
Fases de execução de uma instrução

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

rr

rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr

rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrr

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣

♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣

rrrrrrrrrrr
rrrrrrrrrrr
rrrrrrr

rrrrrrrrrrrr
rrrrrrrrrrrr
rrrrr

memória
de

dados

ender

PC

instr

ender

instr.

instruções

memória
de

regs
B

A

C dados

Processador:

1) busca na memória a instrução apontada por PC busca

2) decodifica instrução decodificação

3) executa operação execução: A + B

4) acesso à memória memória: mem[A + desl]

5) armazena resultado da operação resultado: regs[c] ←· · ·

UFPR BCC CI212 2016-2— conj de instruções 3

Modelo de Von Newman

First Draft of a Report on the EDVAC,

John Von Neumann,

Moore School of Electrical Engineering,

Univ of Pennsylvania, 1945

define um computador com programa armazenado

no qual a memória é um vetor de bits

e a interpretação dos bits é determinada pelo programador

UFPR BCC CI212 2016-2— conj de instruções 2

Prinćıpios de Projeto em Arquitetura

Prinćıpio 1: simplicidade favorece regularidade

Prinćıpio 2: menor é mais rápido (quase sempre)

Prinćıpio 3: um bom projeto demanda compromissos

Prinćıpio 4: o caso comum deve ser o mais rápido

UFPR BCC CI212 2016-2— conj de instruções 1

Linguagem de montagem (cont.)

/* programa C */ # equivalente em assembly MIPS

a = b+c; add a, b, c

a = b+c+d+e; add a, b, c # comentário

add a, a, d

add a, a, e

f = (g+h)-(i+j); add t0, g, h # variável temp t0

add t1, i, j # variável temp t1

sub f, t0, t1

Programa montador (assembler) traduz “linguagem de montagem”

(assembly) para “linguagem de máquina” – binário que é

interpretado pelo processador

UFPR BCC CI212 2016-2— conj de instruções 6

Linguagem de montagem

• Extremamente simples (montador em ≈ 200 linhas de C)

• poucos tipos de dados: byte, meia-palavra, palavra, float, double

• dois conjuntos de variáveis: 32 registradores e vetor de bytes

• tipicamente, um resultado e dois operandos por instrução

label instrução # comentário

.L1: add r1, r2, r3 # r1 ← r2 + r3

sub r5, r6, r7 # r5 ← r6 - r7

fim: j .L1 # salta para endereço

apontado por .L1

uma instrução por linha,

label: denota endereço da linha indicada,

comentário vai do ‘#’ ou ‘;’ até o fim da linha.

UFPR BCC CI212 2016-2— conj de instruções 5

Fases de execução de uma instrução (cont.)

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣

♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣

ss

ssssssssssssssss
ssssssssssssssss
sssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
ssssssssssssssss
sss

sssssssssssssssss
ssssssssssssssss

ssssssssssssssss
ssssssssssssssss

ssssssssssssssss
ssssssssssssssss

ssssssssssssssss
ssssssssssssssss

ssssssssssssssss
sssssssssssssssss

ssssssssssssssss
ss

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ r3

r1

r2

add

busca instrução;

decodifica, acessa regs;

executa;

grava resultado;

add r3,r1,r2 # r3 ← r1+r2

UFPR BCC CI212 2016-2— conj de instruções 4

Instruções de Lógica e Aritmética

add r1, r2, r3 # r1 ←r2+r3

addi r1, r2, const # r1 ←r2+ext(const)

addu r1, r2, r3 # sem sinal - n~ao causa exceç~ao

addiu r1, r2, const # sem sinal - n~ao causa exceç~ao

ori r1, r2, const # r1 ←r2 || {016, const(15:0)}

Por que estender o sinal?

constante numérica de 16 bits ❀ número de 32 bits

constante lógica de 16 bits ❀ constante de 32 bits

UFPR BCC CI212 2016-2— conj de instruções 9

Aritmética com e sem sinal (signed e unsigned)

A representação de inteiros usada no MIPS é complemento de dois

Operações aritméticas possuem dois sabores: com/sem overflow

signed (faz detecção de overflow), patético

unsigned (ignora detecção de overflow). patético

Operações com endereços são sempre sem-overflow

(ex. addu $1, $2, $3) porque todos os 32 bits compõem

o endereco: 0xffff ffff = −110 é um endereço válido

Operações com inteiros podem ter operandos positivos/negativos,

e (talvez) programa deva detectar a ocorrência de overflow:

a soma de dois números de 32 bits produz resultado de 33 bits

UFPR BCC CI212 2016-2— conj de instruções 8

Linguagem de montagem (cont.)

