Entrada e Saída

- Tipos e Características de Dispositivos
- Arquitetura do Sistema de E/S
- Discos
* Mecanismo, componentes de gravação e de posicionamento
* Controlador
* RAID
- Redes, barramentos, vazão e latência
- dispositivos, interfaces com CPU e com Sist Operacional
- Desempenho e projeto
\qquad

Características dos Dispositivos

- Comportamento
* entrada (lê uma vez só)
* saída (escreve uma vez só)
* armazenagem (lê muitas vezes, também escreve)
- contra-parte
* humano
* computador
- taxa de transferência
* taxa de pico
* taxa sustentada (sustentável em condições "normais")

Classes de Periféricos

- Lentos e Preguiçosos:
* teclado - 10 caracteres por segundo
* mouse - 30 caracteres por segundo
- Rápidos e Gulosos:
* disco rígido - 512 bytes em 0.2 ms
(≈ 2 Mbytes $/ \mathrm{s}$)
* interface de rede - 1024 bytes em 0.1 ms
($\approx 10 \mathrm{Mbytes} / \mathrm{s}$)
* controlador de vídeo - 30 Kbytes em $1 \mathrm{~ms} \quad(\approx 30 \mathrm{Mbytes} / \mathrm{s})$
- Tratamento diferente para as duas classes
* periféricos lentos podem esperar
* periféricos rápidos devem ser prontamente atendidos
* tratamento de grandes volumes é mais complexo que o de caracteres individuais

Arquitetura do Sistema de E/S

Hierarquia de vias:
largura de banda é menor a medida em que desce na hierarquia
barramentos distintos em cada nível

Processamento de E/S: controlado por programa ADM
processadores de E/S

LIFPR Racharoladn om Ciôncia da Comnutarวัค
\qquad
Vazão e Latência
Vazão: taxa de transferência [bytes/segundo] depende de:

- largura da via (largura do barramento: 8, 32 ou 256 bits)
- taxa de sinalização (velocidade do relógio)
- tipo de sinalização (síncrona ou assíncrona)

Latência: lapso entre comando e resposta [segundo]
depende de:

- tipo de sinalização (síncrona ou assíncrona)
- tipo dos dispositivos (memória, disco, mouse)
- organização (mapeamento de endereços, segmentação do caminho)

Entrada e Saída

- Tipos e Características de Dispositivos
- Arquitetura do Sistema de E/S
- Discos
* Mecanismo, componentes de gravação e de posicionamento
* Controlador
* RAID
- Redes, barramentos, vazão e latência
- dispositivos, interfaces com CPU e com Sist Operacional
- Desempenho e projeto

An introduction to Disk Drive Modeling, Ruemmler \& Wilkes, IEEE Computer 27(3):17-28, Mar 1994

E/S e Computação

E/S concorre com computação de maneiras complexas

$$
\mathcal{T}_{\text {tarefa }}=\mathcal{T}_{\text {cpu }}+\mathcal{T}_{\mathrm{E} / \mathrm{S}}-\mathcal{T}_{\text {concorr }}
$$

Discos Magnéticos

Discos Magnéticos - Parâmetros Típicos

Característica	mín	máx
diâmetro [polegadas]	1,0	$* 3,5$
capacidade formatada [GB]	4	>200
discos/pratos	1	20
trilhas por superfície	6.000	25.000
setores por trilha	100	600
bytes por setor	512	4.096
velocidade [rpm]	5.400	15.000
cache [MB]	0,5	≥ 8
taxa transferência [MB/s]	$2,5-5$	$27-40$

[^0]
\qquad

Mecanismo - componentes de gravação

- Diâmetro: 1.0, 1.3, 2.5, 3.5 , 8 polegadas
- densidade linear de gravação: 100 Kbpi [bits/inch]
- densidade de trilhas: 20 Ktpi
- efeito combinado: densidade por área
[tracks/inch]
- velocidade 3.600, $7.200,10.000,15.000$ cresce 60% aa
- uma cabeça ativa por vez, taxa de leitura $\geq 100 \mathrm{Mbps}$
- conteúdo de um setor
* número do setor;
* espaço;

夫 informação do setor com código de detec\&corr de erros

* espaço;
*...

