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Abstract

In this article we present a real-time tracking system of surgical instru-
ments in laparoscopic operations. We combine Condensation tracking,
with the Hough Transform in order to obtain an efficient and accurate track-
ing. The Condensation algorithm performs well in heavy clutter, and the
Hough Transform is robust under illumination changes, occlusion and dis-
tractions.

The Hough array is computed using the gradient direction image obtained
by means of a Principal Component Analysis. This improves accuracy in the
determination of edge orientation and speeds up computation of the Hough
Transform.

The experiments on image sequences of actual laparoscopic surgical oper-
ations show that the instrument tip is located even in the presence of smoke,
occlusions or motion blurring.

Keywords: Instrument tracking, laparoscopic surgery, principal
components analysis, Hough Transform, Condensation algorithm.

1. Introduction

Among minimally invasive surgical techniques, laparoscopic surgery has
become very popular in recent years. The surgery is performed with the help
of an endoscopic camera (a laparoscope) and an assortment of long and thin
rigid instruments.
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Tubes, called ‘trocars’, are placed through small incisions and the laparo-
scope and instruments are inserted and handled through the trocars. The
abdominal cavity is inflated with gas to make room for moving the camera
and instruments. The surgeon performs the surgical procedure while an as-
sistant holds the laparoscope. This type of procedure avoids surgical opening
and reduces the recovery time for the patient. On the other hand, a large
number of repetitive gestures are needed which require much effort from the
assistant surgeon. Thus, the main drawback of laparoscopy stems from the
assistant surgeon having to control the laparoscope manually, which can be
rather tiresome. Also, the coordination between the assistant and the surgeon
can be difficult, and the images may not be stable. In order to reduce the
surgeon’s burden and to increase accuracy, robotic laparoscopic systems have
been proposed and built [1]. Some examples are the Zeus medical robot [2],
Aesop, EndoAssist [3], or the Da Vinci system [4].

In order to automatically position the laparoscope, the robot controller
has to maintain the spacial coordinates of the instrument’s tip. To achieve an
accurate positioning of the instruments, several problems must be overcome,
such as the inherent complexity of the abdominal cavity scene, time-varying
conditions, moving background, presence of reflections, occlusion, presence of
smoke, and blood spots on the instruments. Classical attempts to minimize
these problems involve the use of colored instruments [5, 6]. This however
creates the additional problem of finding artificial colors that do not appear
in the scene. The approaches presented in [5, 6] add constraints and further
complexity to the laparoscopic procedure: all the instruments have to be
marked and this in turn raises sterilization issues.

Rather than using color information, the authors of [7] and [8] employ
monochrome patterned marks stamped on the instruments. Line detection
algorithms are used to segment the marks, and detect the presence of the
instruments. As above, the need to mark all instruments is a major drawback.
Active marks have also been used; and the authors of [9] describe how a light
emitting diode is placed in the tool tip, projecting laser dots onto the surface
of organs. The optical markers are detected in the endoscopic image and
help in locating the instrument on the scene.

The authors of [10] present a fast segmentation algorithm of gray re-
gions in color images, based on a joint hue-saturation color feature, which
is adapted to gray or metallic instruments. In [11], adaptive algorithms are
presented for tracking deforming surfaces from stereo video streams. Another
approach, that does not need the presence of artificial marks on the instru-
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ments, can be found in [12]: the gradient of the image color components is
used, but the 3D position given by the LER camera-holder [13] is needed to
determine the tip location. This approach can be problematic when dealing
with specular reflections. The removal of reflections on medical images has
been addressed in [14], but the real-time constraints are difficult to meet in
the context of laparoscopy.

A more recent work dealing with augmented reality for laparoscopic sur-
gical applications can be found in [15]: the authors segment the tool’s images
by means of edge detector operators, with the tip being detected by color
analysis. The main drawback of this technique is the inaccurate edge detec-
tion in the presence of blurred edges, which are caused by the movement of
the instruments.

In this article we present a system that tracks and detects instruments
and can be applied to ordinary surgical instruments without the need of
any special marking. The system aggregates four main techniques: (1) the
tracking of instruments in the Hough space instead of in the image space;
(2) the use of the Condensation algorithm for tracking; (3) the use of
Principal Component Analysis for improving accuracy in determining tool
orientation; and (4) the use of median filtering to locate the instrument’s
tip. The prototype, as implemented in a desktop computer, analyzes scenes
at a rate of 12 frames per second, fast enough for application in real-time.

