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This paper presents an efficient IrisCode classifier, built from phase features which

uses AdaBoost for the selection of Gabor wavelets bandwidths. The final iris classifier

consists of a weighted contribution of weak classifiers. As weak classifiers we use 3-split
decision trees that identify a candidate based on the Levenshtein distance between phase

vectors of the respective iris images. Our experiments show that the Levenshtein dis-

tance has better discrimination in comparing IrisCodes than the Hamming distance.
Our process also differs from existing methods because the wavelengths of the Gabor

filters used, and their final weights in the decision function, are chosen from the robust

final classifier, instead of being fixed and/or limited by the programmer, thus yielding
higher iris recognition rates. A pyramidal strategy for cascading filters with increasing

complexity makes the system suitable for real-time operation. We have designed a pro-

cessor array to accelerate the computation of the Levenshtein distance. The processing
elements are simple basic cells, interconnected by relatively short paths, which makes it

suitable for a VLSI implementation.

Keywords: iris recognition; AdaBoost; biometrics; Levenshtein distance; string matching;
processor array.

1. Introduction

Biometric systems are becoming popular methods for personal identification. Each

biometric technology has its set of advantages, considering their usability and se-

curity. The human iris, located between the pupil and the sclera, has a complex

pattern determined by the chaotic morphogenetic processes during embryonic devel-

opment. The iris pattern is unique to each person and to each eye, and is essentially

stable during an entire lifespan. Furthermore, an iris image is typically captured

using a non-contact imaging device, of great importance in practical applications.

These reasons make iris recognition a robust technique for personal identification33.

The first automatic iris recognition system was developed by Daugman10. He

applied Gabor filters to the iris image for extracting phase features, known as the

1
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IrisCode. While Daugman continued refining his algorithm12, several researchers

also worked on iris recognition. Wildes34 uses a Laplacian pyramid to represent the

iris texture, and classify the iris images by means of normalised correlation. Boles

et al.4 use an 1D wavelet transform at various resolution levels of concentric circles

on the iris image. They characterise the texture of the iris with a zero-crossing

representation. Ma et al.19 employ a bank of spatial filters, with kernels that are

suitable for iris recognition to represent the local texture features of the iris. Ma

et al.18 use as features a position sequence of local shape variation points. Sun et

al.27 use the histogram of local binary pattern for global iris texture representation

and graph matching for structural classification; this method achieves high discrim-

inability only in rich textured iris images. Lim et al.17 decompose the iris image

into four levels using 2D Haar wavelet transform, and use a modified competitive

learning neural network (LVQ) as a classifier. Ali et al.1 describe a support vector

machine is used for classification. Bae et al.3 project the iris signals onto a bank of

basis vectors derived by independent component analysis and quantise the result-

ing projection coefficients as features. Correlation has also been used to recognise

iris patterns. Vijaya Kumar et al.16 describe a correlation filter for each class that

employs 2D Fourier transforms of training images. Proença et al.23 propose an iris

classification method that divides the segmented and normalised iris image into six

regions; an independent feature extraction and comparison is used for each region,

and each of the dissimilarity values is combined through a classification rule.

Some authors have used Adaboost to obtain a strong classifer by means of

boosting weaker ones. The results presented in these works show that the boost-

ing algorithm can effectively improve the recognition accuracy. Wang et al.32 use

wavelet probabilistic neural networks as weak classifiers. Their published results for

EER, at 3.34%, are distant from those obtained by using classical Gabor wavelets.

Tian et al.28 propose a zero-crossing detection method for iris feature extraction,

and boost these instead of the Gabor filters. They show that the correct classi-

fication rate is not as accurate as the one obtained with Gabor filters, but the

computation takes less time. They report a 99% recognition rate using the CASIA

database.

Chen et al.7 characterize the iris patterns by using an edge-type descriptor. Each

edge-type flag is used to design a weak classifier. The edge-type descriptors, like the

Gabor filters, are computed in a filter pyramid to obtain coarser level descriptions.

