Fully Convolutional Networks and Generative Adversarial Networks Applied to Sclera Segmentation

Diego R. Lucio1 Rayson Laroca1 Evair Severo1
Alceu S. Britto Jr.2 David Menotti1

1Department of Informatics
Federal University of Paraná
Curitiba, Paraná, Brazil
{drlucio,rblsantos,ebsevero,menotti}@inf.ufpr.br

2Department of Computer Science
Pontifical Catholic University of Paraná
Curitiba, Paraná, Brazil
alceu@ppgia.pucpr.br

October 23, 2018
1. Introduction

2. Segmentation Approaches

3. Datasets

4. Proposed Approach

5. Results

6. Future Work
Introduction

- Biometry
- Eye Regions
- Importance of Segmentation
Figure: Example of a biometrics system
Figure: Eye regions
Segmentation Example

(a) Mask

(b) Image

Figure: Miche iPhone 5 example image
Segmentation Approaches

- Generative Adversarial Network
- Fully Convolutional Network
- Encoder-decoder (SegNet)
Generative Adversarial Network (GAN)

Figure: GAN Architecture
Figure: Painting styles
Figure: Other examples
Figure: FCN8 example
Figure: FCN’s Results
Figure: Encoder Decoder Architecture
Table: Overview of the datasets used in this work. All of these are a subset of the original dataset.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Images</th>
<th>Subjects</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBIRIS.v2</td>
<td>500</td>
<td>261</td>
<td>400×300</td>
</tr>
<tr>
<td>MICHE-I</td>
<td>1,000</td>
<td>92</td>
<td>Various</td>
</tr>
<tr>
<td>MICHE-GS4</td>
<td>333</td>
<td>92</td>
<td>Various</td>
</tr>
<tr>
<td>MICHE-IP5</td>
<td>323</td>
<td>92</td>
<td>Various</td>
</tr>
<tr>
<td>MICHE-GT2</td>
<td>344</td>
<td>92</td>
<td>640×480</td>
</tr>
</tbody>
</table>
Proposed Approach

- Periocular Region Detection
- Sclera Segmentation
Periocular Region Detection (Fast-YOLO)

Figure: Detection example
Images without preprocessing

Figure: Images without preprocessing

(a) MICHE-IP5
(b) MICHE-GS4
(c) MICHE-GT2
(d) UBIRIS.v2
Figure: Preprocessed images

(a) MICHE-IP5
(b) MICHE-GS4
(c) MICHE-GT2
(d) UBIRIS.v2
Table: Results achieved using the proposed protocol.

<table>
<thead>
<tr>
<th>Database</th>
<th>Approach</th>
<th>Recall %</th>
<th>Precision %</th>
<th>F-score %</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBIIRS.v2</td>
<td>GAN</td>
<td>87.48 ± 08.19</td>
<td>87.10 ± 08.16</td>
<td>86.82 ± 05.88</td>
</tr>
<tr>
<td></td>
<td>SegNet</td>
<td>72.48 ± 17.15</td>
<td>87.52 ± 08.53</td>
<td>77.82 ± 13.08</td>
</tr>
<tr>
<td></td>
<td>FCN</td>
<td>87.31 ± 06.68</td>
<td>88.45 ± 06.98</td>
<td>87.48 ± 03.90</td>
</tr>
<tr>
<td>MICHE-I</td>
<td>GAN</td>
<td>87.07 ± 10.81</td>
<td>86.39 ± 12.02</td>
<td>86.27 ± 09.97</td>
</tr>
<tr>
<td></td>
<td>SegNet</td>
<td>64.59 ± 24.73</td>
<td>83.39 ± 18.53</td>
<td>69.87 ± 22.34</td>
</tr>
<tr>
<td></td>
<td>FCN</td>
<td>87.59 ± 11.28</td>
<td>89.90 ± 09.82</td>
<td>88.32 ± 09.80</td>
</tr>
<tr>
<td>MICHE-GS4</td>
<td>GAN</td>
<td>85.72 ± 12.53</td>
<td>86.12 ± 13.01</td>
<td>85.20 ± 11.31</td>
</tr>
<tr>
<td></td>
<td>SegNet</td>
<td>66.50 ± 26.34</td>
<td>76.09 ± 23.80</td>
<td>67.92 ± 23.87</td>
</tr>
<tr>
<td></td>
<td>FCN</td>
<td>88.24 ± 12.03</td>
<td>88.65 ± 10.62</td>
<td>88.12 ± 10.56</td>
</tr>
<tr>
<td>MICHE-IP5</td>
<td>GAN</td>
<td>88.11 ± 07.40</td>
<td>87.71 ± 07.71</td>
<td>87.42 ± 05.43</td>
</tr>
<tr>
<td></td>
<td>SegNet</td>
<td>31.90 ± 26.05</td>
<td>79.40 ± 32.93</td>
<td>40.95 ± 29.19</td>
</tr>
<tr>
<td></td>
<td>FCN</td>
<td>87.51 ± 11.61</td>
<td>89.32 ± 05.22</td>
<td>87.80 ± 08.24</td>
</tr>
<tr>
<td>MICHE-GT2</td>
<td>GAN</td>
<td>86.20 ± 15.02</td>
<td>83.81 ± 15.73</td>
<td>84.50 ± 14.28</td>
</tr>
<tr>
<td></td>
<td>SegNet</td>
<td>73.77 ± 21.20</td>
<td>76.46 ± 18.29</td>
<td>72.33 ± 18.26</td>
</tr>
<tr>
<td></td>
<td>FCN</td>
<td>87.86 ± 12.23</td>
<td>88.50 ± 12.68</td>
<td>87.94 ± 11.59</td>
</tr>
</tbody>
</table>
Figure: Samples of scleras segmented using the ground truth for highlighting errors: green and red pixels represent the FPs and FNs, respectively.
Future Work

- To design novel and better network architectures
- To create a unique architecture that integrates the periocular region detection stage
- To employ a post-processing stage to refine the segmentation given by the proposed approaches
Future Work

- To design a general and independent sensor approach, where the image sensor is first classified and then the sclera is segmented with a specific approach.

- To compare the proposed approaches with methods applied in other domains such as iris segmentation and periocular-based recognition.
Questions?

http://www.inf.ufpr.br/drlucio/
Fully Convolutional Networks and Generative Adversarial Networks Applied to Sclera Segmentation

Diego R. Lucio, Rayson Laroca, Evair Severo, Alceu S. Britto Jr., David Menotti

October 23, 2018