The image processing system for locating the instruments employs the
Hough Transform (HT) to detect straight lines in the scene. Since the in-
struments have very structured shapes, the HT is a powerful tool to segment
them out from the unstructured organic shapes. The edge orientation image
is filtered prior to the Hough array computation by means of a Principal
Component Analysis. This improves the accuracy in determining the direc-
tion of lines, and minimizes the effects of edges that are blurred by motion.
Section 2 presents the line detection procedure.

The technique used for tracking the instruments is the Condensation
(Conditional Density Propagation) algorithm. The Condensation algo-
rithm was chosen for tracking because it is known to give good results even
in the presence of cluttered background or occlusion [16]. The algorithm is
applied to the Hough space, instead of the usual approach of applying it to
the image plane. Section 3 describes the tracking algorithm in more detail.

Section 4 presents the method used to locate the instrument tip, using
median filtering along the profile of the instrument edge, in the orientation
image. Some experimental results are presented in Section 5, showing the

3



system at work on actual sequences of surgical images. Finally, our conclu-
sions are stated in Section 6.

2. Instrument Detection

A robust solution to the detection of straight lines in a scene is the Hough
Transform (HT) [17]. The HT yields good results in detecting straight lines
and other shapes even in the presence of noise and occlusion. Since the
surgical instruments mostly have very structured shapes – straight lines –
the HT is an appropriate tool to pick them out of a scene. The HT has
been widely used in medical imaging applications, including laparoscopic
instruments tracking [5, 12, 18]. A good survey on the Hough Transform can
be found in [19].

The normal parameterization of the HT (Equation 1) is used to extract
the most significant straight lines in the scene.

x cosα + y sinα = r (1)

where r and α are the length and orientation of the normal vector to the line,
from the image origin. Each straight line is uniquely defined by r and α, and
for every point in the original image (x, y), it is possible to create a mapping
from feature to the parametric space.

If we divide the parametric space into a number of discrete accumulator
cells, we can collect ‘votes’ in the (r, α) space from each data point in the
(x, y) space. Peaks in (r, α) space define the equations of co-linear points in
the (x, y) space.

Hough array size was fixed at 128 bins for r and 360 bins for α. The
maximum orientation error using the PCA approach, described in Section 2,
is 0.94o. Thus, the resolution for α was fixed at 1o per bin. We use the
maximum resolution for α because angular errors in the determining the line
orientation cause large errors in the localization of the tip, specially when
it is away from the image center. The upper bound for r, rmax, can easily
be deducted from the image size. Resolution in distance has been fixed to
0.5rmax, that is, one bin for every two distance-pixels, since two pixels is an
admissible distortion when locating tip position – a human would probably
not be able to locate the tip with that resolution – and the error is bounded
and does not depend on the position of the tip on the scene. This space
sampling is a good tradeoff between efficiency and accuracy. Efficiency is
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directly related to the number of particles needed, and this in turn depends
on the array size. Often, when using the rough Hough table, discretization
problems arise because every sample must be counted in just one bin, and
often these counts are spread onto neighboring bins. Classic solutions involve
smoothing the array; we do not apply any smoothing to the Hough table
because the factored sampling – described in Section 3 – already does it, and
hence the Hough table is used in its rough form.

For every pixel in the image, the gradient direction must be determined
prior to the HT computation. Since real-time operation is mandatory in
robotic laparoscopy, we can make use of orientation information, and sim-
plify the computation of the HT considerably, as shown in [20]. Each pixel
then only votes for one bin in the accumulator, because the orientation is
fixed by the edge direction. However, the local gradient direction is rarely
accurate enough to allow a reliable implementation of this scheme. There
are a number of ways to obtain more accurate edge directional information
from local gradients, such as the edge direction histogram, which is based on
a simple edge detection algorithm [21], or directional fields which are based
on Principal Component Analysis [22]. To derive the orientation map we
use the Principal Component Analysis (PCA) technique, commonly used in
fingerprint image processing but never used before in automatic instrument
tracking. The analysis is then carried out by sampling a small neighborhood
of each pixel and determining the direction in which the greatest variability
in the image intensity is observed. This allows the detection of lines with
blurred edges, caused by instrument motion. There are other applications in
which this technique might be applied, such as video compression [23], and
mark tracking in car crash tests [24].