The authors determine the edge-type flags with a derivative of Gaussian filter and

the Laplacian of Gaussian filter. A set of DoG/LoG filters is then selected using

the Adaboost algorithm.

Anoter work that makes use of boosting is that by He et al.15. Instead of Gabor

phasors, ordinal measures are used for iris representation. There are however too

many parameters that need tuning when using ordinal measures, and to construct

and optimal classifier is a difficult problem. The authors suggest the use of similarity

oriented boosting instead of AdaBoost. Ordinal measures are difficult to boost,
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thus oriented boosting must be driven by a similarity rule because of the large

amount of features. It should be noted that all these algorithms work with grey-level

images, and colour information is not used since the most important information

for recognition is the texture variation of the iris, which is the same in both grey

and colour images.

In general, the iris recognition process consists of five stages: (i) image acqui-

sition, (ii) iris localisation, (iii) iris normalisation, (iv) IrisCode extraction, and

(v) iris pattern identification. In this paper we deal with the fifth stage, iris pattern

identification. Our approach to iris pattern identification is to first, use Leven-

shtein distance to classify a given IrisCode, and then employ AdaBoost to decide

similarity8. We designed an array processor to accelerate the computation of the

Levenshtein distance between an input IrisCode and a set of previously recorded

IrisCodes.

Existing methods for iris identification are based on the comparison of IrisCodes.

There are several approaches to measure the angular distances between IrisCode

vectors, but the most widely used is the normalised Hamming distance. We use

Levenshtein distance to measure the differences between IrisCodes. We show that

this is a more accurate metric for deciding if two IrisCodes belong to the same

person. Also, whatever the metric used, some parameters must be fixed by the

programmer, such as the minimum distance needed to consider that two IrisCodes

belong to the same person, the number of wavelengths being used, and their values.

We present an iris identification process based on AdaBoost classification. The

boosting process selects the most significant wavelengths for the identification, and

also determines the threshold distances between phase vectors to decide if they

belong to the same iris. The boosting is implemented as a cascade of filters as that

greatly speeds up the decision process.

Section 2 briefly presents the iris recognition technique using the five steps men-

tioned above. Section 3 explains our choice of the Levenshtein distance over the

Hamming distance. Section 4 describes the AdaBoost algorithm we implemented.

In Section 5 we show that the proposed approach improves accuracy in the iris

identification stage. In Section 6 we present an array processor designed to accel-

erate the computation of the Levenshtein distance. Our conclusions are stated in

Section 7.

2. Iris image encoding

In general, iris recognition systems are composed of five stages: acquisition, lo-

calisation, normalisation, encoding, and identification. Figure 1 shows the results

obtained after the four initial stages.

Prior to obtaining the IrisCode, the pupil must be located and the iris seg-

mented. We employ a standard technique to segment the iris34. The iris can be

located at the region between two concentric circles, one for the iris-sclera bound-

ary and another for the iris-pupil boundary, as shown in Figure 2.b. The pupil is
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(a) (b)

(c) (d)

Figure 1. Four initial stages of iris recognition: (a) acquired eye image; (b) segmented iris; (c) nor-

malised iris; (d) IrisCode.

detected with the integro-differential operator shown in Equation 1, as proposed by

Daugman10.

max
r,x0,y0

∣∣∣∣Gσ(r) · ∂
∂r

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣ (1)

The iris region is then transformed into a rectangle. This Cartesian to po-

lar transform, known as normalisation, is based on the Daugman’s rubber sheet

model10. As shown in Figure 2.c, each point of the iris image is mapped to a pair of

polar coordinates (r, θ), where radius r ∈ [0, 1] and angle θ ∈ [0, 2π]. Regions with

high occlusions are not considered, and the amount of occlusion free areas can be

used as a quality measure35.

