Representação de Números em Ponto Fixo

$\operatorname{char}_{|8|}$, short $_{|16|}$, int $_{|32|}$, long|32| , long long|64|

Números de 31 bits + sinal

$$
-2^{31}<n<+\left(2^{31}-1\right)
$$

Números positivos de 32 bits

$$
0<n<+\left(2^{32}-1\right)
$$

Representam 2^{32} quantidades distintas

Representação de inteiros com sinal em complemento de dois é assimétrica: $\left[-2^{31}, 0\right] \cup\left[0,2^{31}\right)$

Representação de Números em Ponto Flutuante

float $_{|32|}$, double $_{|64|}$

- $1.0 \cdot 10^{-12}$ - picosegundos
- $3.15576 \cdot 10^{9}$ - segundos num ano
- aproximações para π e e

Representação posicional:

$$
34.567_{10}=3 \cdot 10+4 \cdot 1+5 \cdot 0.1+6 \cdot 0.01+7 \cdot 0.001
$$

$101.1001_{2}=$
$1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}+1 \cdot 2^{-1}+0 \cdot 2^{-2}+0 \cdot 2^{-3}+1 \cdot 2^{-4}$
$=$
$1 \cdot 4+0 \cdot 2+1 \cdot 1+1 \cdot 0.5+0 \cdot 0.25+1 \cdot 0.125+1 \cdot 0.0625$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante - float

e bits de expoente, f bits de fração
$\boldsymbol{V}=\boldsymbol{F} \cdot \boldsymbol{\beta}^{\boldsymbol{E}} \quad$ para fração \boldsymbol{F}, expoente \boldsymbol{E}, e base $\boldsymbol{\beta}$
menor número: $\approx 2.0 \cdot 10^{-38} \quad$ maior número: $\approx 2.0 \cdot 10^{+38}$
|expoente| \leadsto faixa de representação
$|f r a c ̧ a ̃ o| ~$ precisão na representação
faixa enorme representada por 2^{23} padrões $\neq \mathrm{s}$
\rightarrow precisão é menor que em ponto fixo $\quad 2^{23}$ coisas $\neq \mathrm{s}$

Representação em Ponto Flutuante

$\boldsymbol{V}=\boldsymbol{F} \cdot \mathbf{2}^{\boldsymbol{E}} \quad$ para fração \boldsymbol{F}, expoente \boldsymbol{E}, e base $\mathbf{2}$
$V=(-1)^{\text {sinal }} \cdot\left(f_{1} \cdot 2^{-1}+f_{2} \cdot 2^{-2}+f_{3} \cdot 2^{-3}+\ldots\right) \cdot 2^{E}$

Número é normalizado se não há 0 s à direita do ponto binário normalização: desloca fração para esquerda (aumentando precisão) enquanto decrementa expoente:

$$
0.00101 \cdot 2^{3} \stackrel{\text { norm }}{=} 0.10100 \cdot 2^{1}
$$

Exemplo:
$-0.75_{10}=-3 / 4=-3 / 2^{2}=$
$11.0_{2} / 2^{2}=-0.11_{2}=-0.11 * 2^{0}$

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante

$\boldsymbol{V}=\boldsymbol{F} \cdot \mathbf{2}^{\boldsymbol{E}} \quad$ para fração \boldsymbol{F}, expoente \boldsymbol{E}, e base $\mathbf{2}$

Valor máximo da fração é $\boldsymbol{F}_{\max }=1$ - ulp
ulp $=\mathbf{2}^{-\boldsymbol{f}} \quad$ Unit in the Last Position

Se \boldsymbol{R} é resultado de operação aritmética e $\boldsymbol{R}>\boldsymbol{F}_{\max }$ então
mantissa deve ser reduzida: $\boldsymbol{F} \cdot \mathbf{2}^{E} \rightarrow(\boldsymbol{F} / \mathbf{2}) \cdot \mathbf{2}^{E+1} \quad /=$ asr

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Representação em Ponto Flutuante - double

menor número: $\approx 2.0 \cdot 10^{-308} \quad$ maior número: $\approx 2.0 \cdot 10^{+308}$

| 31 | | |
| :--- | :--- | :--- | :--- |
| sinal | expoente | fração |
| 19 | | 0 |

\square
32 bits
Formato:
$V=(-1)^{\text {sinal }} \cdot\left(f_{1} \cdot 2^{-1}+f_{2} \cdot 2^{-2}+f_{3} \cdot 2^{-3}+\ldots\right) * 2^{E}$

Faixa de Valores Representáveis

Faixa dos PF positivos: $\boldsymbol{F}_{\text {min }} \cdot \mathbf{2}^{\boldsymbol{E}_{\text {min }}} \leq \boldsymbol{V}^{+} \leq \boldsymbol{F}_{\text {max }} \cdot \mathbf{2}^{\boldsymbol{E}_{\text {max }}}$ $\left|\boldsymbol{V}^{+}\right|=\left|\boldsymbol{V}^{-}\right|$

overflow: expoente muito grande para representação $>+\mathbf{1 2 7}$ underflow: expoente muito pequeno para representação $<-\mathbf{1 2 6}$ representação do zero?