• Instruções aritméticas/lógicas com 3 operandos risc

→ circuito que decodifica as instruções é mais simples

• Operandos SEMPRE em registradores risc

• Palavra do MIPS é de 32 bits = |regs| = |ULA| = |vias|

• 32 registradores viśıveis: $0 a $31

Usando registradores no último exemplo:

f = (g+h)-(i+j); add $8, $17, $18 # f..j -> $16..$20

add $9, $19, $20

sub $16, $8, $9

Por convenção

$0 contém sempre zero (fixo no hardware)

$1 é variável temporária para montador não deve ser usada

UFPR BCC CI212 2016-2— conj de instruções 7

Movimentação de dados entre CPU e memória (i)

LOAD WORD: end efetivo = desloc + rIndice

lw rd, desloc(rIndice)

STORE WORD: end efetivo = desloc + rIndice

sw rd, desloc(rIndice)

lw $8, desloc($15) # $8 <-- M[desloc + $15]

sw $8, desloc($15) # M[desloc + $15] <-- $8

Programador é responsável por gerenciar o acesso a todas as

estruturas de dados

UFPR BCC CI212 2016-2— conj de instruções 12

Registradores Viśıveis e Memória

s ss

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

$15

$14

$13

$12

$9

$10

$11

$8

$7

$6

$5

$4

$3

$2

$1

$0

PC

$31

$30

$29

$28

$27

$26

$25

$24

$23

$22

$21

$20

$18

$19

$17

$16

stat
0 1 32

4G-4

4

8

12

16

20

24

4G-8

4G-12

0

Memória

UFPR BCC CI212 2016-2— conj de instruções 11

Variáveis em memória

Programas usam mais variáveis que os 32 registradores!

Variáveis, vetores, etc são alocados em memória

Operações com elementos implicam na

carga dos registradores antes das operações

Memória é um vetor: M[4 ∗ 230]

Endereço em memória é o ı́ndice i do vetor M[i]

Bytes são armazenados em endereços consecutivos

Palavras armazenadas em endereços múltiplos de 4 230 palavras

bytes end % 1 = ?

meia-palavras end % 2 = 0 alinhado!!

palavras end % 4 = 0 alinhado!!

double-words end % 8 = 0 alinhado!!

UFPR BCC CI212 2016-2— conj de instruções 10

Estruturas de Dados em C

tipo de dado sizeof

char 1

short 2

int 4

long long 8

float 4

double 8

char[12] 12

short[6] 12

int[3] 12

char * 4

short * 4

int * 4

A função sizeof(x) retorna

o número de bytes necessários

para representar x

Elementos de vetores são

alocados em endereços

cont́ıguos: V[i+1] é alocado

no endereço seguinte a V[i].

Ponteiros (char *, int *)

são endereços e tem sempre o

mesmo tamanho, que é de

4 bytes no MIPS

UFPR BCC CI212 2016-2— conj de instruções 15

Movimentação de dados entre CPU e memória (iii)

Exemplo: acesso à estrutura com 4 elementos

typedef struct A { ...

int x; # compil aloca V em 0x800000

int y; aType V[16];

int z; ...

int w;

} aType;

3 elmtos ∗ 4 pals/elmto ∗ 4 bytes/pal

aPtr = &(V[3]); la $15, 0x00800030

m = aPtr->y; lw $8, 4($15)

n = aPtr->w; lw $9, 12($15)

aPtr->x = m+n; add $5, $8, $9

sw $5, 0($15)

UFPR BCC CI212 2016-2— conj de instruções 14

Movimentação de dados entre CPU e memória (ii)

rrrrrr
rrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrrrr
rrrrrrrrrrrrrr

rrr
rrrrrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrr
rrrrrr
rrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrrr rr

rrr

rr

rr
rr

&(V[0])

M[]

&(V[4])

&(V[8])

lw $12, $15 0x0008

lw $12, 8($15) # $12 ⇐ M[$15+8]

&(V[c])
&(V[0])$15

UFPR BCC CI212 2016-2— conj de instruções 13

Instr de moviment de dados entre CPU e memória

lw r1, desl(r2) # r1 ←M[r2 + ext(desl)]

sw r1, desl(r2) # M[r2 + ext(desl)] ←r1

load-half and load-byte -- expande sinal para 32 bits

x = r2+ext(desl)

lh r1, desl(r2) # r1 ←{M[x](15)16, M[x](14:0)}

lb r1, desl(r2) # r1 ←{M[x](7)24, M[x](6:0)}

load-half and load-byte unsigned -- preenche com zeros

lhu r1, desl(r2) # r1 ←{016, M[x](15:0)}

lbu r1, desl(r2) # r1 ←{024, M[x](7:0)}

UFPR BCC CI212 2016-2— conj de instruções 18

Movimentação de dados entre CPU e memória (iii)

Exemplo: acesso à vetor

int V[NNN];

...