Iris encoding is implemented using Gabor filters, which are a combination of

Gaussian and sinusoidal functions. Since they are bandpass filters, the effects of

high-frequency noise and low-frequency illumination non-uniformity can be min-

imised. Equation 2 describes a Gabor filter, where λ is the wavelength, σ the Stan-

dard Deviation, γ the aspect ratio, and θ the filter orientation.

Ψ(x, y) = e−
x′2+(γy′)2

2σ2 · cos
2πx′

λ

+ i · e−
x′2+(γy′)2

2σ2 · sin 2πx′

λ
x′ = x cos θ + y sin θ

y′ = −x sin θ + x cos θ (2)

Because phase information is robust to illumination changes, only this is used from

Equation 2. The real component of Equation 2 corresponds to the symmetric part
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(a) (b)

(c)

Figure 2. Iris localisation and normalisation: (a) original image; (b) iris localisation; (c) iris nor-

malisation.

of the filter, while the imaginary corresponds to the asymmetric. Figure 3 shows an

example of the iris encoding process.

Figure 3. Iris encoding process.

Once the iris image has been encoded, it must be compared to others to verify

identity. The usual metric to compare angular distances between IrisCodes is the

normalised Hamming distance, with the phase angle encoded into 2 or 3 bits. If the
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distance between two IrisCodes is smaller than a fixed threshold, the two images

are taken as belonging to the same iris. We investigate this comparison next.

3. The Edit Distance

A novel approach for comparing IrisCodes, which uses Levenshtein distance, is

presented in this paper. The Levenshtein distance5, also called edit distance, is

employed for measuring the difference between two strings. The distance is given as

the minimum number of operations needed to transform one string into the other,

where an ‘operation’ is an insertion, deletion, or substitution of a single character.

This metric is useful in a wide range of applications, and there is a large body of

work concerning string comparison using Levenshtein distance in recent literature

– see, for example, Ref. 25. The usual way to compute the Levenshtein distance is

with an (m+ 1)× (n+ 1) cost matrix L, where m and n are the lengths of the two

strings.

Let L be the cost matrix for strings SA and SB . The value L(i, j) represents

the distance between substrings SA[1, i] and SB [1, j]. The cost matrix values are

computed using a dynamic programming algorithm, where the cost L(i, j) is deter-

mined from previously computed costs, according to Equation 3, where Ci(SB(j)),

Cd(SA(i)) are the insertion and deletion costs, and CS(SA(i), SB(j)) is the cost of

substitution of the i-th character of string A by the j-th character of string B. The

final edit distance between strings A and B is determined by the last value in the

cost matrix: d(A,B) = L(m,n) .

L(0, 0) = 0

L(0, j) = L(0, j − 1) + Ci(SB(j)), 1 ≤ j ≤ n
L(i, 0) = L(i− 1, 0) + Cd(SA(i)), 1 ≤ i ≤ m

L(i, j) = min


for all 1 ≤ i ≤ m, 1 ≤ j ≤ n
L(i− 1, j) + Cd(SA(i))

L(i, j − 1) + Ci(SB(j))

L(i− 1, j − 1) + CS(SA(i), SB(j))

(3)

We set the insertion and deletion costs both to 1, and the substitution cost to

half the Hamming distance between characters. The characters are the 2-bit coded

phasors, and the strings are IrisCode segments corresponding to a given wavelength.

For a given pair of strings, the Hamming distance is equivalent to the Leven-

shtein distance if the only operation considered is substitution, and insertions and

deletions are ignored. Thus, the Levenshtein distance can be a more accurate metric

than Hamming distance for comparing IrisCode segments. In fact, the Hamming

distance is an upper bound of the Levenshtein distance, as proved by Navarro22.