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Padrão IEEE 754

Padrão "universal" para representação em ponto flutuante
Primeiro dígito significativo da fração é implícito, à esq do ponto:
s eeee eeee [1].ffff ffff ffff ffff ffff fff

	sinal	exp	mant
float	1	8	23+1
double	1	11	$52+1$

números devem ser sempre normalizados!!!

Zero é caso especial: expoente e fração são todos zero
1.ffff...fff $=$ significando

Formato:
$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{E}$
sinal • significando • expoente

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Padrão IEEE 754 - expoente deslocado (i)

Qual a representação em float para os números 2^{4} e $\mathbf{2}^{-4}$?
000000100 [1]. $0000 \cdots 000 \mapsto 2^{+4}$
011111100 [1]. $0000 \cdots 000 \mapsto 2^{-4}$
Considerando as duas representações como inteiros, qual delas representa o maior número?

O expoente não é representado em complemento de dois para que se possa comparar floats como se fossem inteiros

Formato:
$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{(E-\text { deslocamento })}$
$(-1)^{s} \cdot\left(1+f_{1} \cdot 2^{-1}+f_{2} \cdot 2^{-2}+f_{3} \cdot 2^{-3}+\ldots\right) \cdot 2^{(E-\text { desloc })}$
onde deslocamento é 127 ou 1023

Padrão IEEE 754 - expoente deslocado (ii)

$E: E-127$		
$0: 00000000$	reservado (zero, denorm.)	
$\text { -126: } 00000001$		a coluna da esquerda mostra
	$E_{\text {neg }} \in[-126,-1]$	expoente: repres
-2: 01111101		
-1: 01111110	\downarrow	a coluna da
$\text { 0: } 01111111$	\uparrow	direita mostra o
$+1: 10000000$		conjunto dos
+2: 10000001		valores para os
	$\boldsymbol{E}_{\text {pos }} \in[0,127]$	expoentes
		negativos e
+127: 11111110	\downarrow	positivos
+128: 11111111	reservado (overflow, NaN)	

UFPR BCC CI212 2016-2- aritmética ponto flutuante
10

Padrão IEEE 754 - expoente deslocado (iii)

$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{(E-\text { deslocamento })}$
Com expoente deslocado, número menor tem expoente menor

```
0 1000 0011 [1].0000 ... 000\mapsto 2 2+4
0 0111 1011 [1].0000 ... 000\mapsto 年-4
```

pode comparar floats e doubles com instruções para inteiros:

$$
\rightarrow \text { beq e slt }
$$

Faixas de expoente e da fração permitem representar a recíproca de $\boldsymbol{F}_{\text {min }}^{+}$sem overflow: $\quad \mathbf{1} / \boldsymbol{F}_{\text {min }}^{+}<\boldsymbol{F}_{\text {max }}^{+}$

Padrão IEEE 754 - expoente deslocado (iv)

$$
(-1)^{s} \cdot(1+\text { fração }) \cdot 2^{(E-\text { deslocamento })}
$$

Parâmetros do Formato IEEE 754		
	float	double
bits de precisão	24	53
Expoente máximo $\boldsymbol{E}_{\max }$	127	1023
Expoente mínimo $\boldsymbol{E}_{\min }$	-126	-1022
Deslocamento no exp.	127	1023

Exemplo 1:

$-0.75_{10}=-3 / 4=-3 / 2^{2}=$
$11.0_{2} / 2^{2}=-0.11_{2}=-0.11 * 2^{0} \stackrel{\text { norm }}{=}-1.1 * 2^{-1}$
representado em float:
$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{\text {(expoente-127) }}$
$(-1)^{1} \cdot(1+0.1000 \ldots 0000) \cdot 2^{(126-127)}$

| 1 | 01111110 | 10000000000000000000000 |
| :--- | :--- | :--- | :--- |

representado em double:
$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{(\text {expoente-1023 })}$
$(-1)^{1} \cdot(1+0.1000 \ldots 0000) \cdot 2^{(1022-1023)}$