PCA computes a new orthogonal base, given a multidimensional data set,
such that the variance of the projection on one of the axes of this new base
is maximal, while the projection on the other is minimal. When applying
PCA to the auto-covariance matrix of the gradient vectors, it provides the
2-dimensional Gaussian joint probability density function of these vectors.
From this function, the main direction of the gradients can be calculated.

For any subregion of the image, it can be shown that the direction θmax for
which the weighted mean squared gradient of image intensity is a maximum
is given by

θmax =
1

2
arctan

2 gx gy

g2x − g2y
(2)
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where gx is the image gradient in the x direction; gy is the image gradient
in the y direction; and g2x , g

2
y are the weighted means of these quantities

over the image subregion. Here we take the weighted means by applying a
2-dimensional Gaussian filter.

Figure 1 illustrates the technique. Figure 1.b shows the edge orientation
image obtained from applying the PCA technique to the original image in
Figure 1.a. The Hough table in the (r, α) space is shown in Figure 1.c,
and Figure 1.d contains its 3D representation. Peaks in the (r, α) space
correspond to the presence of straight lines in the scene. In our previous
work [25], the maximum peak was selected as the longest straight line in the
image.

(a)

(c)

(b)

(d)

Figure 1: (a) Original image (b) edge orientation image (c) Hough image (d) 3D repre-
sentation of Hough image

Unfortunately, the longest line in the scene does not always correspond to
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the instrument. It may happen that a muscle, or some part of other organic
tissue also presents a structured shape, and the selection of the longest line
in the scene does not guarantee the detection of the surgical instrument.

We performed experiments with a set of 512 images, extracted from four
actual video sequences to test the quality of the detection system, and to
assess its accuracy. Table 1 shows the position (in terms of line length)
corresponding to the instrument edge. In only 81% of cases, the longest line
detected identifies the correct instrument. The remainder are false detections
corresponding to random alignments or to other instruments which are not
the one being tracked.

Longest line % of correct
in scene identification

1st 81.44
2nd 8.00
3rd 4.10
4th 3.91
5th 1.95
6th 0.60
7th 0.00

Table 1: Percentage of correct instrument identifications

3. Instrument Tracking

The detection results from static images, as presented above, aren’t accu-
rate enough for a real application. The peaks in the Hough table identify the
straight lines present in the scene, which may not necessarily be the object
of interest – which was somewhat problematic in our previous work [25]. To
improve the accuracy, and achieve reliable instrument detection, the infor-
mation contained in a sequence of images must be taken into account: the
instruments must be tracked according to their position in past frames. The
Hough array must now be viewed as an approximation to the Probabilistic
Hough Transform [12, 26], with each array element providing an estimate of
the probability that a line with parameters within a given range is present
in the image. Peaks in the accumulator array are tracked, taking advantage
of the insensitivity of HT to illumination changes and occlusion.
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The estimation of an object’s location is usually achieved through a two-
phase process consisting of a prediction phase and its correction by observa-
tion. The Kalman filter [27] and the Condensation algorithm [25] are the
commonly applied estimators. Both are probability based and estimate the
state of a process. The Kalman filter aims at predicting, while minimizing
the mean of the squared error, so that the new model constructed from what
was already known is the most probably correct. The Condensation al-
gorithm is a particle filter which combines stochastic methods with learned
object dynamics model to estimate the next state.

Particle filters are a popular class of numerical methods for the solu-
tion of optimal estimation problems in non-linear non-Gaussian scenarios.
Since the probability density function defined by the Hough array is surely
non-Gaussian (see Figure 1.d), the Condensation algorithm is a better
choice than Kalman filtering for our application. In comparison with stan-
dard approximation methods, such as the Extended Kalman Filter (EKF),
particle methods have the advantage of not relying on any local lineariza-
tion technique, nor any crude functional approximation. Usually, EKF is
the technique applied where both the dynamic and observation models are
non-linear but the noise is additive and Gaussian. For severe nonlinearities,
the EKF can be very unstable and performs poorly.

Another difference between these estimators is that the Kalman filter
assumes Gaussian densities, which are unimodal and thus cannot represent
simultaneous hypotheses of the location of multiple objects, whereas Con-
densation can be used for tracking multiple targets.

The technique of particle filtering is popular in tracking applications [16,
28–31], being effective in estimating the state of dynamic systems from sensor
information. The key idea is to represent probability densities by set of
samples. A number of particles, or hypotheses, are considered, each providing
an estimate of state parameters. These are propagated to give an updated
estimate in the next frame.