The insertion and deletion operations account for the elastic rotations found in

iris patterns. This means that the pixel shifts are not homogeneous around the

iris pattern, because of the eccentricity of the pupil, the segmentation results, and

the acquisition process. With the use of the deletion/insertion we can handle such



October 6, 2024 7:32 WSPC/INSTRUCTION FILE ijprai10

Iris Recognition Using Adaboost and Levenshtein Distances 7

rotations, which is not possible with the standard Hamming distance algorithm.

In the standard approach, IrisCodes are compared multiple times, shifting the pat-

terns, in order to compensate the effect of iris rotation. Just shifting the patterns

is equivalent to pure geometric rotations of the input image, however, the rotations

found in iris patterns are not geometric but elastic rotations.

We compared the performance of the two methods, namely Levenshtein distance

and Hamming distance, by measuring the intra-class, and inter-class, distances.

IrisCodes from CASIA database from 100 different eyes, taken in 7 different illu-

minations, were used. Over 10,000 comparisons between IrisCodes were made, of

the same iris under different conditions, using Levenshtein and Hamming distances.

The intra-class means and standard deviations were thus obtained. Another set of

10,000 comparisons were made between IrisCodes from different persons to obtain

the inter-class means and standard deviations.

With this experiment we attempted to determine which metric is more suitable

for iris identification. Hence, the distances were computed using the raw IrisCode,

prior to the boosting stage. For two-choice decision tasks, such as in biometric

decision making, the decidability index δ is one measure of how well separated the

two distributions are, since recognition errors would be caused if these overlap11.

The performance of any biometric technology can be calibrated by its δ score.

If the two means are µ1 and µ2, and their respective standard deviations are σ1
and σ2, then δ is defined by Equation 4.

δ =
µ1 − µ2√
(σ2

1+σ
2
2)

2

(4)

This measure of decidability is independent of how conservative the acceptance

threshold is. Rather, by measuring separation, δ reflects the degree to which any

improvement in the false-matching error-rate is attained at the expense of a worsen-

ing in the failure-to-match error-rate. The decidabilities measured on our data sets

are δ = 3.64 using Levenshtein distance, and δ = 1.61 for the Hamming distance.

Thus, Levenshtein distance is a more discriminative measure to compare IrisCodes.

A direct application of the dynamic algorithm for Levenshtein distance computa-

tion has a computational cost of O(mn), where m and n are the length of the strings.

Ukkonen29 presents an algorithm that can check whether the edit distance is below

a given threshold Kλ in O(K2
λ ). This is called a “diagonal transition algorithm”,

because the diagonals of the dynamic programming matrix (from the upper-left

to the lower-right cells) are monotonically increasing. The algorithm computes, in

constant time, the positions where the values along the diagonals are incremented.

Only K2
λ such positions need be computed to reach the lower right decisive cell.

The classifier described in Section 4 does not use the distance value, but it makes a

decision based on the fact that distance is smaller than a given threshold Kλ . Thus,

the Ukkonen approach is an efficient solution for our application. Even though the

computation of the Hamming distance has a lower computational cost, the com-

putation of Levenshtein distance with Ukkonen cost reduction, and a cascading
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strategy shown in next section, can give a solution in a few milliseconds using a

database such as CASIA. Results for computation times are given in Section 5. For

a really large database, perhaps a specific hardware architecture would have to be

used, if so needed. There are proposals for such architectures in the literature, as

that by Climent et al.9, and their respective low cost hardware implementation2,

as a dedicated processor implemented in a FPGA.

The edit distances are computed for IrisCode segments obtained by using dif-

ferent wavelength filters. In a classical approach, distances computed at different

scales have the same weight in the classification, ignoring the fact that some dis-

tances might be more significative than others. This problem can be effectively

solved with a boosting algorithm. We propose AdaBoost to obtain a classifier based

on a weighted function of simple decisions taken from the edit distances computed

by comparing the segments. Filter wavelengths, effective for discriminating differ-

ent iris patterns, have a higher weight in the robust classifier, thus improving the

recognition rate. Also, these weights and decision thresholds are determined auto-

matically by the algorithm. The algorithm is described in next section.

