Representação de Números em Ponto Fixo

 $char_{|8|}$, $short_{|16|}$, $int_{|32|}$, $long_{|32|}$, $long \ long_{|64|}$

Números de 31 bits + sinal $-2^{31} < n < +(2^{31}-1)$ Números positivos de 32 bits $0 < n < +(2^{32}-1)$

Representam 2^{32} quantidades distintas

Representação de inteiros com sinal em complemento de dois é assimétrica: $[-2^{31},0] \cup [0,2^{31})$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação de Números em Ponto Flutuante

 $float_{|32|}$, $double_{|64|}$

- $1.0 \cdot 10^{-12}$ picosegundos
- $3.15576 \cdot 10^9$ segundos num ano
- ullet aproximações para π e e

Representação posicional:

 $\begin{array}{l} 34.567_{10}=\!\!3\cdot10+4\cdot1+5\cdot0.1+6\cdot0.01+7\cdot0.001\\ 101.1001_{2}=\\ 1\cdot2^{2}+0\cdot2^{1}+1\cdot2^{0}+1\cdot2^{-1}+0\cdot2^{-2}+0\cdot2^{-3}+1\cdot2^{-4}\\ =\\ 1\cdot4+0\cdot2+1\cdot1+1\cdot0.5+0\cdot0.25+1\cdot0.125+1\cdot0.0625 \end{array}$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante - float

31 3	30	22 0
sinal	expoente	fração
	< s bits	23 bits

e bits de expoente, f bits de fração

 $V=F\cdoteta^E$ para fração F, expoente E, e base etamenor número: $pprox 2.0\cdot 10^{-38}$ maior número: $pprox 2.0\cdot 10^{+38}$

$$\begin{split} |\text{expoente}| & \rightsquigarrow \text{ faixa de representação} \\ |\text{fração}| & \rightsquigarrow \text{precisão na representação} \\ \text{faixa enorme representada por } 2^{23} \text{ padrões } \neq \text{s} \\ & \rightarrow \text{precisão é menor que em ponto fixo} \\ \end{split}$$

Princípio 3: good design demands good compromise

Representação em Ponto Flutuante

$$V=F\cdot 2^E$$
 para fração F , expoente E , e base 2 $V=(-1)^{sinal}\cdot (f_1\cdot 2^{-1}+f_2\cdot 2^{-2}+f_3\cdot 2^{-3}+\dots)\cdot 2^E$

Número é normalizado se não há Os à direita do ponto binário normalização: desloca fração para esquerda (aumentando precisão) enquanto decrementa expoente:

 $0.00101 \cdot 2^3 \stackrel{\mathrm{norm}}{=} 0.10100 \cdot 2^1$

Exemplo: $-0.75_{10} = -3/4 = -3/2^2 =$ $11.0_2/2^2 = -0.11_2 = -0.11 * 2^0$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante

 $V=F\cdot 2^E$

para fração $m{F}$, expoente $m{E}$, e base $m{2}$

4

5

6

Valor máximo da fração é $F_{\max} = 1 -$ ulp ulp $= 2^{-f}$ *Unit in the Last Position*

Se R é resultado de operação aritmética e $R>F_{
m max}$ então mantissa deve ser reduzida: $F\cdot 2^E o (F/2)\cdot 2^{E+1}$ /= asr

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante - double

menor núr	mero: $pprox 2.0\cdot 10$	$)^{-308}$	maior número: $pprox 2.0$	$\cdot 10^{+308}$
31 30		19		0
sinal	expoente		fração	
<	11 bits	~~	20 bits	~~>
		fraç	ão	
<		3	2 bits	>

Formato:
$$V = (-1)^{sinal} \cdot (f_1 \cdot 2^{-1} + f_2 \cdot 2^{-2} + f_3 \cdot 2^{-3} + \dots) * 2^E$$

Faixa de Valores Representáveis

Faixa dos PF positivos: $F_{\min} \cdot 2^{E_{\min}} \leq V^+ \leq F_{\max} \cdot 2^{E_{\max}}$ $|V^+| = |V^-|$ Overflow Underflow Underflow Overflow Positivo Negativo Positivo Positivo $-(1 - 2^{-23}) \cdot 2^{127}$ $-1 \cdot 2^{-126}$ $1 \cdot 2^{-126}$ $(1 - 2^{-23}) \cdot 2^{127}$

overflow: expoente muito grande para representação > +127underflow: expoente muito pequeno para representação < -126

representação do zero?

UFPR BCC Cl212 2016-2- aritmética ponto flutuante

Padrão IEEE 754

Padrão "universal" para representação em ponto flutuante

Primeiro dígito significativo da fração é implícito, à esq do ponto: s eeee eeee [1].ffff ffff ffff ffff ffff

	sinal	exp	mant
float	1	8	23 +1
double	1	11	52 +1
\rightsquigarrow fração $\in [1,2)$			

números devem ser sempre normalizados!!!