Padrão IEEE 754 - exemplos

$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{\text {(expoente-127) }}$
Exemplo 2:
$0.5_{10}=0.1_{2} \stackrel{\text { norm }}{=} 1.0 \cdot 2^{-1}$
$\left.\left.\begin{array}{l}(-1)^{0} \cdot\left(\mathbf{1}+\mathbf{0 . 0 0 0 0 \ldots 0 0 0 0) \cdot 2 ^ { (1 2 6 - 1 2 7) }}\right. \\ \hline 0\end{array} \right\rvert\, 01111110\right) 00000000000000000000000$

Exemplo 3:
$1.0_{10}=1.0_{2} \stackrel{\text { norm }}{=} 1.0 \cdot 2^{0}$
$(-1)^{0} \cdot(1+0.0000 \ldots 0000) \cdot 2^{(127-127)}$

| 0 | 01111111 | 00000000000000000000000 |
| :--- | :--- | :--- | :--- |

Padrão IEEE 754 - exemplos

$(-1)^{s} \cdot(1+$ fração $) \cdot 2^{(\text {expoente-127) }}$
Exemplo 4:
$2.0_{10}=10.0_{2} \stackrel{\text { norm }}{=} 1.0 \cdot 2^{1}$
$(-1)^{0} \cdot(1+0.0000 \ldots 0000) \cdot 2^{(128-127)}$

| 0 | 10000000 | 00000000000000000000000 |
| :--- | :--- | :--- | :--- |

Exemplo 5:
sinal $=1$, expoente=129, fração=0100. . . 0000

| 1 | 1000000101000000000000000000000 |
| :--- | :--- | :--- |
| $(-1)^{s} \cdot(\mathbf{1}+$ fração $) \cdot \mathbf{2}^{(\text {expoente }-127)}$ | |
| $(-1)^{1} \cdot(\mathbf{1}+\mathbf{0 . 0 1 0 0} \ldots 0000) \cdot \mathbf{2}^{(129-127)}$ | |
| $-1 \cdot(\mathbf{1}+\mathbf{0 . 2 5}) \cdot \mathbf{2}^{2}=-5 . \mathbf{0}_{10}$ | |

Valores Especiais		
Expoente	Fração	representa
$e=\boldsymbol{E}_{\min }-1$	$f=0$	± 0
$e=\boldsymbol{E}_{\min }-1$	$f \neq 0$	$0 . f \times \mathbf{2}^{E_{\text {min }}} \ddagger$
$\boldsymbol{E}_{\min } \leq \boldsymbol{e} \leq \boldsymbol{E}_{\max }$	-	$1 . f \times \mathbf{2}^{e}$
$e=\boldsymbol{E}_{\max }+1$	$f=0$	$\pm \infty$
$\boldsymbol{e}=\boldsymbol{E}_{\max }+1$	$\boldsymbol{f} \neq \mathbf{0}$	NaN
\ddagger formato denormalizado: $\mathbf{2}^{-149}<\boldsymbol{F}<\mathbf{2}^{-126}$		

Operação com NaN resulta em NaN

$$
\begin{aligned}
& 5+\mathrm{NaN} \rightarrow \mathrm{NaN} \\
& 0 \cdot \infty \rightarrow \mathrm{NaN} \\
& \text { mas } 1 / \mathbf{0} \rightarrow \pm \infty
\end{aligned}
$$

Padrão IEEE 754 - núm denormalizados

Números com expoente menor que $\boldsymbol{E}_{\text {min }}$ são legais e possibilitam underflow gradual: $\boldsymbol{x}, \boldsymbol{y}$ pequenos, se $\boldsymbol{x} \neq \boldsymbol{y}$ então $\boldsymbol{x}-\boldsymbol{y} \neq \mathbf{0}$

Padrão IEEE 754 - precisão

Seja \boldsymbol{x} um número Real e $\mathcal{F}(\boldsymbol{x})$ sua representação em PF
O erro absoluto de representação é $\mathcal{F}(\boldsymbol{x})-\boldsymbol{x}$
Sejam \mathcal{F}_{1} e \mathcal{F}_{2} tais que $\mathcal{F}_{1} \leq \boldsymbol{x} \leq \mathcal{F}_{2}$ então $\mathcal{F}(x)$ pode ser \mathcal{F}_{1} ou \mathcal{F}_{2}.