4. Iris classification using AdaBoost

Boosting is a meta-algorithm for automatic learning that builds a robust classifier

by a combination of a set of weak classifiers. A classifier is considered weak if it

has a correct classification ratio slightly better than chance. Consider a set of weak

classifiers ht(x), then the strong classifier sign(f(x)) is defined by Equation 5.

f(x) =

T∑
t=1

αtht(x) (5)

The AdaBoost meta-algorithm obtains the strong classifier iteratively. In each it-

eration, a weak classifier is added in, weighted by its predictive capacity αt. Each

training pattern is given a weight which determines its probability of being selected

to the training set for a weak classifier. If a training pattern is correctly classified,

then the probability of being used again in a subsequent weak classifier is reduced.

Conversely, if the pattern is not well classified, then the probability of being used

again is raised. The AdaBoost algorithm14 is detailed next.

(1) Given

(a) a training set: { (x1, y1), · · · , (xm, ym) };
where xi are IrisCode segments, and yi the label of their corresponding class;

(b) a set of weak classifiers hj( ) ;

(2) Initialise a distribution D1(i) = 1/m for i = 1 · · ·m
(3) For t← 1 · · ·T :

(a) find the weak classifier with minimum error: ht = arg minhj εj ,

where εj =
∑
i=1...mDt(i) and yi 6= hj(xi) ;

(b) compute the coefficient αt : αt = 0.5 ln(1− εt)/εt ;
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(c) update, for normalisation factor Zt,

Dt+1(i) =
Dt(i)

Zt
·
{
e−αt if ht(xi) = yi
eαt otherwise

(4) Return the strong classifier

H(x) =

T∑
t=1

αtht(x) (6)

As weak classifiers hj() we use size-parameterisable decision trees. For a thresh-

old Kλ , that minimises the error of the weak classifier for a given wavelength λ ,

every split is a simple decision:

if dλ(i, j) < Kλ then hλ(i, j) = +1 else hλ(i, j) = −1 ,

where dλ(i, j) is the edit distance between two IrisCode lines i, j , computed for a

wavelength λ.

In the training stage, the distances are pre-computed for all possible wave-

lengths. N distance matrices dλ are built corresponding to N different wavelengths,

where dλ(i, j) is the Levenshtein distance, obtained with the algorithm defined by

Equation 3. The wavelength range is limited at 24. Labels are assigned to each

distance value:

if (i and j are samples from the same iris) then yλ(i, j) = +1 else yλ(i, j) = −1.

Thus, a robust classifier H(x) is produced by the linear combination of the

results obtained from the decision trees, as defined in Equation 6, where x are the

values of the N matrices dλ of Levenshtein distances between IrisCodes lines, αt
can be understood as the weight of the classifier ht in the global decision, and∑T
t=1 αtht(x) is a measure of the confidence for the iris identification.

Figure 4 shows a plot of error × number of iterations of the AdaBoost algorithm.

The error tends to stabilise beyond 100 iterations, so we chose 150 iterations to train

the classifier. The decision-tree size S – the number of splits – must be fixed, and

S was fixed at 3, which is a good trade-off between accuracy and processing time,

as shown in Section 5.

In the recognition stage, we applied a technique of cascading the classifiers to

reduce the computation time, as widely used in face detection applications31. The

key idea is that smaller, therefore faster, boosted classifiers can be constructed,

which reject many of the false candidates, while accepting all positive ones. The

simpler classifiers are used to reject the majority of false candidates, before the

complex classifiers are called upon to achieve a low rate of false-acceptation. Figure 5

contains a diagram of the identification process, known as cascade24. A positive

identification from the first classifier triggers the evaluation of a second classifier,

which in case of positive identification triggers a third one, and so on. A negative

identification on any level causes the immediate rejection of the candidate.