Zero é caso especial: expoente e fração são todos zero $1.ffff\cdots fff = significando$

8

9

Formato: $(-1)^{s} \cdot (1 + \text{fração}) \cdot 2^{E}$ sinal \cdot significando \cdot expoente

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Padrão IEEE 754 – expoente deslocado (i)

Qual a representação em float para os números 2^4 e 2^{-4} ?

0 0000 0100 [1].0000 \cdots 000 \mapsto 2^{+4} 0 1111 1100 [1].0000 \cdots 000 \mapsto 2^{-4}

Considerando as duas representações como inteiros, qual delas representa o maior número?

O expoente não é representado em complemento de dois para que se possa comparar floats como se fossem inteiros slt

Formato:

 $(-1)^s \cdot (1 + \text{fração}) \cdot 2^{(E-\text{deslocamento})}$ $(-1)^s \cdot (1 + f_1 \cdot 2^{-1} + f_2 \cdot 2^{-2} + f_3 \cdot 2^{-3} + \dots) \cdot 2^{(E-\text{desloc})}$ onde deslocamento é 127 ou 1023

onde desiocamento e 127 ou 1023

Padrão IEEE 754 – expoente deslocado (ii)

Padrão IEEE 754 – expoente deslocado (iii)

 $(-1)^s \cdot (1 + \text{fração}) \cdot 2^{(E-\text{deslocamento})}$

Com expoente deslocado, número menor tem expoente menor

0 1000 0011 [1].0000 \cdots 000 $\mapsto 2^{+4}$ 0 0111 1011 [1].0000 \cdots 000 $\mapsto 2^{-4}$

pode comparar floats e doubles com instruções para inteiros: $\longrightarrow {\tt beq}~{\tt e}~{\tt slt}$

Faixas de expoente e da fração permitem representar a recíproca de F^+_{min} sem overflow: $1/F^+_{min} < F^+_{max}$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

11

Padrão IEEE 754 – expoente deslocado (iv)

$(-1)^s$.	(1 + fração)	$\cdot 2^{(E- ext{deslocamento})}$
------------	--------------	------------------------------------

Parâmetros do Formato IEEE 754		
	float	double
bits de precisão	24	53
Expoente máximo $E_{ m max}$	127	1023
Expoente mínimo $E_{ m min}$	-126	-1022
Deslocamento no exp.	127	1023

Padrão IEEE 754 - exemplos

Exemplo 1: $-0.75_{10} = -3/4 = -3/2^2 =$ $11.0_2/2^2 = -0.11_2 = -0.11 * 2^0 \stackrel{\text{norm}}{=} -1.1 * 2^{-1}$

representado em double: $(-1)^{s} \cdot (1 + \text{fração}) \cdot 2^{(\text{expoente}-1023)}$ $(-1)^{1} \cdot (1 + 0.1000 \dots 0000) \cdot 2^{(1022-1023)}$

UFPR BCC CI212 2016-2— aritmética ponto flutuante

Padrão IEEE 754 – exemplos

 $(-1)^s \cdot (1 + \text{fração}) \cdot 2^{(\text{expoente} - 127)}$

UFPR BCC Cl212 2016-2- aritmética ponto flutuante

Padrão IEEE 754 – exemplos

 $(-1)^s \cdot (1 + \text{fração}) \cdot 2^{(\text{expoente} - 127)}$

Exemplo 4: $\begin{aligned} \mathbf{2.0}_{10} &= \mathbf{10.0}_2 \stackrel{\text{norm}}{=} \mathbf{1.0} \cdot \mathbf{2^1} \\ (-1)^0 \cdot (1 + 0.0000 \dots 0000) \cdot \mathbf{2^{(128-127)}} \\ \hline \mathbf{0} \quad \mathbf{1000} \quad \mathbf{0000} \quad \mathbf{00$

13

Padrão IEEE 754

Valores Especiais		
Expoente	Fração	representa
$e=E_{\min}-1$	f=0	± 0
$e=E_{\min}-1$	f eq 0	$0.f imes 2^{E_{min}}$ ‡
$E_{ m min} \leq e \leq E_{ m max}$	_	$1.f imes 2^e$
$e=E_{ m max}+1$	f=0	$\pm\infty$
$e=E_{ m max}+1$	f eq 0	NaN
\ddagger formato denormalizado: $2^{-149} < F < 2^{-126}$		

Operação com NaN resulta em NaN $5+NaN \rightarrow NaN$ $0 \cdot \infty \rightarrow NaN$ mas $1/0 \rightarrow \pm \infty$

UFPR BCC Cl212 2016-2- aritmética ponto flutuante

16

Padrão IEEE 754 – núm denormalizados

Números com expoente menor que E_{\min} são legais e possibilitam underflow gradual: x, y pequenos, se x
eq y então x - y
eq 0