As a result, particle filtering provides a real-time estimation of the state
of non-linear, non-Gaussian dynamic systems. This technique was originally
developed to effectively track objects in cluttered scenes [16, 30]. The state
of a tracked object at time t is described by a vector Xt, while the vector Yt
represents all samples of observations {y1, y2, · · · , yt}. The posterior density
P (Xt|Yt) and the observation density P (Yt|Xt) are often non-Gaussian.

The particle filters are essentially a sample-based variant of Bayes filters,
that approximate the probability density distribution by a weighted sample
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set St = {(x(i)t , w
(i)
t ) | i = 1 · · ·Np}. Each sample x(i)t represents an hypo-

thetical state of the object, and w
(i)
t represents the corresponding discrete

sampling probability of the sample x(i)t such that
∑Np

i=1w
(i)
t = 1 .

In its basic form, the particle filtering performs the recursive Bayes filter
according to a sampling procedure, often called sequential importance sam-
pling with resampling (SISR) [31]. The iterative evolution of the sample set
is described by propagating each sample according to a system model. Each
sample element in the set is weighted in terms of the corresponding observa-
tions, and Np samples are drawn with replacement by choosing a particular
sample with posterior probability w(i)

t = P (Yt|Xt = x
(i)
t ).

Since it models uncertainty, as posterior probability density, particle fil-
tering provides a robust tracking framework suitable for robotic laparoscopy.
Rather than attempting to fit a specific equation to the observed sensory
data, it uses the Np weighted samples to approximate the state described
by the observed data. When applied to tracking, each sample represents the
state of the object being tracked, e.g. its velocity and location in the Hough
space. Given a randomly sampled state St at time t, a prediction of a new
state St+1 at time t+ 1 is made using a predictive model.

The Hough array is employed as the observation density in order to weight
the sample set. For each sample in the set, a weight is computed according to
the value of the corresponding Hough array location. Iterations of factored
sampling applied to a Hough array sequence, that correspond to an image
sequence, allow sampling to be drawn from the neighboring area of the Hough
array locations of higher values, thus increasing the tracking accuracy.

An iteration of the tracking algorithm is illustrated in Figure 2. Figure 2.a
shows a new sample set. We measure the weights for each sample location
using the Hough table shown in Figure 2.b, and Figure 2.c shows the weighted
sample set where the circle size is proportional to particle weight.

The old sample set is defined as (S(i)
t−1, w

(i)
t−1, C

(i)
t−1), for i = 1 · · ·N , where,

at time t− 1, S(i)
t−1 are the samples in the Hough array; w(i)

t−1 are their asso-
ciated weights; and C(i)

t−1 are cumulative weights (probability). An iteration
of our tracking algorithm constructs a new sample-set (S

(i)
t , w

(i)
t , C

(i)
t ), for

i = 1 · · ·N , using the following steps:
1. Generate a sample S ′t by

(a) Select a random number r ∈ [0, 1] using an uniform distribution;
(b) Find the smallest j for which C

(j)
t−1 ≥ r using dicotomic search;

and
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(a) (b) (c)

Figure 2: (a) New sample set (b) measurement function (c) weighted sample set

(c) Setting S ′(n)t = S
(j)
t−1 ;

2. Predict by sampling from P (Xt|Xt−1 = S
′(n)
t ) to choose each S(n)

t .
A dynamic stochastic model is applied for this process, namely the sec-
ond order auto-regressive process (ARP) [16]. Such a model expresses
the state Xt at time t as a linear combination of the previous two states.
In order to account for noise and deviations from the model, a random
Gaussian element is added to each prediction;

3. Measure weights of the new sample positions in terms of feature Yt ,
that is w(n)

t = P (Yt|Xt = S
(n)
t ) . Weights are computed using

w
(n)
t =

H(S
(n)
t )∑

iH(i)

where H(S
(n)
t ) is the value in the Hough array corresponding to the

sample S(n)
t ; and the normalization value

∑
iH(i) is the sum of all the

accumulators of the Hough array;
4. Calculate the cumulative probability C(n)

t . The weights are normalized
so that

∑
w

(n)
t = 1 , and cumulative probabilities are C(0)

t = 0 and
C

(n)
t = C

(n−1)
t + w

(n)
t , for n = 1 · · ·N .