The complete system consists of an 8-level cascade of classifiers. The first clas-

sifier is a single decision tree, while the last classifier consists of the weighted com-

bination of 150 decision trees. Each matching attempt is processed at the various
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Figure 4. Error evolution vs. AdaBoost iterations.

Figure 5. Cascade of classifiers.

levels, and if any classifier rejects the attempt, the processing terminates with a re-

jection. This cascading strategy allows a majority of non-matching attempts to be
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quickly rejected – with fewer comparisons, while spending more computation time

on potential true-matchings. The process is thus considerably accelerated, without

losing accuracy in identification, and the choice of 8-levels is a tradeoff between

speed and accuracy.

Using this cascading strategy there is no need to compute all distances for all

possible wavelengths, since they are computed at the corresponding level if needed.

In fact, not even single distances have to be totally computed because the weak

classifiers need only to ascertain if a given distance is below the desired threshold

Kλ. Once the Levenshtein distance being computed is above the threshold, the

candidate is rejected and there is no need to complete that computation.

5. Results

The iris recognition system was tested with images from CASIA6 and UPOL30,13

databases: 756 monochrome images from 108 eyes from CASIA database; and 384

colour images from 64 persons from UPOL database. As described in Section 2, iris

images were normalised to 256x32 pixels. Each iris image is coded using a 256x32

phasor array, and each phasor was encoded in Gray code with 2 bits. Wavelengths

considered range from 2 to 24 pixels.

Error rates of 0% were easily achieved with images from the UPOL database.

Images from this database are free of eyelids, eyelashes and other interferences.

Figure 6 shows that the distance between the intra-class and the inter-class distri-

butions is very large for the UPOL database, indicating a complete decidability.

Hence, when using images from this database results are not realistic.

The CASIA database is the most commonly used iris image database for evalu-

ation purposes, and several papers report their experimental results while making

use of this database. Thus, we use CASIA for comparing our results to other pub-

lished methods. The number of iris images from CASIA database is sufficiently

large for an adequate performance comparison. Three images from each person

were randomly chosen as a training set, whereas the remainder are the control set,

without overlap. This yields 432 images for a single test. The test results should be

independent on the training images randomly chosen. Thus, a new test is done with

3 new training images, and tested again with the other 4, which were not previously

used for learning. This process is repeated 1,000 times. Error ratios are computed

using the set of results obtained from the whole process.

To evaluate the performance of the identification system, we use the receiving

operating characteristic (ROC), the equal error rate (EER) and the false-rejection

rate (FRR) for false-acceptation rate (FAR) equal to zero. The ROC curve displays

the FRR as a function of the FAR, that is, “the probability that an authorised

person is falsely rejected” against “the probability that an unauthorised person is

falsely accepted”20. The EER indicates the identification error rate for which the

FAR and the FRR are equal. FRR for FAR=0 is a useful metric for access/entry

validation since it guarantees that no unauthorised person can gain access to the
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(a)

(b)

Figure 6. Distribution of intra-class and inter-class distances: (a) CASIA database; (b) UPOL

database.

protected environment. Table 1 shows the error rates obtained using four different

decision tree sizes. A decision tree with 4 splits gives a slightly lower ERR than

one with 3 splits, but the latter is the best trade-off between speed and correct

identification rate, and for this reason the number of splits of the decision trees has

been fixed at 3. Our identification system achieves an FRRFAR=0=1.03%.

Figure 7 shows the FRR×FAR ROC curve using 3-split trees as weak classifiers

and the CASIA database. The results obtained with our system were compared to

published methods. Table 2 shows the results reported in the literature that use
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Table 1. Results as a function of tree splits

tree splits EER [%] FRRFAR=0 [%]

1 0,045 3,51

2 0,017 2,18

3 0,004 1,03

4 0,003 1,03

CASIA database for test images. Results from the combination of two methods

are reported by Sun et al.27. The Mizayawa method21 has de best performance,

followed by He’s method15. We also include some intermediate results using Ham-

ming distance instead of Levenshtein distance. This helps to evaluate the effect of

the distance in the overall EER. We performed tests using the IrisCode lines, and

also considering all possible +-3 pixels shifts corresponding to iris rotations.