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Padrão IEEE 754 - precisão

Seja x um número Real e $\mathcal{F}(x)$ sua representação em PF

O erro absoluto de representação é $\mathcal{F}(x) - x$

 $\begin{array}{ll} \mathsf{Sejam} \ \mathcal{F}_1 \in \mathcal{F}_2 \ \mathsf{tais} \ \mathsf{que} \ \ \mathcal{F}_1 \leq x \leq \mathcal{F}_2 \\ \mathsf{ent} \tilde{\mathsf{ao}} \ \mathcal{F}(x) \ \mathsf{pode} \ \mathsf{ser} \ \mathcal{F}_1 \ \mathsf{ou} \ \mathcal{F}_2. \end{array}$

Se $\mathcal{F}_1 = M \cdot 2^E$ então $\mathcal{F}_2 = (M + ulp) \cdot 2^E$ e o erro máximo é $1/2|\mathcal{F}_1 - \mathcal{F}_2| = ulp \cdot 2^E$

O erro relativo de representação é $\delta(x) = (\mathcal{F}(x) - x)/x$

Adição em Ponto Flututante

Adição em Ponto Flututante II

Exemplo: $9.999 * 10^1 + 1.610 * 10^{-1}$ base-10, significando com 4 dígitos (1.3) mais 2 dígitos no expoente

1. compara; desloca significando e ajusta expoente do menor $0.01610 * 10^1$ trunca para quatro dígitos: $0.016 * 10^1$

2. soma 9.999	3. normaliza $10.015 \cdot 10^0 \stackrel{\text{norm}}{=} 1.0015 \cdot 10^1$
+0.016	
10.015	

4. arredonda e trunca para 4 dígitos se dígito à direita $0 \le d \le 4$, arredonda para menos; senão ($5 \le d \le 9$), arredonda para mais erredonda?

 $9.999 * 10^1 + 1.610 * 10^{-1} = 1.002 * 10^1$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Adição em Ponto Flututante III

Exemplo: 0.5 - 0.4375base-10, significando com 4 dígitos (1.3) mais 2 dígitos no expoente

$$egin{aligned} 0.5_{10} &= 0.1_2 \stackrel{ ext{norm}}{=} 1.000 \cdot 2^{-1} \ -0.4375_{10} &= -7/2^4 = -111_2/2^4 = -0.0111_2 \stackrel{ ext{norm}}{=} \ -1.110 \cdot 2^{-2} \end{aligned}$$

1. compara; desloca significando e ajusta expoente do menor; trunca $-1.110\cdot2^{-2}{\rightarrow}-0.111\cdot2^{-1}$

2. soma $1.000 \cdot 2^{-1}$ $-0.111 \cdot 2^{-1}$	3. normaliza $0.001 \cdot 2^{-1} \stackrel{\text{norm}}{=} 1.000 \cdot 2^{-4}$
$\frac{0.001 \cdot 2^{-1}}{0.001 \cdot 2^{-1}}$	4. arredonda e trunca para 4 dígitos $0.5 - 0.4375 = 1.000 \cdot 2^{-4}$

Multiplicação em Ponto Flututante

Multiplicação em Ponto Flututante II

4	
1. soma expoentes – com deslocamento!! 10 + 127 = 137 +(-5 + 127) = 122 259 259 - 127 = 1	32 = 127 + 5
2. multiplica significandos 3. normaliza: 1.110 $10.212 \cdot 10^5 \stackrel{\text{norm}}{=}$ $\times 9.200$ 4. arredonda e trur 0000 $1.0212 \cdot 10^6 = 1.0212 \cdot 10^6$ 2220 $5.$ calcula sinal: + 10.212000 $+1.021 \cdot 10^6$	nca p/ 4 dígitos: .021 · 10 ⁶

Multiplicação em Ponto Flututante III

Exemplo: $0.5 imes-0.4375$ $1.000\cdot2^{-1} imes-1.110$	b-10, $ M = 1.3$, $ E = 2$ $\cdot 2^{-2}$
1. soma expoentes – com deslocar $(-1+127)+(-2+127)-1$	
2. multiplica significandos 1.000 ×1.110	3. normaliza: 1.110 · 2 ⁻³
0000 1000	4. arredonda e trunca p/ 4 dígitos: $1.110\cdot 2^{-3}$
1000 1000	5. calcula sinal: $- \times + = -$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-1.110 \cdot 2^{-3} = -0.00111$ = $-7/32 = -0.21875$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Exatidão

Num double só 2^{53} números em [1,2) são representados exatamente

IEEE 754 prescreve uso de 2 bits adicionais na implementação: bit de guarda e bit de arredondamento que garantem precisão melhor que metade do bit menos significativo da fração

Sem bits de guarda e arredondamento, qual é a perda de precisão a cada operação? UFPR BCC CI212 2016-2— aritmética ponto flutuante 25