Results of the tracking process in the Hough space are shown in Figure 3.
The factored sampling technique yields accurate sampling during tracking
as shown in Figure 3.a. Figure 3.b shows the weights calculated for the
sample points in Figure 3.a, overlaid on the Hough image. The circle sizes
represent the value of the corresponding weights. Figure 3.c shows the two
main straight lines located in the Hough space, overlaid on the original image.
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(a)

(b) (c)

Figure 3: (a) Sample set (b) weighted samples (c) two main straight lines in the scene

In the Hough table (Figure 1.d), there are two peaks, corresponding to
the two instrument edges. This suggests that a more complex dynamic model
could be defined, one that considers the instrument position as a peak-pair
in the Hough table. Defining the dynamics of this model would not be trivial
since the straight lines are not parallel; they are related by a point conic,
and this relation changes dynamically with perspective because of the three-
dimensional movements of the instruments.

Not surprisingly, increased model complexity results in decreased per-
formance. In this application, the cost might not be justified by increased
accuracy in tracking. The main reason being that real-time control is manda-
tory, and the computational cost of the Condensation algorithm increases
exponentially with the number of state variables. Yet another problem arises
in the initialization stage, when all possible peak-pairs are candidates to
represent an instrument. This would either make the initialization process
intractable, or involve human assistance so that the tracking process can
start up in a reasonable time.

4. Tip Localization

Once one of the instrument edges has been detected, finding the position
of it’s tip is an easy task: the location of the tip is simply determined by
a loss of continuity in the orientation along the instrument edge. Pixels in
the orientation image are traced along the line profile until their individual
orientations present a significant change with respect to the line orientation.

11



For every pixel in the line, we compute the difference between its orienta-
tion and the line orientation that has already been determined in the HT
computation. These differences are considered as the orientation error.

Figure 4 contains an example of this computation. Figure 4.b shows the
orientation of the pixels along the line profile shown in Figure 4.a. Only
a segment of this line corresponds to the instrument. It can be seen that
the continuity in orientation decreases sharply at the ends of the instrument.
Figure 4.c shows the deviation between the computed orientation of the pixels
along the line profile, and the actual edge orientation.

A useful property of the HT is that the pixels which lie on the line are
not necessarily contiguous. This means that there is no need of continuity
for detecting a straight line, thus making the line detection process robust to
partial occlusions of the instrument edges caused by smoke, blood spots or
noise. However, it can also produce misleading results when, by chance, some
pixels happen to be aligned. Pixels which are not a part of the instrument,
but noise pixels, might be present in the image with the same line parameters
as non-noise pixels. For this reason, the line profile must be filtered to sup-
press the orientation values corresponding to partial occlusions or randomly
aligned pixels. This effect is shown in Figure 4.c. We consider these pixels
as isolated noise, and use a median filter to suppress their effect on locating
the tip.

Linear filters have undesirable blurring effects. In [25], average filtering is
used to suppress noise, but the result thus obtained is degraded by the effect
of noise values, as should be expected when using linear filtering. Median
filters are robust, and can furthermore eliminate the effect of noise values with
extremely large magnitudes. Figure 4.d shows the result of median filtering
the profile in Figure 4.c. Note how the large contrasts along the orientation
error profile were suppressed. A simple derivative operator is used to detect
the end of the tool and to locate the instrument tip, as shown in Figure 4.f.

5. Results

This section presents the results of applying the techniques described
above to actual video sequences from laparoscopic interventions. A 2GHz
Pentium PC was used to perform the computations. The images were ac-
quired at a resolution of 768x576 pixels, and this resolution was reduced to
384x288 pixels so that real-time operation could be achieved. The number
of particles was fixed to 400, and that yields a computation time under 80ms
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4: (a) Orientation image (b) line profile (c) deviation between computed and actual
orientation (d) median filtering of deviation (e) line segment (f) tip location

per frame (a rate of 12 frames per second) which is fast enough for real
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interventions.
While developing the system, we used images from a real laparoscope

“operating” on an artificial testbed, where it was possible to exert complete
control of the instruments’ actions. While testing the tool tip location algo-
rithm, artificial color marks were placed on the instrument tip. The locations
computed by our system were compared against those obtained by straight-
forward color segmentation, which were used as ground truth1. The tests
for tip localization with the testbed used 14280 frames, from 22 different
sequences. The test results indicate that the mean error between the actual
mark position and that determined by our location algorithm is 2.88 pixels,
with a maximum error of 11.18 pixels. The sequences used in these tests
include reflections and motion blurring. Unfortunately, an actual moving
organic background cannot be emulated in our testbed. Realistic smoke is
also difficult to emulate.

