�nition 6), vertex a2 has degree 2 (asin Fig. 6(b)). We must re
ognize if HuS is planar. Vertex a2 plus its in-
ident edges 
an be repla
ed by a single edge. A similar operation 
anbe performed on all the verti
es with degree 2 generated by the hyper-ar
s of H. In other words, we 
onstru
t a homeomorphi
 graph with asmaller number of verti
es. After su
h operations, the resulting graph isisomorphi
 to HB. So, HuS is homeomorphi
 to HB. As homeomorphismdoes not interfere with planarity, HS is planar if and only if HB is pla-nar. Consequently, H is planar if and only if its underlying hypergraphis Zykov-planar. ut
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Fig. 5. Hu is Zykov-planar but H is not planarCorollary 1. If G is a digraph then G is planar if and only if its under-lying graph is Zykov-planar.Proof. G is a BF-graph. utIt is interesting to highlight the 
omplexity of the re
ognition of pla-narity for dire
ted hypergraphs.Let H = (V;A) be a dire
ted hypergraph. The number of verti
esof HS , nS, is equal to jV j + 2jAj. As jV j � jHj and 2jAj � jHj, thennS � 2jHj.As the 
onstru
tion of the stru
ture graph HS 
an be done in lineartime in the size of the hypergraph (jHj), and testing the planarity of adigraph 
an be done in linear time in its number of verti
es (nS), the testwhether a dire
ted hypergraph is planar 
an be done in linear time in itssize (O(jHj)).
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