Figure 7. ROC curve with the EER line superimposed.

In the training process, IrisCodes are computed from images, and the wave-

lengths and their respective thresholds for the classifier are automatically deter-

mined by the boosting process. In the recognition process, an iris image is encoded

and compared to all other pre-computed IrisCodes in the database. The input

IrisCode is computed in 405µs on a 2.13GHz Intel Core 2 Duo 6400. The Leven-

shtein distance between two IrisCode rows is computed in 240µs. The time needed

to decide if two iris images belong to the same eye, in a worst case situation, is
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Table 2. Comparison with existing methods

Method EER [%]

Boles et al.4 8.13

Wildes34 1.76

Proença et al.23 1.01

Sun et al.27 0.86

Ma et al.19 0.51

Daugman + Tan27 0.49

Daugman + Sun27 0.37

Tan + Sun (27) 0.32

ours using Hamming distance 0.08

Daugman10 0.08

Ma et al.18 0.07

ours using HD ±3 pixel rotations 0.05

Chen et al.7 0.023

He et al.15 0.01

Miyazawa et al.21 0.0099

ours using Levenshtein distance 0.004

72.5 ms, which is just an upper bound. Actual times are (much) shorter because

the complete Levenshtein distance array is seldom computed: most candidates are

refused once the partial distance is above a given threshold. Furthermore, with the

cascading strategy, not all the 150 weak classifiers must be used. In fact, 42% of

candidates are refused in the first cascading stage, 23% in the second, 19% in the

third, 13% in the forth, and less than 3% go beyond the fifth stage. To determine

the average computing time to decide if two iris images belong to the same eye,

we selected 200 random images and compared them with the whole database. The

average time for the verification is 1.6 ms.

6. Processor Architecture

We designed an array processor to speed up the computation of the Levenshtein

distances between an input IrisCode line and k different IrisCode lines previously

recorded.

A direct implementation of the dynamic programming algorithm in Equation 3

would require a large amount of circuitry, because the distances in the Levenshtein

matrix can assume large values when comparing long strings. Therefore, a processor

element would have to add and compare large data values, and the widths of the

buses between adjacent processing elements would be rather wide, and the routing

of the circuit connections would also be prohibitive.
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If the elements of the distance matrix are represented as Sastry et al.26 suggest, it

is possible to bound the information length that is transmitted from one processing

element to another, and avoid the use of large values. This encoding scheme consists

of computing, for every element in the Levenshtein matrix, two incremental costs,

instead of one absolute cost. One incremental cost is the difference between the

matrix element and its top neighbour, namely the incremental vertical cost (Cv).

The other incremental cost is the difference between the matrix element and its left

neighbour, the incremental horizontal cost (Ch).

Using this representation, the algorithm to compute the Levenshtein distances

constructs two different matrices, one for the incremental vertical costs, and another

for the incremental horizontal costs. The values of the elements of these matrices

for a given row i and column j are determined by Equation 7.

Λ = Ch(i−1, j) +DelCost

Γ = Cv(i, j−1) + InsCost

Θ = SubCost(i, j)

Cv(i, j) = min(Λ,Γ,Θ)− Ch(i−1, j)

Ch(i, j) = min(Λ,Γ,Θ)− Cv(i−1, j) (7)

In Equation 7, for all i, j ≤ n, Ch(i, 0) = DelCost and Cv(0, j) = InsCost. The

substitution cost SubCost(i, j) of phasor i by phasor j is the exclusive OR between

those characters.