V[0] = V[1] + V[2]*16;

la r1, V # r1←&V[0]

lw r4, 4(r1) # r4←M[r1+1*4]

lw r6, 8(r1) # r6←M[r1+2*4]

sll r6, r6, 4 # r6*16 = r6<<4

add r7, r4, r6

sw r7, 0(r1) # M[r1+0*4]←r4+r6

Re-escreva o código para:

V[i] = V[j] + V[k]*16;

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq
qqqqqq
qqqqqq
qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqq
qqqqqq
qqqqqq
qq

qqqqqq
qqqqqq
qqqqqq
qqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq

0 8

V[1]

V[0] V[2]

4

.

UFPR BCC CI212 2016-2— conj de instruções 17

Vetores e Matrizes em C

Vetores em C

ender 20 21 22 23 24 25 26 27

char v[0] v[1] v[2] v[3] v[4] v[5] v[6] v[7]

short v[0] v[1] v[2] v[3]

int v[0] v[1]

Matrizes em C

uma matriz é alocada em memória

como vetor de vetores

&(M [i][j]) =

&(M [0][0]) + |τ |(λ · i + j)

para elementos de tipo τ , linhas

com λ colunas e µ linhas

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣

1

0 λ-1

i

j

µ-2

0

µ-1

i

UFPR BCC CI212 2016-2— conj de instruções 16

Controle de fluxo de execução (i)

Instruções para efetuar Desvios if(){ } while(){ }

beq r1, r2, ender # branchEqual desvia se r1 == r2

bne r1, r2, ender # branchNotEq desvia se r1 != r2

slt rd, r1, r2 # setOnLessThan rd←1 se r1 < r2

em C: rd = ((r1 < r2) ? 1 : 0);

sequência equivalente a blt (branch on less than)

slt r1, r2, r3 # r1 <-- 1 se (r2 < r3)

bne r1, r0, ender # salta se (r2 < r3)

slt rd, r1, r2 # rd←1 se (r1 < r2)

slti rd, r1, const # rd←1 se (r2 < ext(const))

sltu rd, r1, r2 # subtraç~ao n~ao gera exceç~ao

sltiu rd, r1, const # subtraç~ao n~ao gera exceç~ao

UFPR BCC CI212 2016-2— conj de instruções 21

Controle de fluxo de execução (i)

Instruções para efetuar Desvios if(){ } while(){ }

beq r1, r2, ender # branchEqual desvia se r1 == r2

bne r1, r2, ender # branchNotEq desvia se r1 != r2

Instruções para efetuar Saltos goto

j ender # jump (salto incondicional)

jr rt # jump register

rt contem endereço de destino

UFPR BCC CI212 2016-2— conj de instruções 20

fim da primeira aula

UFPR BCC CI212 2016-2— conj de instruções 19

Modos de Endereçamento

Modos de endereçamento já vistos:

• a registrador – instrução especifica registradores que contém

operandos e destino

add $4, $3, $2

• base-deslocamento – endereço efetivo é

conteúdo de registrador + deslocamento 16 bits

lw $4, 32($5)

UFPR BCC CI212 2016-2— conj de instruções 24

Desvios e Saltos (ii)

while (save[i] == k)

i = i + j;

i,j,k <-> $19,$20,$21, $7 = &(save[0])

Loop: muli $9, $19, 4 # $9←i*4

add $9, $7, $9 # $9←&(save[i])

lw $8, 0($9) # $8←save[i]

bne $8, $21, Exit

add $19, $19, $20

j Loop

Exit:

UFPR BCC CI212 2016-2— conj de instruções 23

Desvios e Saltos (i)

if (i == j) goto L1; beq $i, $j, L1

f = g + h; add $f, $g, $h

L1: L1: sub $f, $f, $i

f = f - i;

if (i == j) bne $i, $j, Else

f = g + h; add $f, $g, $h

else j Exit # salta else

f = g - h; Else: sub $f, $g, $h

Exit:

UFPR BCC CI212 2016-2— conj de instruções 22

Endereçamento em Saltos e Desvios

• Em geral, desvios são para endereços próximos

• por ser rápido e eficiente, desvios são relativos ao PC

• o PC contém o endereço da próxima instrução a ser executada

UFPR BCC CI212 2016-2— conj de instruções 27

MdE: registrador, imediato, base-deslocamento

rrrrrr
rrrrrr
rrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrrrr
rrrrrrrrrrrrrr

rrr
rrrrrrrrrrr
rrrrrrrrr
rrrrrrr
rrrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrr
rrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrr
rr

rr

rr

rr

r1r2r3
registrador

add r1,r2,r3

imedr2 r1
imediato

addi r1,r2,imed

base-deslocamento

lw r1,desl(r2)

ender. efetivo

deslr2 r1

r2

UFPR BCC CI212 2016-2— conj de instruções 26

Endereçamento com Imediatos

Motivação:

no gcc, 52% das operações aritméticas involvem uma constante;

no simulador de circuitos Spice são 69%.