For more realistic tests, the system was applied to sequences of real in-
terventions on living people. Fifty sequences of 512 frames were used, and
some of these sequences show proceedings with two or more instruments.
From these, 88 sequences with the tracking of selected different instruments
were selected to test the final version of the system. In these sequences, the
tip location in 1920 frames was obtained manually and this information was
used as ground truth. The location results from the actual procedures were
very similar to those obtained on the testbed. The mean error is 3.01 pixels
and the maximum error is 11.66 pixels.

We believe that the margin of error is perfectly admissible, for two rea-
sons. First, the precision achieved by a human locating the tool tip manually
is hardly better than 2 or 3 pixels. Second, our main objective is visual ser-
voing for a laparoscope, and thus the camera must be kept focused on the
region around the tip of the instruments, which is where the surgeons focus
their interest. An error of a few pixels in determining where the tip is does
not interfere with the surgeon’s work. Obviously, the target position has to
be filtered before being sent to the robot controller, to avoid image flicking.
The robot’s control system is outside of the scope of this article.

Figure 5 shows the instrument detection in the presence of smoke. Figure
5.b shows the detection of the instrument while the cavity is ‘clean’ of smoke,

1Active marks, such as LEDs, are not suitable because of saturation effects in the
laparoscope.
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(a)

(c)

(b)

(d)

Figure 5: (a) Original image (b) instrument detection (c) image with presence of smoke
(d) instrument detection

and Figure 5.d shows the detection of the same instrument once smoke is
formed. Figures 5.a and 5.c are quite similar except for the smoke; there are
seven video frames between the two, which were captured before and after
the formation of smoke.

Figure 6 shows the instrument detection in images blurred because of
motion. As can be seen in Figures 6.b and 6.d, the instrument is accurately
detected with images under heavy motion blurring. Furthermore, the spec-
ular reflections on the metallic surface do not affect the detection of the
instrument.

The Condensation algorithm has the capability to maintain multiple
hypotheses, and once we developed a tracker for one instrument, we obtain
a multi-instrument tracker without any additional effort. The ability of the
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(a)

(c)

(b)

(d)

Figure 6: (a) Motion blurring (b) instrument detection (c) motion blurring (d) instrument
detection

Condensation algorithm to represent multi-modal distributions was tested
using image sequences with the presence of two instruments. Figure 7.a shows
an image with two instruments. Four edges are easily identified as peaks in
Hough table shown in Figure 7.b. Figure 7.c shows the sample set, organized
into four clusters around the peaks corresponding to the straight lines shown
in Figure 7.d.

Different hypotheses are continuously being considered by the Conden-
sation algorithm while physically tracking the one selected by the surgeon.
The surgeon can choose to track a given instrument by manually switching
among those present in the scene.

Figures 8 shows the result of the tracking system applied to one of the
selected sequences, which displays specular reflections and perspective distor-
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(a)

(c)

(b)

(d)

Figure 7: (a) Original image (b) Hough array (c) sample set (d) four main tracked lines.

tion caused by 3D movement of the instrument. The instrument detection,
and the tip localization are shown together with the original image sequence.

6. Conclusions

This article describes a set of techniques that can be used to implement
a robust and accurate tracking system for surgical instruments in robotized
laparoscopic procedures. The instrument locations thus computed are im-
mune to partial occlusions, noise and motion blurring. The contributions in
this article are listed below.

The first contribution is the use of the Condensation algorithm for
tracking the surgical instruments in the Hough space instead of tracking in
the image space. This technique is effective in cluttered backgrounds, and
performs well in estimating non-Gaussian and non-linear dynamic systems,
as is the case with the dynamics of surgical instruments. Tracking an object
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(a) (b) (c)

Figure 8: Results of image sequence processing
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through an image sequence typically involves following features detected in
one image to their new positions in the next. To perform the tracking with
a Hough array sequence has the advantage of making the tracking robust to
occlusion and illumination changes.

As a second contribution, the error in determining the tool direction is
minimized by a Principal Component Analysis of the gradient orientation
prior to the Hough Transform computation. This technique is widely used in
fingerprint recognition but has never been used before for instrument tracking
in laparoscopy.

Finally, a median filtering has been applied for the localization of the
instrument tip, to attain higher accuracy than that achievable with linear
filtering.

Last but not least, a further advantage of our the system is that it is can
be used with standard surgical tools, obviating the need for marking them
with color or stripes.

Our implementation on an ordinary desktop computer can analyze scenes
at a rate of 12 fps, which is a reasonable frame rate for real usage.
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