Mecanismo - componentes de posicionamento

- Densidade é tão alta que noção de cilindro é quase irrelevante
- busca consiste de
\star aceleração até atingir $1 / 2 V_{\text {máx }}$
$\star V_{\text {máx }}$ em distâncias longas
« desaceleração até trilha desejada
* estabilização da cabeça sobre a trilha (1-3 ms)
* seeks longos: $\mathcal{T} \propto$ distância ($@ \boldsymbol{V}_{\text {máx }}$)
\star seeks médios: $\mathcal{T} \propto \sqrt{\text { distância }}$
- recalibrar posição a cada $15-30 \mathrm{~min}$, durante $500-800 \mathrm{~ms}$
- acompanhamento de trilhas
\star troca de cabeças \rightarrow reposicionar braço ($\approx 0.5-1.5 \mathrm{~ms}$)
\star troca de trilha \rightarrow estabilizar braço ($\approx 1-3 \mathrm{~ms}$)
\star controlador tenta leitura otimista assim que chega na trilha pode fazer escrita otimista? $(\approx 0.75 \mathrm{~ms}$ até estabilizar para escrever)

Mecanismo - leiaute dos dados

- Disco visto pelo SO como vetor linear de blocos (256-1024 bytes)
- controlador mapeia vetor nos setores físicos 1D $\sim 3 D$ blocos[i] \sim disco[superfície, trilha, setor]
- \#bits cresce \approx linearmente com comprimento da trilha zoneamento: número de setores depende do raio $\exists 3$ - 50 zonas com mesmo número de setores /zona
- deslocamento de setores nas trilhas:
setor0 de cada trilha deslocado para esconder tempo de reposicionamento track skewing
- trilhas/setores sobressalentes: referências a setores danificados são re-mapeadas para setores/trilhas de reserva
* na formatação - pula endereço da trilha com defeito slip sparing

夫 em uso - re-mapeia endereço do setor/trilha para sobressalentes
\qquad

Controlador

- Funções do controlador SCSI
* mediar acessos ao mecanismo
* executar sistema de acompanhamento de trilhas
\star transferir dados entre disco e cliente
* gerenciar buffers/cache
- operação do controlador custa $0.3-1 \mathrm{~ms} \quad$ (caindo lentamente) eletrônica segue Lei de Moore mas funcionalidade cada vez mais complexa
- interface com barramento
* transferências em modo síncrono, na veloc máxima do barramento
^ pode operar com split transactions (latências enormes)
$\star \exists$ buffer entre mecanismo e barramento por causa das diferenças de velocidade
- buffer usado como cache

Controlador - cache (leitura/escrita)

- Políticas da cache: read-ahead \approx busca antecipada
* on-arrival read-ahead: assim que chegar na trilha, lê trilha toda
* read-ahead agressivo: atravessa trilhas e/ou cilindros
* read-ahead 'zen': pára no final de trilha/cilindro
* cache associativa:
particionar cache para \neq s seqüências entrelaçadas
- Cache pode corromper sistema de arquivos se faltar energia
* controlador avisa que completou operação após escrever na cache
* se cache tem bateria, problema desaparece (?)
- Cache com fila de comandos: controlador pode otimizar operações porque conhece geometria do disco

Operação de Discos

- Comandos
* Latência/atraso no controlador + tempo na fila (OS)
* $0,5 \mathrm{~ms}$ se não encontra na cache, $0,1 \mathrm{~ms}$ se encontra na cache
- Seek (movimentação do braço entre trilhas/cilindros)
* move a cabeça até a trilha desejada
* tempo depende da posição inicial da cabeça
* valores típicos médios entre 5-12ms
- Latência rotacional
* espera até que setor desejado passe sob a cabeça ($\approx 1 / 2$ volta)
* na média, $0.5 / \mathrm{rpm} \rightarrow 0,5 /(7200 \mathrm{rpm} / 60 \mathrm{spm})=4,2 \mathrm{~ms}$
- Transferência de dados
* taxa de transferência entre 2 e $40 \mathrm{MByte} / \mathrm{s}$
\qquad