Exemplos:

addi $29,$29,4 # add-immediate: $29 = $29+4

slti $8,$18,10 # set-on-less-than-immeditate:

$8 ←($18 < 10);

lui $8,252 # load-upper-immediate: operando nos

16 bits mais signif do registrador

UFPR BCC CI212 2016-2— conj de instruções 25

Modos de Endereçamento

• a registrador: operandos e destino em registradores

• imediato: constante é parte da instrução

• base-deslocamento: end efetivo = reg + deslocamento

• relativo a PC: end efetivo = PC + deslocamento

• (pseudo)absoluto: end efetivo é parte da instrução

∗ Prinćıpio 1: simplicidade favorece regularidade

∗ Prinćıpio 3: um bom projeto demanda compromissos

∗ Prinćıpio 4: o caso comum deve ser o mais rápido

Quais são os casos comuns?

Quais são os compromissos?

UFPR BCC CI212 2016-2— conj de instruções 30

Endereçamento em Saltos e Desvios

Relativo à PC – endereço efetivo = (PC+4) + deslocamento

Na imensa maioria dos casos, uma distância de ± 32K palavras

(16 bits) é suficiente para cobrir if()’s, for()’s, etc...

Se o destino de um desvio está além das 32K palavras, a seguinte
transformação é efetuada automaticamente pelo montador:

beq $18, $19, L1 # | L1 - PC | > 32K palavras

é transformada em (pela inversão do teste)

bne $18, $19, L2 # | L2 - PC | < 32K palavras

j L1 # | L1 | <= 2**26

L2:

UFPR BCC CI212 2016-2— conj de instruções 29

Endereçamento em Saltos e Desvios

♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ 4

26

rrrrrr
rrrrrr
rrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrrrr
rrrrrrrrrrrrrr

rrr
rrrrrrrrrrr
rrrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rr

rr

rr

rr

rr

rr

rrrrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrr

rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrr rr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rr

rr

rr

rr

deslr2 r1
relativo a PC

beq r1,r2,desl

destino

ender. efetivo

absoluto

00

j destino

PC

ender. efetivo

PC

≪2

UFPR BCC CI212 2016-2— conj de instruções 28

Codificação das instruções

rs rttipo I imedopc

rdrtrs funcsham

endertipo J opc

opctipo R

6 26

6 5 5 16

5 5 5 5 66

• Prinćıpio 1: simplicidade favorece regularidade

• Prinćıpio 3: um bom projeto demanda compromissos

• Prinćıpio 4: o caso comum deve ser o mais rápido

Quais são os casos comuns?

Quais são os compromissos?

UFPR BCC CI212 2016-2— conj de instruções 33

Codificação das instruções

rs rttipo I imedopc

rdrtrs funcsham

endertipo J opc

opctipo R

6 26

6 5 5 16

5 5 5 5 66

UFPR BCC CI212 2016-2— conj de instruções 32

Modos de Endereçamento

.

..
...
...
...
..
...
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4

26

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣
♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣
♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣

♣♣♣
♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣

♣♣

♣♣♣
♣♣

♣♣
♣♣

♣♣

♣♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
♣♣♣♣♣♣

♣♣♣
♣♣

r1r2r3
add r1,r2,r3

registrador

imed-16r2 r1
imediato

addi r1,r2,imed

base-deslocamento

lw r1,desloc(r2)

ender. efetivo

desloc-16r2 r1

r2

relativo a PC

beq r1,r2,desloc
desloc-16r2 r1

ender. efetivo

PC

PC

00

j destino

absoluto
destino

ender. efetivo

UFPR BCC CI212 2016-2— conj de instruções 31

Pseudoinstruções

Montador sintetiza instruções mais complexas a partir de instruções

simples do conjunto de instruções original do MIPS

li $a0, 4 # load-immediate

é

ori $a0, $0, 4 # or-immediate com $0 (zero)

#---

move $a1, $v0 # move conteúdo de $v0 para $a1

é

ori $a1, $0, $v0

#---

blt $19, $20, end branch-on-less-than

é

slt $1, $19, $20 # $1 ←1 se ($19 < $20)

bne $1, $0, end # salta se ($19 < $20)

UFPR BCC CI212 2016-2— conj de instruções 35

Modos de Endereçamento vs Codificação

• a registrador: operandos e destino em registradores

• imediato: constante é parte da instrução

• base-deslocamento: end efetivo = reg + deslocamento

• relativo a PC: end efetivo = PC + deslocamento

• (pseudo)absoluto: end efetivo é parte da instrução

rs rttipo I imedopc

rdrtrs funcsham

endertipo J opc

opctipo R

6 26

6 5 5 16

5 5 5 5 66

Qual a relação entre

codificação e modos

de endereçamento?

UFPR BCC CI212 2016-2— conj de instruções 34