The distance between two IrisCode lines, α and β, is determined by the two

formulae in Equation 8.

d(α, β) = n · InsCost+

n∑
i=1

Cv(i, n)

= n ·DelCost+

n∑
j=1

Ch(n, j) (8)

Figure 8 shows the dependencies between matrix elements using the incremental

approach: each element depends only on elements that are located above and to the

left. Thus, all elements along the 45o diagonal can be computed simultaneously.

Figure 9 shows a block diagram of the circuit that computes the incremental

costs of a single element in a Levenshtein array. As insertion and deletion costs

are considered to be the same and defined to be 1, the addition circuit may be

implemented as an increment operation. Incremental costs Cv and Ch are input

to the system and the substitution cost is computed by the XOR operation. The

processing element computes new incremental costs according to Equation 7. The

incremental vertical cost is transmitted to the adjacent processor to the right, while

the incremental horizontal cost is transmitted down.

A block diagram of the array processor is shown in Figure 10. The array com-

putes the distance between an input IrisCode line with k others previously registered
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Figure 8. Dependencies between matrix elements.

Figure 9. Processing element.

IrisCodes. Each processing element performs the computations along its respective

column in the edit distance matrix. If n the IrisCode length, then n processing
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elements are needed at every cycle to compute the incremental costs.

An accumulator is used to hold the edit distance. The output of the processing

element at the last column is added to the accumulator. The width of the accumu-

lator depends on the maximum value that the edit matrix can take, and is therefore

dependent on the edit costs and the length of IrisCodes.

Figure 10. Array of processing elements.

On every clock cycle, substitution costs corresponding to a new 45o diagonal

of the cost matrix are computed by the corresponding processing elements. At the

same time, incremental costs computed by each processing element are latched

into the corresponding horizontal and vertical registers. The incremental vertical

cost coming from the last processing element is also added in the same cycle. The

accumulator is initialised with the value n (n·InsCost). After the first 2n−1 cycles,

the accumulator contains the distance between the input IrisCode line and the first

registered IrisCode. Then, every n cycles the distance to a new registered IrisCode

line is computed.

This design uses just one single phase signal to control all data flow. Since

k input registered sequences are being compared, the registers are initialised by the

signal (Ini) each time a new sequence is input to the system. The delay elements δ

are also controlled by the same clock signal.

Array implementation and preliminary results A prototype of the array

was tested on a Xilinx Spartan-3E kit. The FPGA accommodates 256 processing

elements, an array large enough for testing the IrisCode line matching. The timing of

the circuit was analysed to find critical paths and the minimum clock cycle period.

The critical paths between processing elements yield a worst case delay of 8 ns.

Restrictions in the design tools at our disposal allow a maximum clock frequency of

50 Mhz. Only a single phase clocking signal is needed to control the array processor,

and that minimises the use of interconnect lines, yielding short cycle times.

The implementation is in a early stage. More than one IrisCode line comparison

can be performed in parallel if the array were implemented on a higher density

device. Of course, clock speed can be increased with a faster FPGA and more effort
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on fitting the design to the device. This is object of work that is being currently

undertaken.

7. Conclusion

We present a novel iris recognition technique that minimises false identification

rates. The two main contributions of our work are (i) the introduction of the Ada-

Boost algorithm in the iris pattern classification stage, and (ii) the use of Leven-

shtein distance instead of Hamming distance. This approach leads to an effective

identification system and the error ratios obtained are considerably lower than those

obtained using existing techniques.

The computation of the Levenshtein distance has a higher cost than the com-

putation of of the Hamming distance. However, this cost is significantly reduced by

the use of the diagonal transition algorithm. Efficiency is further increased by the

cascade of classifiers, structured as a pyramid. The resulting classifier is computa-

tionally efficient since only a small number of decision trees need to be evaluated

during run time.

We designed an array processor to accelerate the computation of the Levenshtein

distance between an input IrisCode and a set of previously recorded codes. By

changing the encoding of the distance between words in a code, the processing

elements are small and simple basic cells, interconnected by relatively short paths.
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