Desempenho

- Tempo médio de acesso
$=$ tempo médio de movimentação do braço (seek)
+ latência rotacional média
+ tempo de transferência
+ tempo do controlador
- Exemplo: 7200 rpm, 10MByte/s
tempo médio de movimentação do braço: 10 ms
tempo do controlador: $0,5 \mathrm{~ms}$
tempo para ler bloco de 4Kbytes (uma página)

$$
\begin{aligned}
& 10 \mathrm{~ms}+0,5 /(7200 \mathrm{rpm} / 60 \mathrm{spm})+4 \mathrm{~KB} / 10 \mathrm{MB} / \mathrm{s}+0,5 \mathrm{~ms} \\
& 10 \mathrm{~ms}+4,2 \mathrm{~ms}+0,4 \mathrm{~ms}+0,5 \mathrm{~ms}=14,65 \mathrm{~ms}
\end{aligned}
$$

ci212-E/S (i): discos 2014-2

Desempenho (cont)

	distância	
	$\#$ trilhas	fração
Localidade:	0	24%
discos exibem localidade	15	23%
\rightarrow em "acessos locais" seek cai em 1/3	30	8%
	45	4%
Cache:	60	3%
buffer em memória (Unix buffer cache)	75	3%
e na unidade de disco	90	1%
\rightarrow latência cai para hit+transferência	105	3%
	120	3%
	135	2%
	150-195	11%
unix time-sharing		

Matrizes de Discos

Conjunto de discos individuais:

 cada disco com seu braço/cabeça
Distribuição

 dos dados:endereçamento
independente
listras de
blocos pequenos
listras de
blocos grandes

independente

granularidade fina

granularidade grossa

Matrizes de Discos

- Endereçamento independente
* software/usuário distribui os dados
^ balanceamento de carga entre discos pode ser problemático
- Listras de blocos pequenos (fine-grain striping)

夫 um bit, um byte, ou um setor

* \#discos*|bloco| define menor quantidade de dados acessível
* balanceamento de carga perfeito; só uma requisição atendida por vez
\star taxa efetiva de transferência $\approx N$ vezes melhor que um disco só
^ tempo de acesso pode aumentar, a não ser que discos sejam sincronizados
- Listras de blocos grandes (coarse-grain striping)
* paralelismo na transferência de grandes volumes de dados
* concorrência para transferências pequenas
^ balanceamento de carga pela aleatoriedade
- Granularidade escolhida em função da aplicação e tipo de carga

IIFPR Rarharoladn om Ciônria da Cnmnutarãn
$\mathrm{ci} 212-\mathrm{E} / \mathrm{S}(\mathrm{i}):$ discos 2014-2

Mecanismos de Redundância

- Falhas em discos são parcela grande de falhas de hardware
* striping aumenta o número de arquivos perdidos por falha
- Replicação dos dados
espelhamento dos discos
\rightarrow permite leituras em paralelo
\rightarrow escritas devem ser sincronizadas
- Proteção com paridade
* usar disco para manter a paridade

RAID 4/5 - Blocos de Paridade

RAID 5

RAID - Atualização "Pequena"

Qual é o número de operações de leitura/escrita nos discos individuais para efetuar escrita de poucos dados (= atualização pequena)?

RAID3

IIFPR Rarharoladn om Ciônria da Comnuitarãn
$\mathrm{ci} 212-\mathrm{E} / \mathrm{S}(\mathrm{i}):$ discos

RAID - Atualização "Pequena"

Qual é o número de operações de leitura/escrita nos discos individuais para efetuar escrita de poucos dados (= atualização pequena)?

RAID4 / RAID 5

resumo - Discos

- Tempo médio de acesso
= tempo médio de movimentação do braço (seek)
+ latência rotacional média
+ tempo de transferência
+ tempo do controlador
- Cache no controlador para tirar proveito de localidade
* falta de energia durante escrita de metadados corrompe sist de arquivos
* mesmos problemas que fila de escrita (riscos RAW a WAW)
- RAID - usar discos baratos para aumentar desempenho - acessos em paralelo (striping) e
melhorar confiabilidade - paridade

[^0]: * tamanho típico (+popular) em 2004