Se $\mathcal{F}_{1}=M \cdot 2^{E}$ então $\mathcal{F}_{2}=(M+u l p) \cdot 2^{E}$
e o erro máximo é $\mathbf{1} / 2\left|\mathcal{F}_{1}-\mathcal{F}_{2}\right|=u l p \cdot 2^{E}$

O erro relativo de representação é $\quad \boldsymbol{\delta}(\boldsymbol{x})=(\mathcal{F}(x)-x) / \boldsymbol{x}$

Adição em Ponto Flututante

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Adição em Ponto Flututante II

Exemplo: $9.999 * 10^{1}+1.610 * 10^{-1}$
base-10, significando com 4 dígitos (1.3) mais 2 dígitos no expoente

1. compara; desloca significando e ajusta expoente do menor
$0.01610 * \mathbf{1 0}^{1} \quad$ trunca para quatro dígitos: $0.016 * \mathbf{1 0}^{\mathbf{1}}$
2. soma
9.999
$\begin{array}{r}+0.016 \\ \hline 10.015\end{array}$
3. normaliza
$10.015 \cdot 10^{0} \stackrel{\text { norm }}{=} 1.0015 \cdot 10^{1}$
4. arredonda e trunca para 4 dígitos
se dígito à direita $0 \leq d \leq 4$, arredonda para menos;
senão ($5 \leq d \leq 9$), arredonda para mais erredonda?
$9.999 * 10^{1}+1.610 * 10^{-1}=1.002 * 10^{1}$

Adição em Ponto Flututante III

Exemplo: 0.5 - 0.4375
base-10, significando com 4 dígitos (1.3) mais 2 dígitos no expoente
$0.5_{10}=0.1_{2} \stackrel{\text { norm }}{=} 1.000 \cdot 2^{-1}$
$-0.4375_{10}=-7 / 2^{4}=-111_{2} / 2^{4}=-0.0111_{2} \stackrel{\text { norm }}{=}$

$$
-1.110 \cdot 2^{-2}
$$

1. compara; desloca significando e ajusta expoente do menor; trunca $-1.110 \cdot 2^{-2} \rightarrow-0.111 \cdot 2^{-1}$
2. soma
$1.000 \cdot 2^{-1}$
$\frac{-0.111 \cdot 2^{-1}}{0.001 \cdot 2^{-1}}$
3. normaliza
$0.001 \cdot 2^{-1} \stackrel{\text { norm }}{=} 1.000 \cdot 2^{-4}$
4. arredonda e trunca para 4 dígitos
$0.5-0.4375=1.000 \cdot 2^{-4}$

Multiplicação em Ponto Flututante II

Exemplo: $1.110 \cdot 10^{10} \times 9.200 \cdot 10^{-5}$
b-10, $|M|=1.3,|E|=2$

1. soma expoentes - com deslocamento!!

$$
\begin{array}{r}
10+127=137 \\
+(-5+127)=122 \\
\hline 259
\end{array} \quad 259-127=132=127+5
$$

2. multiplica significandos	3. normaliza:
1.110	$10.212 \cdot 10^{5} \stackrel{\text { norm }}{=} 1.0212 \cdot 10^{6}$
$\times 9.200$	
0000	4. arredonda e trunca $\mathrm{p} / 4$ dígitos:
0000	$1.0212 \cdot 10^{6}=1.021 \cdot 10^{6}$
2220	
9990	5. calcula sinal: $+\times+=+$
10.212000	$+1.021 \cdot 10^{6}$
$10.212000 \rightarrow 10.212 \cdot 10^{5}$	

UFPR BCC CI212 2016-2- aritmética ponto flutuante

Multiplicação em Ponto Flututante III

Exemplo: 0.5×-0.4375
b-10, $|M|=1.3,|E|=2$
$1.000 \cdot 2^{-1} \times-1.110 \cdot 2^{-2}$

1. soma expoentes - com deslocamento!!
$(-1+127)+(-2+127)-127=124 \quad 124=127-3$

2. multiplica significandos	3. normaliza:
$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 1 1 0} \cdot 2^{-3}$
$\times \mathbf{1 . 1 1 0}$	4. arredonda e trunca $\mathrm{p} / 4$ dígitos:
$\mathbf{0 0 0 0}$	$\mathbf{1 . 1 1 0} \cdot 2^{-3}$
$\mathbf{1 0 0 0}$	5. calcula sinal: $-\times+=-$
$\mathbf{1 0 0 0}$	$-1.110 \cdot \mathbf{2}^{-3}=-\mathbf{0 . 0 0 1 1 1}$
$\mathbf{1 0 0 0}$	$=-7 / 32=-\mathbf{0 . 2 1 8 7 5}$

Exatidão

Num double só $\mathbf{2}^{53}$ números em $[1,2)$ são representados exatamente IEEE 754 prescreve uso de 2 bits adicionais na implementação: bit de guarda e bit de arredondamento que garantem precisão melhor que metade do bit menos significativo da fração

Sem bits de guarda e arredondamento, qual é a perda de precisão a cada operação?

